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Abstract 

This paper addresses the precocious detection of electric arcs in an electric vehicle battery generated by a 

connector fault. The detection principle is based on the acoustic emission of the arc. First, the identification 

of the electric arc acoustic signature as well as disturbances in the environment of detection has been 

realized. Subsequently, we have been focused on the propagation of acoustic waves emitted by the arc in 

the confined environment of the battery. We proposed a detection method based on correlation whose 

performance was evaluated. Finally, a localization system based on signal time-difference-of-arrival 

estimation and triangulation is described and assessed. A demonstrator has been developed and validates 

the detection performance. 
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1 Introduction 
The battery of an EV is made of several modules 
and each module consists of several battery cells 
arranged in series and in parallels. This type of 
arrangement leads to a high number of internal 
connections. The connections between these cells 
may be damaged or broken due to the aging of 
materials, or other external factors (shocks and 
vibrations in the vehicle). A break at the 
connection may cause electric arcs that can be 
maintained because of DC current flowing into 
the battery. Thus, these arcs can cause 
overheating and even thermal runaway in the 
battery which can lead to dangerous fires. 
Thereby the aim of our study is to detect these 
arcs from their beginning and prevent possible 
thermal runaway. Because of the many 
disturbing transient signals present on the voltage 
and the current measurements made on the 
battery, we propose an innovative method based 
on the acoustic emission of electric arcs. Firstly, 
the arc acoustic emission nature is discussed 
theoretically and experimentally. Secondly, the 

acoustic environment in the framework of our 
vehicle application has been assessed. The 
different interfering signals have been listed and 
characterized. Thirdly, an electric arc detection 
method is proposed and thoroughly evaluated. 
Further on, a localization system is studied. 
Finally, the demonstrator realized to implement the 
detection method and to validate it is presented.  

2 Acoustic study of the electric 
arc 

In this section, we propose a theoretical and 
experimental study of electric arcs. 

2.1 Theoretical study 
The physical process that starts an arc in the 
battery is by contact. An electric arc can be 
produced when two contacts initially driven by a 
current are separated. The conduction is then 
maintained by an electric discharge that begins in 
the space between electrodes. A battery contains 
several connections between cells, which are likely 
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to have defects and then cause arcs. The 
minimum voltage needed in order to maintain the 
arc is around 15-20V. Below this value, the space 
charge area near the electrodes becomes 
insulating and then the arc stops.  
An electric arc generates acoustic waves whose 
amplitude can vary depending on several 
parameters. The equation of the wave in the 
plasma is [1] :  
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where � is the perturbation of the pressure, � is 
the speed of sound, � is the adiabatic 
compression coefficient, 
 is the first-order 
perturbation of any quantity of energy delivered 
per second per unit volume of gas, and � is the 
quantity perturbed to first order of �� which is 
the mass of neutral particles received per second 
per volume unit. 
Equation (1) can be simplified to: 
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where �
�, �� is the term for the source. 
The amplitude A of the acoustic wave at a given 

point is proportional to 
��
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 is the 

electric power transferred to the arc. After 
simplification, the amplitude can be written as: 
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(3) 
where 	� is the coefficient inversely proportional 
to the temperature of the arc. 
 
We can notice here that the parameters of the arc 
have only influence on the magnitude of the 
acoustic signal but not on its spectral signature. 
This property will be useful to choose the 
detection method. 

2.2 Experimental study 
In this section, we present acoustic signatures 
typical of experimental arcing. When an arc due 
to a fault connection is produced in a battery, it 
has a voltage of the order of fifty volts (depends 
on the connectors spacing) for an hundred 
amperes. In order to experimentally reproduce 
this phenomenon in a secure environment we 
have designed a specific RLC circuit. Melting a 
fuse wire located between two electrodes creates 

the arc. We sized the various components (R, L, 
and C) in order to obtain the desired voltage, 
current and arc duration. 
On figure 1 we plot the time acoustic signal 
produced by a fuse arc and its frequency spectrum. 
We used a piezoelectric sensor from Euro Physical 
Acoustics (EPA) SA, which frequency band 
reaches 1MHz.  

 
Figure 1: Time and frequency signatures of a fuse arc 

measured with an EPA sensor. 

