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Abstract

This paper investigates some fundamental relationships for the optimal choice of operating points of ICEs

in large series hybrids. It approaches the fuel minimization problem under the assumption that the engine

cannot be switched off. The analysis focuses on the two operating point case with linear and quadratic

break specific fuel consumption (bsfc) dependencies. Generalizations of these results to nonlinear (and

non-quadratic) dependencies will be performed using a bounding argument. Explicit fuel saving conditions

are given for the linear case and the amount of fuel savings will be quantified.
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1 Introduction

It is well known that large scale Diesel engines
are prime candidates for hybridization using the
series hybrid principle [1]. Especially for
applications where power draw is almost periodic
(like in heavy earth moving equipment or mining
tasks) the series hybrid principle is a very
attractive option. [2]

If energy storage capacity would be free or
available at low cost, one could operate the ICE
at an operating point that corresponds to the
average required power over one cycle, while
letting the storage device handle the short term
mismatch of power. The disadvantage of such a
scheme is not only the required large storage
capacity, but also the fact that this average power
is likely to not correspond to the lowest
achievable bsfc, even though one can choose the
operating point with the lowest achievable bsfc
for this particular power level. Therefore an
interesting alternative is the use of a two
operating point (OP) scheme, with one OP being

the bsfc minimum. Assuming that the average
power of a cycle is lower than the power that
corresponds to the bsfc optimal power (which is
the case in most applications), the other OP (that
does not correspond to the minimum bsfc) must
be a low power OP.

Slipstream Projects has introduced an optimal
method in [3] by choosing this second operating
point to correspond to “engine-off" conditions,
effectively pulsing the engine between optimal
bsfc and switching it off. This method was shown
to produce superior fuel consumption results in a
variety of drive cycles [4].In large displacement
Diesels, especially if the off state lasts on the order
of minutes or even seconds, this is not possible [2].
We therefore investigate under which conditions it
is advantageous to use a two operating point
scheme relative to the one operating point (average
power) scheme by using approximations of the
bsfc versus power curve. It will be shown that if
the bsfc optimal OP and the second low power
OP are separated by some minimum distance then
the two OP scheme is always preferable. We will
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also show that in the case of the average power
point being far below the bsfc optimal power, a
two OP operating scheme is always preferable
even if the high power OP is not bsfc optimal
using a linear approximation. In the development
of the results of this paper, we assume stay times
in the two operating point to be sufficiently long
to not affect the results due to transient
phenomena that cause increased  fuel
consumption, and we assume the series hybrid
drivetrain to have constant efficiency regardless
of the power levels produced. (The latter
condition can easily be lifted by including the
driveline efficiencies in the analysis.)

2 Analytical Preliminaries

In this paper we will make heavy use of the
relationship between optimal break specific fuel
consumption (bsfc) and power. This function,
which we call, bsfc(P) is generated from the
speed-power or the speed —torque diagram. For
example, in the speed —torque diagram, given the
power P, there are infinitely many points (T, w)
that satisfy P = Tw, where w is engine speed in
radians per second and T is torque. Each of these
points generates a bsfc value. The function
bsfc(P) therefore maps power to the optimal
(minimal) achievable bsfc at that power P, i.e.
assigns to a power level P the minimal
achievable bsfc value. This function bsfc(P)
typically has a minimum in the mid speed range
and increases for low and high engine speeds.
Except for very low and very high power levels,
this function is often well approximated by a
positive quadratic function of the type:
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Figure 1: Quadratic and linear approximations to bsfc
versus power dependency

Py Is the power for which the minimum bsfc is
reached (bsfcpin) and k is a positive constant.
For operating ranges that correspond to a very high
and a very low power level, we introduce a linear
approximation of the form

bsfc(P) = bsfcpey +CP 2
Where c is a negative constant for small P and is
positive for large P. In both cases, this
approximation is only valid for a relatively small
range of very low or high power levels. However,
bounding techniques can be used in conjunction
with this representation to obtain insights into the
utility of two operating point cycling even if
neither a quadratic nor a linear dependency exists.
We also assume in this paper, that there exists a
short and a long term average power, which are
approximately equal. This power level is called
Payg and typically characterizes mining and earth
moving type of duty cycles. In principle the
analysis is valid also for cases where long term and
short term averages are different, but it requires a
more complex analysis taking different short term
averages into account.

