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Abstract 

This paper proposes a predictive real time energy management strategy for plug-in- hybrid electric vehicles 

(PHEV) based on an adaptation of Dynamic Programming (DP). The computational load of predictive real 

time strategies increases with the trip length. Therefore, for online computation by the onboard computer, 

they strongly depend on an efficient implementation. To reduce computation cost, current approaches for 

predictive strategies rely on strongly simplified intern vehicle models. The here proposed energy 

management strategy (EMS) uses a different approach, which is based on the use of precalculated lookup 

tables for the different operating points of the powertrain. This precalculation make the use of more exact 

vehicle models possible by using more detailed loss models of the powertrain components. The proposed 

EMS separates the optimization process, i.e. the calculation of the power distribution to engine and electric 

motor and gear in two calculation steps. The first step, which is computationally more intensive, has only to 

be executed once for a certain vehicle configuration. The obtained results are saved in lookup tables to 

avoid a later recomputation. In the second step, which is done online in the vehicle, a shortest path search 

algorithm is employed which is based on the predicted vehicle speed and rode slope of the trip. Techniques 

are integrated which decrease the rounding error caused by the use of lookup tables. The resulting 

difference of the consumed fuel mass between the lookup table based DP and standard DP is smaller than 

0.03% by an approximately 50 times faster calculation. Using the proposed algorithm, even complex intern 

vehicle models do not affect the online computation cost and can be implemented by real time strategies. 

Keywords: HEV (hybrid electric vehicle), parallel HEV, PHEV (plug in hybrid electric vehicle), optimization, power 

management  

1 Introduction 

Environmental issues caused by the 

transportation sector green house gas emissions, 

as well as the risen oil prices, have lead to an 

increased demand for fuel saving vehicles. 

Among the measures to reduce fuel consumption 

are the use of lightweight materials, the 

downsizing of the combustion engine or the 

powertrain hybridization. Powertrain hybridization 

by the integration of an additional electric motor 

with energy strore, permits the combustion engine 

to operate in higher efficiency regions and 

therefore with a lower fuel consumption. In 

addition, part of the kinetic energy of the vehicle 
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can be regenerated by braking with the electric 

machine. PHEV offer in contrast to autonomous 

hybrid electric vehicles (HEV) not only a more 

efficient use of fuel, but in addition, they can 

substitute fuel energy by electric energy. By the 

use of electric energy it is possible to reduce the 

ecologic impact and the dependence of petrol of 

the transportation. Therefore, and because of the 

current battery capacity restrictions and high 

costs of the actual battery technology, PHEV are 

a compromise between pure electric and HEV. 

When used for typically daily trip distances e.g. 

from home to work, a major substitution of fuel 

energy by electric energy can be reached. In 

addition, the range of PHEV is not restricted by 

the battery capacity, as it is for pure electric 

vehicles. The use of both electric motor and 

engine in (P)HEV requires an EMS which 

controls the energy distribution to both machines 

at every instant. The EMS has an even stronger 

influence on the vehicle fuel consumption and 

energy efficiency. 

As battery of a PHEV can be recharged at the trip 

end, the principal operation mode of PHEV is the 

charge depleting mode (CD). In the CD mode the 

stored electric energy is consumed until the end 

of the trip for minimal fuel consumption. This 

could be done by starting the trip in electric 

mode and switch at a low state of charge (SOC) 

to the charge sustaining mode (CS). More 

efficient is the use of a blended strategy, which 

employs the combustion engine from the 

beginning of the trip [1]. Therefore, especially 

for PHEV it is useful to employ predictive 

strategies, which use information about the 

power demand during the future trip until the 

next recharge of the battery.  The information 

about the future trip can be obtained from 

prediction algorithms which combine the 

information from new generation navigation 

systems and  knowledge of the driver’s behavior 

by the use of Neural Networks [2]. 

