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Abstract 
This paper presents a driving control method including torque distribution, slip control and regenerative-
hydraulic brake control to maximize maneuverability for six-in-wheel-drive and skid-steered series hybrid 
vehicles. Wheel torque command to each wheel, to track both net longitudinal force and net yaw moment, 
is distributed based on control allocation method. Because regenerative brake torque does not satisfy 
desired deceleration under certain speed condition, hydraulic brake system is controlled to obtain suitable 
brake force rapidly. The maneuvering performance of the six-wheeled and skid-steered vehicle with the 
proposed driving controller has been compared to that of an Ackerman-steered vehicle with even-
distribution controller via TruckSim & Matlab-Simulink co-simulations. 
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1 Introduction 
The six-in-wheel-drive systems are being 
developed to enhance mobility of a vehicle or a 
robot with the wide range of applications such as 
a pathfinder, surveillance and light combat 
operation. Unlike the conventional Ackerman-
steered wheeled vehicles, the skid-steered vehicle 
system is not equipped with steering linkages. 
Instead, it is steered through differential traction 
force which is created from in-wheel motor at 
each wheel. On the other hand, maneuverability 
on off-road surfaces for skid-steered vehicle is 
better and the volume in the front hull is almost 
the same as the rear hull. However, skid steering 
reduces considerable life cycle of pneumatics 
particularly on road and it shows quite poor 
mobility at high speed due to limitation of motor 
torque and traction force.  
Many skid-steering control methods have been 
studied and actively developed to improve 
maneuverability of the skid-steered vehicle 

[1],[2],[3]. However, their tire force distribution 
strategy for skid-steered vehicles considered a 
general driving condition only and mechanical 
characteristics of driving motors and brake systems 
are not considered as well. In this paper, a driving 
control method including torque distribution, slip 
control and regenerative-hydraulic brake control is 
proposed to improve maneuverability in various 
driving conditions for six-in-wheel-drive and skid-
steered series hybrid vehicles. To satisfy the 
driver’s accelerating, braking and steering 
command, the proposed driving controller 
determines distributed driving and regenerative 
braking torques based on control allocation method. 
Using this method, torque command can be 
decided with consideration of motor-torque 
characteristics and slip limitation. Also, hydraulic 
brake system is controlled to obtain suitable brake 
force rapidly, because regenerative brake torque 
does not satisfy desired deceleration under certain 
speed condition.  
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2 Vehicle System Model 
The skid-steered six-in-wheel-drive vehicle is 
equipped with a series hybrid power system, 
independent mechanical brake systems and six 
in-wheeled motors without any steering system. 
In this research, a vehicle dynamic model is 
developed using “TruckSim” in order to analyze 
dynamic behavior of the six-wheeled skid-
steered vehicle and to conduct a numerical 
simulation studies. A hybrid power train model 
including motor torque-speed characteristics and 
mechanical brake system delay is developed 
using MATLAB/Simulink.  

2.1 Vehicle Dynamic Model 
The six-wheeled skid-steered vehicle dynamics 
as shown in Fig. 1 has been modeled using 
TruckSim. Table 1 shows specifications of the 
six-wheeled skid-steered vehicle such as a sprung 
mass, moment of inertia, tread and distance from 
c.g. to each axle. 
Table1: Specification of the six-wheeled skid-steered 

vehicle 

Sprung mass (m) 6000 [kg] 
Moment of inertia   

(Ix, Iy, Iz,) 

 

 

x-axis : 3300 [kgm2],  
y-axis : 45000[kgm2],  
z-axis : 42600 [kgm2]  

Tread  (tf) 2.5 [m] 
Distance from c.g. 
to front/mid/rear 

axle (lf, lm, lr,) 

 

1.75 [m] / 0.25 [m] /  -
1.25 [m] 

Tire radius (rf) 

 

0.473 [m]      
(325/65R20 XLT tire) 
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Figure1: Vehicle dynamics of a six-wheeled skid-

steered vehicle 

 
Figure2: Motor torque-speed characteristic 

 

2.2 Power Train Model 
The proposed skid-steered vehicle model is 
equipped with six 40kW in-wheel motors with the 
motor torque-speed characteristics as shown in 
Fig.2. Each in-wheel motor is directly connected to 
the wheel without any reduction gears. Brake 
actuator of each wheel has been simply modelled 
using a first-order transfer function with a time 
constant, 0.2 sec. Hybrid power train system 
including an engine, an inverter and a battery 
should be modelled to give allowed driving and 
regenerative power information to the driving 
controller [4] but this is skipped in this paper. 
 