In the time area, the signal extends over several 
milliseconds with a decreasing envelope. This 
shape recalls the impulse response of a filter. In the 
frequency area, there is a greater power at low 
frequencies, especially in the audible area (which 
is perceptible to the ear). This spectrum shows 
resonances around 10 kHz, 40 kHz and 150 kHz. 
We plot on figure 2 results obtained for the same 
arc with a sensor from Avisoft Bioacoustics, which 
is characterized by a flat frequency response up to 
200 kHz. 

 

Figure 2: time and frequency signatures of a fuse arc 
measured with an Avisoft sensor. 
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The transient signature of the fuse arc is this time 
very short, on the order of 0.1 ms. In the 
frequency area, the main lobe extends from DC 
to 150 kHz. Any specific frequency appears in 
this second spectrum.  
Similar experimental measurements performed 
with other types of arcs confirm these 
observations. The specificity of the acoustic arc 
signal is rather in the time area: it is 
characterized by a transient signature with a 
decreasing envelope. Apart single resonances due 
to the responses of the sensors, no specific 
frequency can be identified on arc spectra. 
We studied the influence of various parameters 
of the arc on the resulting acoustic signal. It was 
found that the greater the distance between the 
electrodes (and therefore the power of the arc), 
the stronger the amplitude of the signal becomes. 
We also note that the power of the arc has no 
influence on the spectral distribution of the 
acoustic signal: no frequency component stands 
out from the overall spectrum. 
These results are coherent with what is described 
by the theoretical relationship (equation (4)): 
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Indeed, the greater the distance between the 
electrodes, the higher the dielectric breakdown 
voltage becomes. This implies a more powerful 
sound. 
We conclude from this experimental study that 
there is no specific frequency signature of an 
electric arc signal. The spectrum extends over the 
whole frequency band of ultrasound (20 kHz to 
200 kHz), with resonances due to the responses 
of the sensors. However, in the time area, we 
note that a signal from an arc is very specific: it 
is characterized by one or more oscillations 
(depending on the transducer used) with an 
amortized envelope. This will guide us to build 
the detector of the arc based mainly on the time 
signature. 
 

3 Acoustic study of vehicle noises 
To achieve the design of a detector, it is 
necessary to determine the signature of the signal 
to be detected but also the acoustic noises of the 
environment. We have therefore conducted 
experiments on an EV to characterize the 
acoustic disturbances produced by the different 
components of the system.  

These measurements are also used to evaluate the 
performance of the detector: real disturbances are 
added in simulations to study the robustness of the 
detector in conditions close to reality. The 
following table summarizes the main disturbances 
measured (table 1): 

Table1: summary of the acoustic disturbances in the car 
(position of the sensor, event, main frequency band 

covered by the spectrum). 

Position Event 
Frequency band 
of the spectrum 

(kHz) 
Blinking 

box 
Blinker 10 → 95 

Close to the 
handle 

Car door slam 5 → 75 

Next to 
battery 

Normal driving 0 → 35 
Acceleration 0 → 60 

Brake 0 → 45 

Motor 
Normal 

Normal driving 0 → 85 
Acceleration 0 → 40 

Brake 0 → 250 
 
In the case of the motor, the blinker, and the door, 
the acoustic sources are easily identified. However 
in the case of the battery, the sources of the 
measured signals are unknown, so we can only 
assume that they come from vehicle vibration, 
bearings, wheel noise, or other vibration 
phenomena present in the car. We plot on figure 3 
two examples of time signals of disturbances to 
illustrate some shapes. 
 

 
Figure 3: examples of signals of acoustic disturbances in 

the EV (above: blinker signal, below: brake signal). 

 
It is clear from these results that ultrasound 
acoustic emission is present at various locations in 
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the vehicle, and these disturbances can induce 
false alarms. Indeed, most of the spectra of the 
recorded signals overlap that of the arc. So a 
processing based only on a simple frequency 
filter is not suitable. However, time signals of the 
disturbances are very different from the signature 
of an arc. Some consist of repeating patterns, 
while other present unamortized envelopes. 