The EMS controls the optimal combination of 

the gear, the torque of the internal combustion 

engine (ICE)  i e and the electric machine torque 

 em. A lot of EMS concepts have been studied 

[3] and can be classified into heuristic and 

optimization based strategies. Among the 

heuristic controllers are rule based systems  [4] 

or fuzzy controller [5] [6]. Among the 

optimization based approa hes is Pontryagin’s 

Principle [7] [8], which has been used first for 

HEV [9], and later been adapted to the 

requirements of PHEV [10]. Another possible 

approach is DP [11] or the combination of both 

and a Pontryagin’s Prin iple approach [12]. DP is 

due to its high computational effort  normally used 

for benchmark purposes and can be used for real 

time EMS only employing high power and thus 

expensive onboard computer in the vehicle. 

Therefore, current predictive real time EMS 

employ faster optimization algorithms which are 

based on strongly simplified intern vehicle models 

to achieve low computation cost[13]. To avoid the 

online execution of DP, it is also used as 

Stochastic Dynamic Programming when stochastic 

cycle data is used for the optimization [14]. In [15] 

Quadratic Programming is used  to optimize the 

future ratio of the torque between both machines 

and taking into account the energy of the battery. 

These strategies have in common that they 

optimize a model based on Willans lines for the 

engine and a corresponding approach for the 

electric motor [16]. If a speed dependent 

component is included in these models, it is only 

limited to rough approximation of the speed. A 

more exact optimization, i.e. getting results closer 

to the global optimum, is achieved by using fuel 

and loss tables for engine and electric motor. As 

for the use of fuel and efficiency tables the 

motor/engine speed has to be known, the 

complexity of the model is increased, what results 

in higher computation cost. To overcome this 

problem, a technique is presented which allows a 

significant reduction of the computation cost of DP 

when used in an EMS of a specific vehicle. The 

proposed EMS reduces computational effort by the 

beforehand calculated lookup tables. It is able to 

optimize the power distribution for the future trip 

and finds a solution close to the global optimum.  

The algorithm includes also the gear pattern in the 

optimization. It is assumed that vehicle speed and 

road grade is known to the EMS a priori. 

In Section 2 of this paper, the employed models 

and simulation environments are presented. In 

Section 3 the EMS algorithm based on a DP 

approach is presented. The results of the validation 

are shown in Section 4. 

2 Simulation Environment 

2.1 Vehicle Structure 

The simulated hybrid drivetrain has a parallel 

structure; the electric motor and the combustion 

engine are mounted on the same drive shaft. The 

ICE can be separated by a clutch from the 

powertrain for electric driving without the friction 

losses of the engine (Fig. 1). The double clutch 

gearbox has seven gears. Due to the double clutch 



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  3 

principle, fast gear shifting is assumed and 

shifting losses are not considered in the 

powertrain model. The body parameters are 

similar to a conventional SEAT Ibiza ST 

passenger car, taking into account the weight of 

the additional electric components as battery and 

electric motor. The battery has a capacity of 

4kWh and can be recharged during the trip by the 

electric motor in generator mode or at the trip 

end by connecting it to the electric grid.  

 

 

Fig. 1. Powertrain scheme of a parallel PHEV. The 

combustion engine can be separated from the 

drivetrain by a clutch. By connecting the charger to 

the electric grid the battery can be recharged. 

Table I: Simulation Parameter 

Symbol Quantity Value Unit 

m vehicle mass 1450 kg 

Af vehicle frontal area 2.2  m² 

cw drag coefficient 0.325 - 

   rolling resistance 0.01  - 

       wheel radius 0.29 m 

Pice,max max. power ICE 51 kW 

Tice,max max. torque ICE 110 Nm 

Pem,max max. power EM  80 kW 

Tem,max max. torque EM 400 Nm 

Ebattery,nom battery capacity 4 kWh 

   battery voltage 300 V 

Rbattery inner battery 

resistance 

366.67 m  

2.2 Vehicle Model 

The vehicle model is created in the simulation 

environment MODELICA/DYMOLA. Two different 

models are used; a backward model which is 

used by the DP algorithm, and a forward model 

in which the resulting EMS is simulated. In the 

following, the different model components are 

shortly described. The wheel force is calculated as 

a function of among others vehicle mass m, wheel 

inertia        and the horizontal angle of the road α 
(Table I) by  

                      
      

      
    

 

 
      

           . 