3 Driving Control Architecture  
A six-wheel-driving skid-steered vehicle equipped 
with six in-wheel-motors and six independent 
mechanical brakes is able to operate differential 
tracking and braking. The driving control 
architecture is developed to distribute driving 
torque to each in-wheel motor and braking torque 
to each hydraulic brake actuator, in order to 
maximize maneuvering performance and stability. 
The driving controller consists of desired yaw 
moment and longitudinal force determination, 
torque distribution, hydraulic brake control and 
state estimation. Fig.3 shows the architecture of 
the proposed driving controller for a six-wheel-
driving skid-steered vehicle. 
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Figure3: Block diagram of driving control architecture 

  

3.1 Desired Longitudinal Force and 
Yaw Moment 

Desired yaw rate which depends on driver’s 
steering angle and vehicle speed is expressed as a 
first order transfer function.  

max

max

( )1
1

x
des driver

yawrate

V
s

γ
γ δ

τ δ
= ⋅ ⋅

+          
     (1) 

where maxδ is the maximum value of the driver’s 

steering wheel angle and yawrateτ is time-delay 
constant of yaw rate. The maximum yaw rate 

max ( )xVγ  is a function of vehicle speed, as 
shown in Fig.4. This map has been drawn using 
results of steady-state circular turning 
simulations at several constant speeds, where the 
value is the limitation that the vehicle turns 
stably under 5 deg of side slip angle 

( )atan( / )y xV Vβ = . Sharp drop of the curve is 

due to not only the limitation of stability, but also 
the motor torque characteristic. 

 
Figure4: The maximum yaw rate curve 

 
The desired yaw moment is calculated to satisfy 
the desired net yaw rate by yaw rate feedback 
control method based on sliding mode control 
theory [#][#], as follows:  

_z des z des z
SM I I k satγ " #= ⋅ + ⋅ % &Φ( )

&
                     

     (2)
 

where S is the sliding surface, desS γ γ= − .  
Desired longitudinal force control is designed to 
satisfy a desired velocity controlled by the driver’s 
acceleration pedal, using PID control as follows: 

ˆ( )ˆ ˆ( ) ( ) des x
xdes p des x I des x d

d V V
F m K V V K V V dt K

dt

! "−$ $
= ⋅ − + − +& '

$ $( )
∫

                                                                            (3)
 

3.2 Torque Distribution and Slip 
Control 

Torque distribution algorithm is designed to 
distribute wheel torque inputs to generate desired 
longitudinal force and desired yaw moment, using 
control allocation method. A fixed-point control 
allocation (CA) method originally proposed by 
Burcken [5], and then Wang [6] applied this 
method to optimal distribution for ground vehicles. 
The control input u (which stands for driving 
torque Tcom_i, i =1,…,6) of the fixed-point control 
allocation is determined to minimize the 
performance index as follows: [7][8]  

               

min maxsubject to u u u< <                                       (4) 

where,   
( )
( )

min min min

max max max

max , ,

max ,

u u u t t t r

u u u t t t r

= −Δ +Δ ⋅$ %& '

= −Δ +Δ ⋅$ %& '

 

              _
T

d xdes z desv F M! "= # $  

 
The control input limitation umin and umax follows 
motor torque limitation which is a function of 
wheel speed. When slip ratio is larger than the 
threshold, control input limitation has to be zero so 
that wheel torque input of the wheel becomes zero. 
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In general, slip control threshold is set to 0.1 or 
0.15 to keep stability but this can result in less 
maneuvering performance.  

3.3 Hydraulic Brake Control 
Regenerative brake torque cannot always 
generate desired deceleration. Motor torque 
limitation is too low at high speed region, and the 
regeneration energy is not large and the comfort 
could be deteriorated at very low speed region.[9] 
Therefore, hydraulic brake controller is designed 
to assist regenerative brake torque to satisfy 
desired deceleration. 
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Figure5: Brake Torque Distribution 

 
If state of charge(SOC) of battery approaches to 
overcharge region, regenerative brake torque 
should be decreased gradually as shown in the 
Fig.6. 
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Figure 6: Regenerative brake gain with respect to SOC 
 
If vehicle speed is very low, motor speed is not 
fast enough, motor cannot generate sufficient 
regenerative brake torque. Therefore regenerative 
brake torque should be decreased gradually in 
low speed situation as shown in the Fig.7. 
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Figure7: Regenerative brake gain with respect to 
speed 
 
Regenerative brake torque is determined 
considering battery SOC and vehicle speed as 
equation (5), corresponding hydraulic brake 
torque is also determined as equation (6) 

, _ _ , _min( , )regen des i avail i tot des iT T T=          (5) 

where, _ 1 2 max ( )avail i iT Tλ λ ω=  

, _ , _ , _hyd des i tot des i regen des iT T T= −          (6) 
 
Fig.8 shows a result of braking simulation. Under 
6kph, regenerative brake gain is reduced and 
hydraulic brake torque is increased. 

