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Abstract

Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving.
However, battery performance varies throughout the temperature range specific to automotive applica-
tions, and as such, models that describe this behaviour are required.
This paper presents a dynamic battery model describing the battery voltage based on current and temper-
ature. A model identification method is presented and validation tests are performed. The results show
that when temperature influences are included in the models, a significant increase in performance can
be achieved. Modelling errors lower that 5% are achieved for validation tests conducted at -10◦C, 0◦C
and 10◦C, whereas the models that do not consider temperature show errors up to 10%.
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1 Introduction
With the scarceness of fossil fuels and the strin-
gent emission regulations that are being put in
place, hybrid (HEVs) and electric vehicles (EVs)
are being developed at an increased pace. EVs
rely on batteries for providing the energy re-
quired for driving, while HEVs use batteries for
temporary energy storage during driving with the
goal of optimizing fuel efficiency and/or increas-
ing performance.
The high production cost of batteries, together
with their inherent characteristics (the nonmea-
surable nature of important parameters) moti-
vated a great deal of research on battery mod-
elling and state estimation ([1] [2] [3] [4] [5] [6]
[7] [8]).
Temperature plays an important role in the be-
haviour of the battery, both on longer and shorter
time scales. It is recognized that temperature af-
fects the present battery performance [1]. Its ef-
fects on a longer scale, relevant to battery ageing
phenomena, have also been reported in literature
([9] [10] [11] [12] [13]).
For range prediction, an important information
is the amount of energy the battery can pro-
vide/receive. Energy management strategies re-

quire an accurate description of the power losses
occurring within the battery, so that the most
cost effective energy source (in the case of hy-
brid vehicles) is used at every moment. In the
case of regenerative braking, the charge accep-
tance of the battery is extremely relevant, as it
directly affects the required split between stan-
dard (mechanical) and regenerative braking. Dif-
ferent charging strategies (faster or slower home
charging, on route charging, etc.) can be devel-
oped considering the trade-off between user re-
quirements (having enough energy in the battery
at a specified moment in time) and cost efficiency
(balancing between the variable grid prices and
considering battery ageing behaviour).
For all these applications, it is important to have
a good mathematical description of how the bat-
tery operates. In this work, the electrical bat-
tery model presented in [8] is extended to include
temperature effects. A model identification pro-
cedure is presented and validation tests are per-
formed.
This paper is built up as follows. Section 2 de-
scribes the battery model developed in this work.
The model identification procedure is presented
in Section 3, while Section 4 describes the ex-
perimental results and the validation phase. In
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Section 5, concluding remarks are given.

2 Battery model considering tem-
perature effects

The existing battery battery model was devel-
oped in [8] and is shown in Figure 1. It con-
sists of an ideal voltage source, Voc [V], which
is State-of-Charge (SoC) dependent, an internal
resistance R0 [Ω], SoC dependent and different
for charging and discharging, and two RC blocks,
used to mimic the dynamic behavior of the bat-
tery. For more in depth information about bat-
tery dynamic behavior, the interested reader is
referred to [1].

Figure 1: Dynamic battery model

A hybrid approach is followed to introduce
temperature dependence in the existing battery
model. The procedure consists of a mixture
between physical and phenomenological battery
modelling. The physical considerations origi-
nate from electrochemical battery modelling (see
[14]) whereas electric circuit components were
used to emulate the observed battery behavior.
The resulting model has the same outline as the
one shown in Figure 1. It is written in state space
form in equation (1), with battery current Ibat

[A] as input and battery voltage Vbat [V] as out-
put. The states of the model are the SoC and the
voltages of the two RC blocks. The state-space
model is written in discrete time. The sampling
time is ∆t [s] and the battery capacity isCn [As].
The temperature effects are included in the open
circuit voltage (Voc) and internal resistance (R0)
respectively.
Equation (2) shows the dependence of the open
circuit voltage on battery State-of-Charge and
temperature, with κ0:4 and α0:3 unknown param-
eters.
The dependence on temperature and SoC of the
internal resistance is described by equation (3),
where γ and ν are unknown parameters, different
for charging and discharging. The order of the
SoC polynomial is cO (charging) and dO (dis-
charging) while the temperature polynomial is of
order c1 (charging) and d1 (discharging).