(1) 

The wheel torque during the driving cycle is 

obtained using (1): 

                                
. (2) 

Due to the parallel structure of the powertrain, the 

engine torque      and the electric motor     are 

added up and yield the total torque which 

corresponds to the torque requested by the driver 

        : 

                   . (3) 

In the forward model the requested torque is 

controlled by a PI controller for the accelerator and 

brake pedal, adapting them depending on the 

difference between actual vehicle speed   and 

cycle speed       . In the backward model used by 

the DP algorithm, a driver model is omitted, 

assuming that the vehicle speed   corresponds at 

every instance exactly the driving cycle speed 

      . With (1), (2) and  

                           (4) 

results that also the power        transferred from 

the wheels to the road corresponds in the backward 

model at every instance the power requirement of 

the cycle         

                              . (5) 

The torque          stands in a direct relation with 

the wheel torque        as function of the driving 

cycle (see (2)) and of the gearbox efficiency        
and transmission ratio    (which includes both 

gearbox ratio and final drive): 

         

  

           

         
        

             

  
        

    
. 

(6) 

The speed of the electric motor depends on the 

cycle speed        and the transmission ratio    

Drivetrain

Engine

Electric Motor Inverter Clutch

ChargerBattery

Electric Grid

Gearbox

ωice, Tice

ωwheel, Twheel

ωem, Trequest

electric connection

mechanical connection

Pinv,AC

Pinv,DC
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                      . (7) 

while the speed of the combustion engine 

corresponds to the speed of the electric motor 

when the clutch is closed, otherwise it is 0: 

      
            

                
   . 

(8) 

2.2.1 Combustion Engine 

The fuel consumption of the combustion engine 

is modeled by a measured consumption map of a 

51kW engine. The calculated revolution number 

and the torque demand are used to interpolate the 

corresponding fuel consumption map as a 

function of engine torque      and angular 

velocity of the engine shaft      

                         
. (9) 

2.2.2 Electric Traction System 

For the electric motor, the electric losses are 

modeled by an electric losses map. Similar to the 

combustion engine, electric motor speed     

and torque     are used determine the electric 

losses and thus the electric power input. 

        

 
                             

                             

   
. 

(10) 

For the inverter a constant efficiency of 92% is 

assumed: 

         

       

    
         

                    

   
. 

(11) 

The battery loss is modeled by the internal 

resistance   . Two different models are 

employed depending on whether the battery is 

charging (       <0) or is supplying energy 

(       ). In the first case, i.e.          , 

      is calculated in dependence of          

      
  

       
              

   

 
. 

(12) 

In traction mode, when          , 

               
     
  

 
 

   
(13) 

is used. The energy content of the battery is a 

function of the power       delivered to the 

inverter.  

                           
      

 

 
  . (14) 

The SOC is a function of the battery charge      
and the nominal battery charge     . With the 

open circuit voltage assumed to be constant, the 

SOC is equal to the ratio of the energy stored in 

the battery and the nominal energy capacity: 

    
     

         
 

     

         
  . 

(15) 

2.3 Driving Cycle 

To demonstrate the correct operation of the 

proposed algorithm, a recorded driving cycle from 

Barcelona to the company SEAT (called BCN-

CTS, Fig. 2) is simulated. It describes a typical 

driving pattern of people working in a nearby city 

consisting of an urban part at the beginning and the 

end and a highway part in the middle. In this cycle 

also elevation information of the road is included. 

The characteristics are summarized in the table 

below (Table II). 

