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Abstract

Electrochemical impedance spectroscopy or ac impereethods are popularly used for the diagnosis of
electrochemical generators (batteries or fuel ckliy now possible to acquire and quantitativietgrpret

the experimental electrical impedances of suchegyst whose evolutions indirectly reflect the
modifications of the internal electrochemical pssxeThe scope of these measurement methods is to
identify the frequency response function of theeysunder test by applying a small signal pertiobatio

the system input, and measuring the correspondisgonse. Once identified, and according to the
application, frequency response functions can pviseful information about the characteristicshef
system. Classical EIS consists in applying a sefrerfjuency-controlled sine waves to the input & th
system. However, the most difficult problem is tiegration of this type of measuring device in
embedded systems. In order to overcome this probleenpropose to apply squared pattern excitation
signals to perform such impedance measurementsisipaper, we quantify and compare the performance
of classical EIS and the proposed broadband idestiiin method applied to a well-known impedance

circuit.
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corresponding voltage/current response. Though
1 Introduction its robustness and high accuracy results, it Ik sti
more common in laboratory tests than in online
field equipment. [6], [7] and [8] investigate
identification methods based on broadband signals.
[6] aims to identify biological impedance while [7]
and [8] work on battery impedance measurements.
These methods have a number of advantages over
classical EIS. It requires the application of arsho
broadband signal [9] [10], and therefore allows the
measurement of impedances over a frequency
band.

Electrochemical Impedance Spectroscopy (EIS)
[1] has revealed its importance and value through
several applications. It has been shown thatat is
powerful device to characterize electrochemical
processes occurring in a battery and to thereby
estimate useful states indicators [2]. Therefdre, i
has become a major tool for investigating the
properties of batteries in EVs and HEVs [3] [4]
[5]. Classical EIS is based on recordings of sine
waves injected as an additive perturbation on the
input current/voltage signal, and of the
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However, for embedded systems, studies look for o]
simple signals that can be easily generated. In o) %
o> o[n]

this paper, we focus on squared pattern signals ““’ H
(pseudo random binary sequence or PRBS,
square waves) and evaluate their performance 5 alg;,.:m

relative to those of the classical EIS. This
comparison has been performed thanks to a S

i
A(2)

circuit with a well-known impedance. systemH" in the frequency domain.
If # is linear and time invariant (LTI), it is
2 Spectroscopy completely characterized by its frequency response

Classical EIS commonly used in laboratory function H()l) where A0 _}} is the
consists in exciting the system with a small ’ ’

N i f
sinusoidal current I(t) of frequency ', normalized frequency, leading to the frequer?ccy

(1) =y SINR7AY), - superimposed (or not) to @ in Hertz when multiplied by the sampling
DC current, and measuring its voltage response frequency. Indeed, for periodic deterministic and
V) =V, SiN@7ft=¢) (1] Therefore, the  Stationary random signals, the frequency domain

voltage/current ratio at this particular frequency input-output relationship of such systems is

is expressed as a complex-valued impedance: simply:
Z,o(1) =17 exp(-i ) )
S,(1) =S.() =H(N)s.(1) (2)

Though robustness and accuracy of the results,

electrochemical spectroscopy is not suitable for \where Sxx(/‘) is the power spectral density (PSD)
embedded systems like EV and HEV ¢ [ ] d (/1) is th |
applications due to several reasons. Firstly, an ©f XLN| and §,(A) is the cross power spectra
expensive_ complex electronic is needed to density (CPSD) betweep([n] and y[n]. Eq. (2)
generate sine waves. Secondly, a large frequency js the foundation of non-parametric identification
band scan with fine frequency resolution takes a of | T| systems in the frequency domain [13] [14].
long time to be completed. And finally, for  Therefore, on the frequency bands where the input

embedded systems where the evolution of the -
impedance must be tracked, the use of the EIS PSD Ve”f'ess‘X(/‘)i 0. the unknown frequency

technique imposes a new whole measurement response function H(A) can be calculated
each time an updated impedance estimate is through:
desired. An alternative solution based on

broadband identification techniques [11] is _S.) if s (nzo-

proposed in section 3. H(A)—ﬂ S.(4) 3)