3 Model identification procedure
For the identification procedure presented in this
chapter it is assumed that the battery voltage, cur-
rent and temperature are measured with a sample
frequency of at least 1 Hz.
Figure 2 presents a discharge cycle used for
the model characterisation. It originates from a
LiFePO4 battery module with a nominal voltage
of 26.5 V and a nominal capacity of 160 Ah.
The design of the test cycle (consisting of current
pulses of different amplitudes), allows identifica-
tion of the internal resistance from the instanta-
neous change in battery voltage as a result of a
stepwise change of the current, as it can be seen
in Figure 3, at time value 100s.
The internal resistance can then be computed as:

R0 =
∆V

Istep
[Ω], (5)
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Figure 2: Discharge test with 10◦ C ambient temper-
ature

60 80 100 120 140 160 180 200
−0.05

0

0.05

0.1

0.15

0.2

time [s]

v
o

lt
a

g
e

 [
V

]

60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

c
u

rr
e

n
t 

[A
]

∆ V

I
step

Figure 3: Step response

where ∆V [V] is the instantaneous step in volt-
age and Istep [A] is the amplitude of the current
step.
After multiple values of the internal resistance
have been computed, the unknown parameters
of equation (3) can be identified using a least
squares approach.
For each identified R0, the corresponding val-
ues of T and SoC were determined. The SoC
is computed by integrating current, starting from
a known initial value, according to the state up-
date equation of the state space model presented
in equation (1). Knowing these values, we can
write equation (3) for each measurement point.

R0,1
...

R0,n


︸ ︷︷ ︸

R0

=

f2(SoC1, T1)
...

f2(SoCn, Tn)


︸ ︷︷ ︸

HRΦR

(6)

The equation above is valid for both the charg-
ing and the discharging internal resistance. For
simplicity, only the charging case will be treated
here. The discharging internal resistance can be
determined analogously.
In equation (6),R0 is the vector of the internal re-
sistances whereas HR depends only on tempera-
ture and SoC (see below) and ΦR is the vector of
the unknown parameters that are to be identified.
The unknown parameters can be determined as
the least squares solution of equation (6):

ΦR = (HT
RHR)−1HT

RR0 (7)
Please note that the elements of ΦR are not ex-
actly γ and ν from (3), but the results of the mul-
tiplications of the coefficients of the T and SoC
polynomials of the same equation.
After the parameters describing the internal resis-
tance have been identified, the voltage drop over
R0 is computed.

VR0 = HR × ΦR︸ ︷︷ ︸
R0(SoC,T )

×Ibat (8)

In equation (8), R0(SoC, T ) represents the iden-
tified internal resistance (the functional depen-
dence shown in (3) with the identified parame-
ters).
If equation (2) is written for each measurement
point, the following is obtained:Voc,1...

Voc,n


︸ ︷︷ ︸

Voc

=

f1(SoC1, T1)
...

f1(SoCn, Tn)


︸ ︷︷ ︸

HV ΦV

(9)

HV can be computed based on T and SoC:
The unknown parameters are then given by the
least squares solution:

ΦV = (HT
VHV )−1HT

V Voc (11)
At this point, the internal voltage cannot be in-
dependently determined. However, the sum be-
tween Voc and the voltage drops over the two RC
blocks can be computed.

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



HV =

[
1 T1

1
SoC1

T1SoC1 SoC1 T1ln(SoC1) ln(SoC1) T1ln(1 − SoC1) ln(1 − SoC1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
1 Tn

1
SoCn

TnSoCn SoCn Tnln(SoCn) ln(SoCn) Tnln(1 − SoCn) ln(1 − SoCn)

]
(10)

Vbat − VR0 = Voc + Vrc1 + Vrc2︸ ︷︷ ︸
Vdyn

(12)

Looking back at equation (1), it can be seen that
the internal voltage is linearly independent of the
voltage drops over the two RC blocks. This al-
lows the use of Vdyn instead of Voc for determin-
ing ΦV :

ΦV = (HT
VHV )−1HT

V Vdyn (13)

The internal voltage is then:

Voc = HV × ΦV (14)

The voltage of the two RC blocks can be com-
puted as:

Vrc1 + Vrc2 = Vdyn − Voc (15)

At this point, the parameters describing the RC
blocks can be identified using the method pre-
sented in [4].

4 Experiments and validation

Figure 4: Digatron BS-400 battery test system

To validate the proposed method, experimental
tests were conducted on a battery pack produced

by Mastervolt (type MLi 24/160). The tests con-
sisted on applying a sequence of current pulses of
different amplitudes, both for charging and dis-
charging. This was done under different ambient
temperatures, ranging from −18o C to 40o C.

(a) Climate chamber

(b) Battery pack

Figure 5: Test setup

The charging and discharging of the battery
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were performed with the Digatron BS-400 (pro-
grammable high voltage source and sink).
The different ambient temperatures were ob-
tained by placing the Mastervolt battery (Fig-
ure 5b) inside a climate cabinet (Votsch
VCS4033, see Figure 5a) which can accurately
regulate ambient temperature and humidity.
Each test was started with a full battery, charged
according to the CCCV (constant current con-
stant voltage) procedure. To achieve repeatabil-
ity, each charging event took place at an ambient
temperature of 10oC and a battery temperature
(at the start of the charge profile) of 35oC.
The tests were conducted at ambient tempera-
tures of −18oC, −10oC, 0oC, 10oC, 25oC and
40oC. The battery temperature equaled the ambi-
ent temperature at the start of the tests. Starting
from these measurements, the battery internal re-
sistanceR0 as a function of temperature and SoC
has been identified, as presented in Figure 7.
The red stars in the figure represent the values of
R0 identified directly from the step responses, on
which the least-squares identification procedure
is based. Significant temperature influences on
the internal resistance can be seen.
Figure 6 presents the dependence of the internal
voltage on temperature and SoC, which is ob-
tained as a result of the model parameters identi-
fication procedure. The data points used for the
identification routine can be seen in black.
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Figure 6: Identified internal voltage, as a function of
temperature and SoC