 

Table II: Characteristics of the driving cycle BCN-CTS 

duration 1903s vmax 117.4km/h 

length 33.1km vavg 62.6km/h 

∆h  107.6m   

 

 

Fig. 2. Speed and elevation of the driving cycle BCN-

CTS 

3 Dynamic Programming 

Dynamic Programming (DP) is a algorithm based  

on the optimality principle of Bellman [17] to 

calculate the global optimal solution of a discrete 
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stochastic or deterministic optimization task. As 

it is frequently used for the calculation of the 

optimal fuel consumption of HEV, the basics are 

only shortly described. The focus is put on the 

innovation of the proposed algorithm. As the 

optimization task is assumed to be deterministic, 

the resulting problem is a shortest path problem 

[18]. 

As the algorithm can be applied only on a 

discrete optimization problem, a discretization 

grid for the time and the states of the model has 

to be defined. A narrower grid results in higher 

accuracy but requires also more computation 

time. Due to the non-algebraic characteristic of 

the algorithm, the computation cost is high 

compared with algorithms like Quadratic 

Programming (QP) or Pontryagin’s Prin iple. 

The computation cost of DP increases 

exponentially with the number of states (states 

arise usually from energy storages as inertias or 

the battery). To limit computation cost, only the 

SOC is used as only model state for the static 

backward model described above.  

The system to which the optimization is applied 

can be generally be described by 

                       , (16) 

where      is the state and        the control 

variable at time step   . The function    stands 

for the vehicle model described above. The 

control variable     is the torque of the electric 

machine     and the gear   

        
      
    

   . (17) 

Using these control variables the engine torque 

     is defined with (3). With (16) results: 

                              . (18) 

 The control problem can be formulated as finding 

the optimal control sequence 

   
   

                   

        
     

            (19) 

which minimizes  

                                (20) 

where   is the set of all possible control 

sequences, and    the system state at time step 0. 

Due to the discretization of the time, the cycle 

speed  , acceleration   and slope    can be 

expressed as sequences 

                   

                   

                       
. 

(21) 

 

Fig. 3. DP best way search of a charge depleting strategy. The energy state of the battery       is discretized over 

time and energy content. The algorithm searches the way which minimizes the cost function   .  
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3.1 Calculation of the Lookup Tables 

To apply the best way search algorithm used by 

DP in (20), for the sequences in (21) the optimal 

gear is calculated by 

      

      
     

                                   
(22) 

and the fuel consumption          for every 

edge in Fig. 3 is calculated in function of the gear 

by 

           

   
 

                                      
. (23) 

The value        describes the energy change of 

the battery during one time step. The value is a 

multiple of the grid spacing of 1kJ plus a 

displacement             : 

                             . (24) 

            is chosen in a way that the energy 

change of the battery in pure electric mode can 

be described exactly by (24), that is 

                                  . (25) 

This decreases the effect of rounding errors 

caused by the grid width of 1kJ in electric mode 

[19], and thus making the best way search more 

exact. The corresponding torques     and      

can also be calculated for every edge as function 

of cycle and gear: 

       
                            

                                   
. 

(26) 

As the weight       of each edge is a function of 

       and and       the value can be saved 

together with the corresponding value of gear   

and engine and motor torque. To limit the entries 

of the lookup table, the power is saved in a 

spacing of 1kW giving the set 

        

  
                    (27) 

and a speed spacing of 1km/h 

        

    
               . (28) 

The resulting lookup table is a 3-dimensional array 

(Fig. 4). The resulting lookup tables have for the 

proposed grid defined in (27) and (28)  

                               (29) 

elements. Considering that four tables are 

necessary for     ,      the gear   and fuel mass 

      the above number has to be multiplied by 

factor four. By saving them in a single floating 

point format, a total lookup table size of about 

24MB results. 

 

 

Fig. 4. Lookup tables for DP algorithm. The values for 

mfuel, Tice, Tem and gear have to be calculated once for a 

certain vehicle and are saved in these lookup tables. The 

values are saved for every combination of       ,        

and       , thus resulting in a 3-dimensional array. 