3 Non parametric identification This finally leads to a frequency domain
identification method of the unknown systefi.

3.1 Method Eg. (3) shows that PSDs and CPSDs must be

) ) ) estimated in order to estimate the desired
A single input single output (SI/SO) systerf frequency response functiorH ()l) which is
's represented in Fig. 1, Wher)e[n] and y[n] realized by using Welch modified periodogram

are its input and output signals respectively, and [15]. Measured signals are first split-up inlo
Z[ n] is its noisy measured output. The unknown data segments of lengiN . All these segments are

measurement noiseb[n] is supposed to be then windowed by a window functiolw[n] of

length N, and the discrete Fourier transform of

] each windowed segment is computed by the use of

therefore withy[ n] [12]. the fast Fourier transform algorithm. Finally,
products of these discrete Fourier transforms are
averaged in order to estimate the desired spectral
guantities. As an example, the corresponding

additive and uncorrelated withx[n] and
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estimator of the CPSD betweez[ n] and x[n]
is given by:

AL

800232, () @)

L
where:
- Ais a normalization factor,

- Z.(A) (resp. X,(A)) is the discrete
Fourier transform of th&™ windowed
segment ofz[ n] (resp. X[n]),

- " denotes the complex conjugate.
Similarly, the estimator of the PSD o}’([n]
é(x(/‘) is obtained by replacingZ, (1) by
X, (A) in Eq. (4).

Simple estimators can now be obtained to

estimate the desired frequency response function
H(/i) by using Eq. (4) in Eg. (3) leading to:

A () :283 if 5,()=0 (5)

Finally, Eqg.(4) and (5) constitute the
"identification algorithm™ appearing in Fig. 1 that
is used to estimate the frequency response

function H()l) of an unknown LTI system
through its input X[n] and noisy measured
outputz[n].

3.2 Square pattern signals

In order to estimate the whole electrical

impedance, the input signal should be able to
excite the system in the frequency band of
interest.

We choose two particular signals: the pseudo
random binary sequence (PRBS) which is a
broadband signal since it presents an almost flat
power spectrum, and a square version of EIS

where square waves are applied instead of sine
waves. These particular signals have been chosen
since they are based on squared patterns, and ar

therefore easily in embedded

systems.

implemented

3.21 Pseudorandom binary sequence

A PRBS is a deterministic periodic sequence of
length N bits that switches between two levels

+A and —A. And by choosing the time for one bit

T, corresponding to the bit frequency

1
Fow =—

bit
excited is considered to b¢max:o_4* F, as a
good rule of thumb, while the lowest one is
fo= F%. The corresponding PRBS then presents

, the highest frequency that will be

an almost flat power spectrum over the frequency
band[fmin’ fmax] [11]_

322 SquareElISversion

A square version of the classical EIS is also
developed. A square wave of frequengyis used

where § scans the frequency band of interest. This

signal is a suitable signal for embedded
applications since a square wave can be simply
generated by the analog drive of a transistor.

4 Experimental considerations

4.1 Squar e pattern signal generation

An electronic circuit was designed especially to
perform the experiments on an electrochemical
source (like a battery). Only three main devices
allow the generation of input currents with square
patterns (square version EIS and PRBS). A
transistor is controlled by a microcontroller where
the desired signal is implemented and a few other
basic components (like a small current driver to
better drive the transistor's gate). A resistands R
inserted in series with the transistor to contha t
amplitude of the input current (given that the
nominal voltage of the system under test does not
change during the test). By controlling the
transistor switch on or off, a desired amount of
current delivered by the electrochemical source is
derived in the resistance R. Therefore, the current
seen by the system to identify follows the desired
squared pattern. This circuit, described in Fig. 2,
has to be connected carefully to the system to
identify. It respects the four-terminal measurement
technique [1]. It is extremely important when
measuring low impedance devices such as

er)atteries, fuel cells and ultra-capacitors. When

measuring very low impedance cells, the

impedance of the connection cables may be of the
same order of magnitude as the impedance of the
cell itself. The 4-terminal technique ensures that
the voltage drop measured by the instrument is
measured directly across the cell and does not
include the voltage drop in the cables, and

therefore provides accurate measurement of the
cell voltage.
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Fig. 2. Simplified structure of the electronic uged
generate square pattern currents.

= Triglsignal)

The acquisition of the input current (calculated
from the voltage drop measured across the
resistor R) and the corresponding output voltage

response has been performed under a large SNR

level thanks to an OR-36, a high performance
acquisition device (24 bits).

4.2 Classical EIS

The classical EIS has been performed with a
VMP-300 Biologic system, using a booster of
10A. EC-Lab® software, supplied with the
VMP-300, is used to select spectroscopy
parameters (frequencies, number of periods, sine
amplitude...).

4.3 Input signals characteristics

In what follows, the classical EIS, its square
version and the previous non-parametric
identification method using a PRBS are
performed on a well-known impedance circuit.
The identified frequency response functions
obtained by these different methods are then
compared to the theoretical one. As an example,
we focus on the frequency band from 4 to 96 Hz.
All the signals have the same total time duration
of approximately 5 seconds.