4 Acoustic propagation in the 
battery environment 

The propagation of ultrasonic waves in the 
environment of a battery is an important issue in 
the context of this study. Therefore 
understanding the influence of this environment 
on the acoustic wave will help us to fully 
characterize the signal to be detected. The design 
of a battery cell can be cylindrical or prismatic. 
In some cases, connectors are located on the 
same face and are more accessible, so the 
propagation of the acoustic signal is free and 
detection is easy. We thus focus on cylindrical 
battery cells with terminal connection 
geometrically opposite, which give a more 
complex problem of detection. Indeed multiple 
connections between cylindrical cells are masked 
and the propagation of the acoustic wave is 
complex with a lot of phenomena (refraction, 
reflection, scattering) on the cells walls and 
packaging which rapidly reduces the waves or 
creates resonances. 
 
First of all it is important to understand how the 
ultrasonic wave is generated. The electric arc is 
produced by breaking a connection between two 
cells. The plasma is created in the air and 
therefore the majority of the power of the wave 
produced by the arc is released into the air. A 
small portion of the wave created at the arc feet 
will propagate into connectors and cells, but this 
part is negligible compared to the wave 
propagated in the air. Indeed, the acoustic 
impedance of a cell is very high (Zcell=4, 
5×106Kg.m−2.s−1 ) compared to that of air 
(Zair=440Kg.m−2.s−1), and the transmission 
coefficient in the material is very low (about 
0.1% for an incidence angle of 90°). So the 
acoustic power of the wave coming from the air 
and propagated within the material is negligible. 
We can thus consider that the main propagation 
of the acoustic wave produced by the electric arc 
takes place in the air. Therefore the sensors used 
for the detection must be microphones that 
present an excellent coupling with the air.  

Secondly to experimentally verify the above 
assumptions, we produced arcs at a connection on 
a set of cells and we measured the acoustical signal 
which has propagated through cells (by reflexion 
on the cell wall or transmission into the cell) and in 
the air. Results (figure 4) show that almost no 
propagation takes place in the material. Main 
waves received by the sensors come from the 
propagation in the air. 
More precisely, the blue sensor located in the air 
received the highest signal of the arc whereas the 
red and green ones coupled with the faces of the 
cells recorded very small signals close to the noise. 

 
Figure 4: acoustic record of an arc on a set of battery 
cells (blue : propagation in air, red : propagation by 
reflection on cells, green : propagation trough cells) 

5 Detection method 
The problem consists in detecting the presence of 
an event in a noisy environment [2]. In binary 
detection theory, the problem is reduced to decide 
if a specific signal is present or not in the noise. 
Each of these situations can be written as a 
hypothesis, denoted H0 or H1: 
 

 

(5) 
 

We denote by (
�� the observation signal, )
�� is 
the signal to be detected, and *
�� is the additive 
noise. We usually associate to a detection problem 
a function �
(� of the observation ( called 
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Several detection methods exist and each has its 
own performance which depends on the 
conditions of detection: noise characteristics or 
the signature to detect. Our detection problem 
consists in detecting a known waveform in a 
recorded signal. As proved in the first part of this 
paper, it is better in our case to exploit the time 
shape of the signal to realize the detection.  
 
Two indicators usually determine the quality of a 
detector [3]: the probabilities of correct detection   
-. and false alarm -/0. The receiver operating 
characteristic curves (ROC) give the evolution of 
-. as a function of  -/0 for a given signal to 
noise ratio (SNR). When these densities are not 
known, which is often the case in practice, one 
technique is to plot experimental or simulated 
curves, what we will do in our case. The method 
consists in using a test signal made of the signal 
to be detected, some noise and some disturbances 
specific from the environment. In our case, the 
test signal is built from an arc signal with white 
Gaussian noise and several disturbances recorded 
in the EV. The fine locations of the arc and 
disturbances in the signal are known, so after 
applying the detection algorithm on the test 
signal we are able to calculate the probabilities of 
correct detection (response to the arc) and false 
alarm (response to disturbances or noise). Figure 
5 shows an example of such test signal. 

 

Figure 5: examples of test signal (above: test signals 
with three level of SNR, below: detector output for the 

three cases). 