3.2 Application of the Lookup Tables 

Using the known cycle data          ,          , 

      in (1) the wheel force        can be 

calculated for the future trip. Beforehand, to 

minimize the problem of the time grid of 1s the 

velocity is averaged over the current and the next 

time point. 

           
                     

 
  (30) 

which is also done for the slope 

               
                       

 
  . (31) 
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By doing so, the change of speed        and slope 

during a time step is taken into account.  The 

power at every instance can be calculated by 

                  
                       

           

                                        

(32) 

yielding the sequence of the required power 

during the driving cycle 

           

                                
(33) 

converted into the sequences     ,     . When 

accessing the lookup tables, the values are 

rounded to the grid spacing of 1km/h and 1s. 

       
                        

      
                         . 

(34) 

The corresponding values for    ,       , and 

       are taken from the corresponding lookup 

table       
 ,         

            
       

            
       

                     
            

       . 

(35) 

The vectors           and the displacement 

          of (27) are also taken from the 

corresponding lookup tables      and         

                     
            

       

                        
            

       
(36) 

and adapted by an estimation of the rounding 

error caused by the rounding of       
 . To 

compensate these resulting rounding errors of 

torque and battery energy consumption, a 

compensation for     and the energy offset        
is calculated for every time step. Therefore, the 

rounding error of equation (34) 

              
      (37) 

is used to translate the effect to the battery by 

               (38) 

  

                                   

          
       

                
        

   

where the time grid spacing is       The 

resulting torque is corrected in the same way as the 

energy change in (38) by 

               
      
   

      

          . (39) 

The consideration of these correction terms leads 

to results close to standard DP (Fig. 6 and Fig. 7) 

but comes along with significantly reduced 

computation costs. 

 

 

Fig. 5. Difference of torques     and      and the 

overall difference           

 

 

Fig. 6. Optimal electric motor torque     trajectory 

calculated by standard DP (middle), lookup table 

based DP (above) and their difference (bottom) 
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4 Results 

The EMS is simulated for the recorded real life 

cycle BCN-CTS employing CD mode. The 

obtained results are compared to the global 

optimal results calculated using standard DP. For 

both algorithms it is assumed that exact 

knowledge of the future trip is given in respect to 

speed and road grade. The comparison between 

the lookup tabled DP approach and the global 

optimum calculated by standard DP is done by 

applying the calculated optimal torque     
   

,    
   

 

and gear      to the vehicle forward model. 

These results are used for the evaluation of the 

result. The driver model inside the vehicle 

forward model corrects differences in the torque 

distribution of the lookup table based DP by 

adjusting     with its PI controller. In that way it 

is assured that the comparison is done with the 

correct vehicle speed at every instance.  

The remaining rounding error of the cycle power 

   despite the correction by (38) and (39) results 

in small differences of the costs at every time 

step. These differences of the cost function     , 
(i.e. the fuel mass      ) at particular time steps 

of the cycle between lookup table based DP and 

standard DP can lead to different decisions of the 

shortest path search algorithm. This behavior can 

be observed at the differences      and       of 

the optimized torques      and      (Fig. 6 

bottom, Fig. 7 bottom). These shortest path 

decisions can be seen well when switching on the 

engine at different instances, resulting in peaks of 

the torque difference 

        
         

    
          

 , (40) 

   
         

 being the results of lookup tabled based 

DP. At second 15 (Fig. 5) the lookup table based 

DP leaves the engine switched off, while it is 

switched on by standard DP. However, this 

behavior does not hamper the overall results, as the 

sum          of both torques does not show these 

peaks (Fig. 6, bottom). 

Due to the grid spacing of the wheel power        
of 1kW, the rounding error    is always smaller 

than 0.5kJ. This error    of the wheel power 

affects at lower vehicle speed the torque difference 
            more than at higher vehicle speed (Fig. 