 
(a) Vehicle speed [kph] 

 
(b) Vehicle speed [kph] 

Figure8: Result of braking simulation 
 

3.4 State Estimation 
For the implementation of the proposed driving 
controller, it is necessary to know vehicle speed, 
wheel slip ratio and friction circle of each wheel. 
Vehicle speed is estimated based on wheel speed, 
yaw rate and acceleration sensor data, with 
selection and filtering of wheel speed data to cope 
with even off-road maneuvering. From calculation 
of average wheel speed and acceleration of each 
wheel, the wheel speed in severe slip circumstance 
is filtered and vehicle acceleration information is 
used to compensation. The friction circle 
estimation strategy of the proposed driving 
controller is based on relationship between friction 
circles, longitudinal tire force and slip ratio. Slip 
ratio is a function of wheel speed and vehicle 
speed. [10] 

4 Simulation Results 
To improve performance of the skid-steered 
vehicle with the proposed driving controller, 
TruckSim – MATLAB/Simulink co-simulation has 
been conducted as shown in Fig.9. The comparison 
target of the skid-steered vehicle with the proposed 
driving controller is the Ackerman-steered vehicle 
which has the same dimension, as listed in Table 2. 
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Figure9: TruckSim – MATLAB/Simulink co-

simulation 

 

Table2: Specification of the comparable Ackerman-
steered vehicle 

Lock-to-lock turns of 
the steering wheel 

3.5 turns 

Steering ratio 

 

 

17:1 (Front axle) 
8.5:1 (middle axle) 

Vehicle dimension Same as the skid-
steered vehicle 

Speed control PID control 
(Same as the skid-

steered vehicle) 
Driving torque Even-distributed 

(Mechanical diff.) 
 
To confirm maneuverability and stability of the 
skid-steered vehicle with the proposed driving 
controller, U-turn simulation has been performed. 
In this simulation, both vehicles are controlled to 
keep desired speed at 15kph during u-turn 
behaviour, where !=0.85. This simulation study 
shows that the skid-steered vehicle with the 
proposed driving controller turns with less side 
slip angle and becomes stable quickly after 
turning, as shown in Fig.10. 

 
(a) Vehicle speed [kph] 

 
(b) Yaw-rate [deg/s] 

 
(c) Side slip angle [deg] 

 
(d) Trajectory [m] 

Figure10: Results of U-turn simulation 

 
The skid-steered vehicle with the proposed driving 
controller can maneuvers with larger yaw-rate, 
compared to the Ackerman steering vehicle, at low 
speed region. However, as shown in Fig.4, 
maximum yaw-rate of the skid-steered vehicles is 
sharply reduced as speed is increased.  For this 
reason, maneuvering performance of the skid-
steered vehicle can be maximized only at low 
speed region, compared to that of the Ackerman 
steering vehicle. Fig.11 shows the maximum yaw-
rate curve as a function of speed, compared to that 
of the Ackerman steering vehicle. 

 
Figure11: The maximum yaw rate curve of the skid-

steered vehicle and the Ackerman steered vehicle 
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5 Conclusion 
In this research, driving controller has been 
designed to maximize maneuverability for six-in-
wheel-drive and skid-steered series hybrid 
vehicles. The torque distribution algorithm 
determines torque command to each wheel, in 
consideration of friction circles of all wheels, slip 
condition and motor torque limitation. Wheel 
torque command to each wheel is determined to 
minimize allocation error for longitudinal net 
force and yaw moment. Hydraulic brake 
controller is designed to assist regenerative brake 
torque to satisfy desired deceleration. Vehicle 
speed is estimated using wheel speed, 
longitudinal acceleration and yaw-rate signal. 
The maneuvering performance of the six-
wheeled and skid-steered vehicle with the 
proposed driving controller has been compared to 
an Ackerman-steered vehicle model via 
TruckSim – MATLAB Simulink co-simulation. 
The simulation study shows that severe turning 
performance of the skid-steered vehicle with the 
proposed driving controller is much better than 
an Ackerman-steered vehicle, and it can be 
maximized only at low speed region due to motor 
torque limitation and tire force characteristics. 
An investigation of the drive-ability of the skid-
steered vehicle with the proposed driving control 
algorithm also needs to be conducted via test 
vehicle in the near future. 
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