The studied detection method consists in 
measuring the similarity between the signal 
received by the sensor and a model of the arc. So 
the first step is to model the arc signal: we used 
an ARMA process since it is well suited to 
describe oscillating signals amortized. We then 

detect the presence of the arc by correlating the 
time signal measured by the sensors with this 
model. To apply this method, we cut the signal 
with a sliding window, and for each position of the 
window we compute a normalized correlation 
coefficient between the model and the signal 
contained in the window. Detection is then 
performed by applying a threshold on the time 
detection curve thus obtained. This threshold is 
selected in order to obtain the desired probabilities 
of good detection and false alarm. We plot on 
figure 6 an example of a simulated signal including 
two arcs and other disturbances measured on the 
EV. We apply the above detection method on this 
signal and the time detection curve is computed. 

 

 

Figure 6: test signal (above) and normalized time 
detection curve (below) for the detection by correlation. 

 
Pattern numbered from 1 to 5 in the test signal 
correspond respectively to the signals of: brake, 
acceleration, dielectric arc, fuse arc, turn signal, 
and banging of the door. From the time detection 
curve, the binary information of the detection is 
obtained by selecting a threshold between 0 and 1. 
We can clearly distinguish the responses of the 
detector to the arc signals. We present in figure 7 
the ROC curve obtained with the detection by 
correlation.  

1 2 3 4 5 

Dielectric arc  Fuse arc  

6 
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Figure 7: ROC curves for the detection by correlation 
for several SNR. 

 
This method of detection by correlation is very 
robust, indeed for smaller SNR the probabilities 
of correct detection and false alarm are both 
excellent. However it requires a fine knowledge 
of the time signature of the arc. As the model is 
sensitive to the properties of the sensor (in 
particular its resonances), it must be adjusted 
each time we change the sensor.  
 
Another arc detection method based on higher 
order statistics has been assessed in a previous 
study ([4]), but the performance reached were 
lower compared to the results obtained using the 
correlation method. 

6  Localization of the arc 
In order to increase the efficiency during 
maintenance and fixing of the battery after the 
electric arc outbreak detection, it could be highly 
valuable to get the arc localization information.  
In this perspective, a localization method based 
on a typical triangulation process has been 
studied. We have focused our work on a two 
dimension plan localization problem.  

6.1 General principle 
Three acoustic sensors with known exact 
positions are arranged at the edge of the area of 
interest. The acoustic signal emitted by the arc is 
received at the three sensors, and via a typical 
Time Difference Of Arrival (TDOA) 
determination the position of the electric arc is 
computed. 
 

 
Figure 8: arc acoustic signal in the three sensors’ 

timescale  

This three sensors system is supposed synchronous 
with no bias between the sensors timescale. As 
illustrated on Figure 8, one sensor, e.g. sensor 1, is 
defined as the reference, and the difference of 
acoustic signals time-of-arrival t21 and t31 is 
evaluated. These time difference measurements are 
expressed as follows: 
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(6) 
The associated distances are defined as follow,  �2 
being the speed of sound in the air: 
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(7) 
These measured distances are linked to the arc 
coordinates 
(4, 54� and the sensors coordinates 
6(78,5789,	with	
� � 2,3�, through the equation (8) :  
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 (8) 
The estimation of the arc position 
(4, 54�A  from 
the inversion of equation (8) is performed off-line 
by using a Levenberg-Marquardt least square 
algorithm. 
Obviously, several errors may affect the acoustic 
sensors and have been modelled on the distance 
values by an additive bias during simulations. 
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6.2 Analysis of the acoustic sensors 
arrangement issue 

In order to optimize the position estimation 
accuracy, the sensors used need to be arranged in 
the best possible configuration. A study on the 
impact of the sensors configuration on the 
position estimation accuracy has been herein 
carried out.  
 
A 100 mm side square in a two dimensions plan 
is defined into which electric arcs are simulated 
with randomly distributed positions. The arc 
localization is done through the method 
described in the previous paragraph. The three 
acoustic sensors are placed around this square, 
and several sensors positions are tested (65 
different configurations). For each sensors 
positions configuration, 50 arcs are simulated 
and the localization estimation accuracy is 
analysed. On Figure 9, the root mean square error 
(RMSE) of the arc position estimation for a 
number of sensors location configurations is 
plotted. This resulting RMSE is comprised 
between 2.2 mm for the best configuration and 
16.1 mm for the worst configuration. This result 
highlights the interest of choosing a correct 
setting for the sensors although centimetre 
accuracy is sufficient for battery reparation. 