3 Fuel Saving Conditions

In this section we will provide conditions for an
efficiency increase by cycling the engine using two
operating points and the quadratic bsfc
dependency in (1).

Consider the fuel mass equation:

M = [ p(P) bsfc(P) Trorar AP 3)
where p(P) is the probability of the engine
producing power at level P and T;,;; is the total
run time.

This equation does not consider the additional fuel
consumption due to transients, i.e. it assumes a
rather long time T, and few changes in
operating points. Of course, the fewer operating
point changes and the larger T;,.q; the better the
approximation for the fuel mass using equation (3).
In the following derivations we will use two
different bsfc dependencies. At first we will
investigate a quadratic relationship of bsfc versus
power, in the second case a linear relationship, and
then we will make a simple bounding argument
using the result for the linear case to shed light on
cases that are not linear. We would like to mention
at this point, that when we refer to a linear or a
quadratic relationship, we really only require that
the three operating points satisfy the linear or
quadratic relationship. These three points are the
low power OP (with power P;), the high power OP
(or the optimal bsfc OP in the quadratic case with
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power P, or P,,), and the average power OP
(with power P,,4). Therefore Py < P,y < Pope-
Therefore this analysis is applicable to a large set
of bsfc curves and linear and quadratic
relationships are essential only for the three
operating points, not the entire function or even
an interval of the bsfc function.

3.1 The Quadratic Case:

In order to show one of our main results, we are
setting up a fuel mass consumption equation of
the following type:

Miotar = T[C[PlefC(Pl) + qpoptbeC(Popt) +

(1 - Zq)PavngfC(Pavg)] (4)

With  Pyp — Payg = Payg —P1 = €and 0 <<
0.5, in this equation regardless of the parameter
g, the average power is constant and equals Py
However if q is near 0.5, power is generated
predominantly by cycling between the bsfc
optimal OP and the low power OP, whereas if q
is low, power is predominantly generated by a
single operating point with power F,,,. Taking
the derivative of (4) w.r.t. g, one obtains:

AM¢ota 2
dt—qtl = k(Pavg - Pl) (2P1 - Pavg) (5)

This derivative needs to be negative if cycling
between the two OPs is to result in less fuel
consumption. Since k and ¢ are positive, P; <
g, results in a negative derivative. It is now
obvious, that for a quadratic bsfc relationship
one can reduce fuel consumption (relative to the
constant output power case of P, ) by cycling
the engine between operating points at power
level P; and P,,, if the following condition is
satisfied:

Papt_Pavg> Pl (6)
This condition therefore requires that there is
some minimum distance between P,,; and P4
which is given by the low power operating point
with power level P,.Therefore it is advantageous
if this low power operating point is chosen close
to idle conditions. One can also see that if P, is
close to P,,.then it may be hard to satisfy this
condition. The amount of savings, which depend
on the three power levels Pyy,g, P,y and Py is

pt

vy’

given by

AM = TPyygbsfc(Payg) — 0.5T [Pybsfc(Py) +
PoptbeC(Popt)] (7)

3.2 The Linear Case:

In the case of a linear dependency of the bsfc
curve with a negative coefficient ¢ in (2), it is
easily shown that for P; < F,,; < P,, Where P,
does not necessarily have to correspond to P, ,
cycling between power level P; and P, is always
advantageous over a single operating point with
power level Py, . This can be shown in a similar
fashion as in the quadratic case, i.e. with equations
(2) and (4). The resulting condition for the
derivative in (4) is given by:
Payge(Py — Pope) <0

Which with the definitions of &, P4, P;, and
Pypeis always satisfied. Equation (7) also describes
the fuel savings for the linear case. (We should
point out that the expression “linear case” is
somewhat of a misnomer, because the only
requirement is that the three operating points lie on
a straight line with negative slope, and this line
never includes the origin.) In this particular case,
the expression for (7) on the amount of saved fuel
mass can be simplified to:

AM = (Payg — Py) (bsfe(Pr) = bsfc(Payg) )T (8)
Therefore the larger the difference between the
average power and the two operating points in the
cycle as well as the difference in the bsfc values
between the average power point and the bsfc of
the two operating points, the larger the fuel
savings. Savings are proportional to the slope of
the bsfc line, if all power levels stay the same.