8). Between second 1450-1500 the vehicle speed is 

between 119.2 and 127.4km/h and the resulting 

torque difference             is smaller than 2Nm. 

For the part with smaller vehicle speed has a short 

increase to values                    and 

changes from second 212 at values             

   . Due to the changing nature of the sign of the 

error the overall performance is only slightly 

affected (Fig. 9). 

 

By the use of lookup tables for the DP algorithm, a 

drastic reduction of calculation time is achieved. 

Table III shows an improvement of computation 

time by a factor of around 50 for the lookup table 

based DP. A further reduction of the computation 

cost can be achieved by the reduction of the 

prediction horizon [20]. 

 

 

 

 

 

 

Fig. 7. Optimal electric motor torque      trajectory 

calculated by standard DP (middle), lookup table 

based DP (above) and their difference (bottom) 

 
Fig. 8. Torque differences during seconds 200-250 and 

1450-1500. The cycle speed in the second time 

window is higher than in the first one, thus the power 

rounding error    due to the lookup table leads to 

smaller torque differences.  
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Table III: Calculation time. The times refer to a 

calculation on Intel i3 at 1.8GHz. For the lookup 

tables based values the calculation of the lookup tables 

is not included. 

Standard DP 44732s 

Lookup table based 

DP 

808s 

Computation time 

improvement factor 

55 

 

Comparing energy managements for PHEV is 

not straightforward if the final SOC value at the 

end of the driving cycle is not the same, as it is 

here the case. As the PHEV consumes both fuel 

and electric energy, the total energy consumption 

       and the resulting CO2 emission are 

compared by 

                            

                   
(41) 

where    the higher heating value of the fuel 

used by the engine. For the CO2 emission the 

consumed fuel and the CO2 generation resulting 

from the electricity production is considered 

(10), using data of the average emission of the 

electricity production in the EU in 2009 (appr. 

396/kWh  [21]). The additional CO2 output by 

the transport and the losses by charging the 

battery are neglected. Therefore, the resulting 

equation is: 

                             

    

  
          

       

  
       

(42) 

The difference of the calculated carbon dioxide 

emission per km is 0.08% (Table IV).  The 

resulting SOC curve during the cycle of for the 

lookup table based DP close to the results 

achieved with standard DP (Fig. 9). The resulting 

SOC is at every moment close to the global 

optimum, reaching a final SOC of 0.299. The 

difference of the results of the standard DP 

applied to the forward model (compare Table IV, 

column 1, 3) is caused by the discretization of the 

change of the energy levels at every step and the 

discrete time steps (Fig. 3) and can only be 

reduced by finer grid spacing. However, the 

possibly higher exactness (now having an error 

of only 0.1% for the overall used electric energy) 

would not compensate the increasing 

computation cost. 

 

Table IV: Simulation results of consumption  

 Standard 

DP 

Lookup 

Table DP  

Error 

/ % 

         0.3007 0.2988 - 

      / l/      3.35 3.35 0.03 

         
   

     
  7.25 7.26 0.32 

       / MJ 42.715 42.792 0.18 

           109.4 109.5 0.08 

 

5 Conclusion 

The proposed algorithm yields a significant 

acceleration of DP if used for EMS of a (P)HEV. 

Necessary for the speed gain is the repeated use of 

the algorithm for the same vehicle type. In this 

case the speed gain of the computation compared 

to standard DP is approximately by the factor of 

50. This speed gain brings its application in real 

time energy managements closer. If used in 

combination with techniques for a reduced 

prediction horizon, the calculation time can be 

further reduced. The results obtained are close to 

the results obtained by standard DP with a 

deviation of optimal fuel consumption of less than 

0.03% and of the total energy of 0.18%. It is 

expected that the algorithm will show a similar 

performance in other driving cycles. The fact that 

the computation cost of the proposed energy 

management is not affected by the complexity of 

the vehicle model, allows the use of more exact 

losses model of electric motor, combustion engine, 

converter and transmission applying loss tables. 
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