Figure 8 shows a comparison between a model
not including temperature influences (model pre-
sented in [8], identified using data measured at
25◦C ambient temperature) and the model de-
veloped in this work. For simplicity, the model
developed in [8] will be referred to as model 1,
while the one proposed in this work, including
temperature effects, as model 2. Three of the
tests are analyzed, with data collected at -10◦C,
0◦C and 10◦C ambient temperature. In each test
case, for model 2, the data collected in the other
5 tests is used for model identification. The RC
parameters were identified using the 25◦C test, at
SoC value of 0.5. For simplicity, these parame-
ters were used for both models.
It can be seen that, as the temperature decreases,
the accuracy gain of the model developed in this
work increases. This is mostly the result of ac-

counting for the increase in the internal resis-
tance due to lower temperature. In Figure 8a -
ambient temperature of -10◦C, the difference be-
tween the voltage prediction of the two models
during current pulses (described in Figure 2) is
significantly bigger than in Figure 8c - ambient
temperature of 10◦C.
Figure 9 looks at the voltage prediction errors,
expressed as percentile values - see equation
(16). In all cases, it can be seen that including
temperature effects in the model brings an im-
portant increase in performance.

error =
Vmodel − Vmeasured

Vnominal
× 100 [%],

(16)
where Vnominal is the nominal battery voltage,
specified by the manufacturer.
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Figure 8: Voltage prediction at different temperatures

A closer look at the error characteristics shown in
Figure 9 reveals some interesting aspects. At the
beginning of the three cycles, the model which
does not take into account temperature effects
is conservative in estimating the voltage drops.
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Figure 7: Identified internal resistance, as a function of temperature and SoC, for charging and discharging

This is due to the impedance increase with de-
creasing temperature. As the battery is dis-
charged, a decrease is visible in the relative er-
rors obtained by model 1. They start with high
positive values at high SoC and decrease to low
negative values for low SoC, not unlike the be-
haviour of the temperature during the tests ( Fig-
ure 10 shows the battery temperature as a func-
tion of SoC for the 10◦ C test). This suggests
that the errors of model 1 partly originate from
not accounting for temperature.
For all three tests, Figure 9 shows that the errors
of model 2 are more constant over the entire SoC
range. The error shapes seem to suggest a tem-
perature influence on the RC model parameters,
which can be addressed as future work.
Overall, the figures show that a significant in-
crease in voltage prediction accuracy can be
achieved when temperature effects are taken into
account by the model. Further accuracy in-
creases are possible when temperature influences
are considered for more model parameters.

5 Conclusions
In this work, a battery model including ther-
mal effects has been developed, together with
a model identification procedure. Coupled, the
two show encouraging results, with voltage mod-
elling errors smaller than 5%, compared to 10%,
if temperature effects are not included.
Experimental tests suggest a strong temperature
influence on the impedance characteristic of the
battery. Information found in [14], where an
electrochemical modelling approach is followed,
backs up this assumption. The present work cap-
tures a part of this behaviour in the R0 depen-
dence on temperature. A direction to further im-
prove the model accuracy is an investigation on
the temperature and SoC effects on the RC pa-
rameters.
Nonetheless, in its present form, the tempera-
ture inclusion in the model offers a significant
increase in voltage prediction performance. Sev-

eral applications will take full advance of this in-
crease of performance. On one side, range pre-
diction algorithms for electric vehicles become
more accurate over a wider range of environmen-
tal temperatures, while beneficial influences are
also expected in model based energy manage-
ment strategies for hybrid vehicles. Furthermore,
smart regenerative braking algorithms gain a bet-
ter insight into the charge acceptance of the bat-
tery over a wide temperature range.
For a number of applications (vehicle sizing and
configuration analysis tools, controls develop-
ment tools, battery second life applications, total
cost of ownership (TCO) models), the ability to
capture the ageing characteristics of automotive
traction batteries is essential. The detrimental ef-
fect of higher temperatures on battery ageing is
widely documented ([9] [10] [11] [12] [13]).
Impedance losses are an important source of the
heat generated in the battery [15]. As the battery
impedance changes with battery temperature, so
does then its heat generation capability.
A coupled electro-thermal cell model has been
developed to describe this behaviour. This model
is then used as a building block in an electro-
thermal battery pack model. The aim is to cor-
rectly describe the relevant stress factors (tem-
perature, but also Depth-of-Discharge or current
rates) for battery aging during the vehicle usage
of the battery. The derived stress factors are then
fed into battery aging models to asses the degra-
dation of the battery pack.
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Figure 9: Voltage prediction errors at different tem-
peratures
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