3.3 Other Dependencies:

In the above two cases (linear and quadratic) we
used the fact that the bsfc operating points for P;,
Pavg, P, or P,ysatisfy a linear or quadratic
relationship. Therefore it is not necessary that the
entire bsfc curve satisfies a linear or quadratic
dependency. The results for the quadratic and
linear case above can be applied to any bsfc curve
if there exist three points on this curve that satisfy
the necessary conditions given above. The
question that arises therefore is: what can one say
about the advantages of cycling if the dependency
is neither quadratic nor linear? The two cases for
which this question can easily be answered using
the developed results are a sublinear relationship (a
relationship where the power P, is below the line
defined by (Pyyg, bsfc(Pyyg)) and (P, bsfc(Py))
and subquadratic bsfc growth.

For the linear bsfc dependency it is easily shown
that cycling is always advantageous, regardless of
the relationship between P;, P,,q and Py, In a
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“sub-linear” relationship, the value of bsfc(P;)
is actually lower than the one in a linear
relationship, and hence the fuel consumption at
power level P, will be less. Since the stay time at
the two operation points P;and P,,; will be
identical to the linear case in order to achieve a
power average of £, the overall fuel
consumption will be less than in the case of
linear dependency. Therefore in the case of a
sub-linear bsfc dependency, cycling is
advantageous, but can result in a small amount of
fuel savings if the slope (given by c) is small.

In the case of a bsfc dependency that has a
growth rate (in direction of diminishing power)
that is between linear and quadratic, the
condition  Py,r — Payg > Py still guarantees
that cycling results in less fuel consumption, for
the same arguments as in the sub-linear growth
case.

4 Conclusions and Outlook

This paper compares the fuel economy of
operating a large Diesel in two different
operating regimes: One operating regime is
simply running the engine at a constant operating
point at the average required power level; the
other consists of cycling the engine between two
operating points, one being the bsfc optimum. In
both cases the generated average power is
identical. Such an analysis is important for large
Diesels that generate power in a series hybrid
configuration and cannot be switched on and off
over a short time period.

The analysis in this paper shows under which
conditions it is advantageous to cycle an ICE.
We distinguished between four cases: (1)
quadratic bsfc dependency, (2) sub-quadratic
bsfc dependency, (3) linear bsfc dependency,
and (4) sub- linear bsfc dependency. In the first
case, i.e. case (1), the three OP points lie on a
quadratic and fuel savings are guaranteed only if
the distance between the low and the average
power point as well as the bsfc optimal and the
average point are sufficiently large. Therefore it
is important that the low power operating point
generates as little power as possible and that the
bsfc optimal power is significantly higher than
the average power. In other words, if the average
power and the bsfc optimal power are close,
cycling should be avoided. In case of sub-
quadratic bsfc dependency (case (2)) the
condition for the quadratic case also ensures fuel
savings for case (2). In case (3), cycling is
always an advantage regardless of the

relationship between the three power levels,
(always assuming that the bsfc optimal power is
larger than the other two). Finally in case (4),
cycling is also an advantage in all cases, like in
case (3).

Explicit formulas for the amount of saved fuel in
the linear and quadratic case are also given. As
shown in [5], these savings can be significant.

Of course, a number of questions arise, that remain
unanswered in this paper. For example, the use of
more than two operating points could be
advantageous in certain situations, especially when
the cost of energy storage is factored in. One could
use multiple operating points that are placed
strategically to match required and produced
power levels in a way that creates only small
mismatches, leading to small energy storage
requirements and thus to a significant reduction in
cost. The other question that arises from this work
is the role of transients. This paper totally neglects
the additional fuel cost due to transients by
assuming they are small due to long stay times in
the two operating points. This again requires a
large energy storage capacity and causes a high
storage cost. Therefore an important question is:
where is the optimal balance between high
transient fuel consumption and high storage
element cost? These topics will be the focus of
future research.
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