 
Figure 9: influence of the sensors location setting on 

the arc localization precision  

 
The Figure 10 displays the arc localization 
precision obtained by the estimation onto the 
plan square defined for the simulations for four 
different configurations of sensors represented on 
the figure by black squares. The colorbar scales 
the estimation precision in millimetre. This 
figure illustrates the dilution of precision of the 
estimation which is a consequence of the 

acoustic sensors coverage of the area of interest. 
The larger area delimited by the sensors, the larger 
optimum estimation accuracy area extends.    
 

 
Figure 10: influence of the sensors coverage   

 
Then, these four different settings have been hold 
for the simulation. An electric arc is generated in 
three zones: inside, outside and close to the 
acoustic sensor coverage area. The result in terms 
of arc localization accuracy is showed on Figure 
11. The coloured curves pictured on this figure 
represents the cost function to be minimized in the 
TDOA localization inversion problem. 
It can be noticed that the localization accuracy 
decreases as the arc is moved away from the 
sensors coverage area, and that the localization 
performance is strongly impacted by the sensors 
configuration. More particularly, when a bad 
sensors setting is considered, the cost function to 
be minimized in the TDOA localization inversion 
problem exhibits a much larger minimum zone 
(blue zone) leading to high biases in the estimation 
results. 
 

 

Figure 11: arc acoustic signal in the three sensors’ 
timescale  
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Further on, the arc localization in a three 
dimensions volume has been simulated. A five 
acoustic sensors configuration has been 
evaluated on a 100 mm side cube arc localization 
problem. The same dependency of the dilution of 
precision on the coverage of the sensors is 
exhibited. The arc position estimation precision 
obtained by simulation spans from 2.3 mm, for 
the best sensor configuration, to 6.3 mm, for the 
worst sensors setting.    

7 Demonstrator 
A demonstrator (figure 12) has been realized in 
order to test our detector under conditions close 
to reality. The chosen geometry is consistent with 
those used in batteries developed at CEA. We 
have reproduced a typical assemblage of 
cylindrical cells using Plexiglas elements for 
safety reasons. Arcs are produced by melting a 
fuse wire on a PCB designed to create arcs of 
different amplitudes. It is also possible to replay 
the acoustic disturbances measured in the EV 
using ultrasound speakers. We put a microphone 
flush with the surface of the packaging. 
Acquisition is performed using National 
Instrument materials with a sampling frequency 
of 1 MHz. The detection by correlation described 
in this paper was implemented in Labview 
software. 
 
 
 

 

Figure 12: demonstrator with arcing flash present on a 
fuse wire placed between cylindrical cells in plexiglas 

and arc signal processing on the screen. 

8 Conclusion 
This study addressed different points: first of all, 
we have characterized the acoustic signature of 
an arc which gives us a fine knowledge of the 
signal to be detected. After this step, we studied 

the propagation of the waves in a battery so we 
identified how the acoustic signal arrives to the 
sensor. We have also inventoried many acoustic 
disturbances present in an EV in order to design 
the detector. One efficient arc detection method 
based on correlation has been studied. We have 
also developed a functional demonstrator that 
allowed us to validate our approach on safety 
conditions close to reality. Finally, an arc 
localization process have been simulated and 
analysed. Results show that fine localization 
accuracy can be reached even if the performances 
are related to the sensors configuration. 
Maintenance of the battery will be improved with 
this faulty connection localization.  
This study has proven the feasibility of the arc 
detection and localization for a specific battery 
configuration. 
The main perspective of the study is the 
development of a generic detection and 
localization system that can be adapted to any 
battery. As the geometry of the battery depends on 
the application, we must determine a law allowing 
the optimal deployment of the sensors into the 
battery. So we have to work on the model of 
acoustic propagation in other battery geometries. 
Finally, the final system aims to be embedded on 
battery with miniature and low cost sensors 
specific to the arc response. Technological 
developments are underway in CEA in this 
perspective. The miniaturization of the whole 
system and its integration within the battery will 
finally be the two key steps. 
 
The authors thank Thibaut Journet and Cyrille 
Desmoulins from CEA and Cornel Ioana from 
GIPSA-Lab for their contribution to this work. 
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