For PRBS, a sequence af =ez bits with
frequency bit|:bit =240 Hz is considered. It leads

to frequency band Iimitsf =F,/N=4Hz and

f =04*F, =04*240=96Hz- Data are split-up

max bit

into L=18 disjoint segments of length
N, =2688 samples. Consequently, each
segment has a time duration of

T:N% =0.2625 seconds, which results in a

frequency resolution ofl/. = 4 Hz.
For classical and square version EIS, the
fundamental frequency scans the set of

frequencies between 4 Hz and 96 Hz with a
frequency step of 4Hz, and 5 fundamental
periods are used for each measurement step.

4.4 Reference circuit

In order to compare EIS and the broadband
method, a passive electrical circuit with a well-
known impedance is used (Fig. 3(a)). It consists of
a resistancepg =200mQ +1%) in series with a

parallel bridge of a resistancezz(zmil%) and

a capacitor (:2 =82Q1Fil%)- The Nyquist
diagram of such a circuit is a portion of a ciritie
the frequency band of interest with a “resonant”
frequency equal to 194 Hz. A parasitic resistance
R,, =12mQ+1% is given by the manufacturer

and is considered to be in series V\(ljh

4.5 Experimental protocol

As the electronic of Fig. 2 is designed with passiv
components, it requires the use of an external
energy source (like a battery) and a two-step
measurement protocol (Fig. 3(b)). A Li-ion battery
is connected at J4. In this work, we used a
graphite/LiFePO4 cell with a nominal capacity of
2.3 Ah (ANR26650m1 battery from A123 Systems
Company Ltd). At J6 is connected either the
VMP-300 biologic system or the electronic
described in Fig. 2.

A set of jumpers (JPi, i=1,..,4) is used to switch
between the two steps of the measurement
protocol. Firstly, if JP1 and JP3 are “on”, the
current is applied only to the battery cell and its
voltage response is measured. This set of data
leads to identify only the battery impedance

21(/1)' Secondly, the activation of JP2 and JP4
provides the set of data to identify impedance
ZZ(A), consisting of the sum of the battery

impedance and the passive reference circuit
impedance.

The impedance of the passive reference circuit
alone can then be estimated by:

passive_circuit (A ) Z’\2 (A ) - ZAl (/1 ) (6)

To perform this experiment, it is important to keep
in mind that the battery must behave as a linear
and time invariant system. This is verified if the
two foIIowmg conditions are satisfied:
the additive input current is sufficiently
low in magnitude,

- the battery is in a stationary state, or its
impedance is stable for the duration of the
measurement, and this corresponds to a
SOC between 60% and 80% for the used
Li-ion battery over the selected frequency
band (4Hz, 96Hz).

(a)
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e
(8]

I MSE(f) :mgal{ﬁ(k, t)-2z(f) J
R1 Variancg f) = mea
200mOhm+/-1%
R NRMSE, =100* v
10hm+/-1%
meanVariance( f)|
(b) NStd, =100* |— r 1
mealz(7 Y]
<] o ) a A
Jor 1w L L where Z(k, f) is the electrical impedance
5 obtained at frequency with thek™ realization.
J6é
HomonmL 5.2 Classical EISresults
;Iz@ o : In Fig. , the Nyquist plot of the theoretical
. impedance of the passive reference circuit is
represented in blue. It is known within an interval

due to the accuracy on the components values
Fig. 3. Passive reference circuit structure. given by the manufacturer. The same impedance
obtained by averaging 30 impedances estimated by
a classical EIS is also plotted in green in theesam
figure. For this experiment, a NRMSE of 0.69 %
and a Nstd of 0.41 % are obtained.

5 Experimental results

5.1 Estimation error quantification
Nyquist plots using classical EIS
The analytical expression of the impedance of ‘ L o re—,

the reference circuit can be computed from the  °¢ : Precision tervl
electrical equivalent circuit given in Fig. 3(a). | 02 \

is then compared with the estimated electrical > B
impedances in order to evaluate the quality of the ¥
three identification methods through a statistical
study. For each input signal, 30 impedance  °*
measurements of the passive reference circuit are ™ W
done. This leads to 60 sets of measurements °” \
(alternate Z1 and Z2 impedances) from which we des 1 O o 12 125
compute the normalized root mean square

estimation error NRMSE in % defined by Fig. 4. Nyquist plot results using an EIS laborgtor
Eqg. (7). This error quantifies the averaged apparatus.

normalized difference between the estimated ]

impedancez and its theoretical valuez 5.3 Squareversion ElSresults

averaged over realizations and over the selected A set of 30 estimations of the impedance of the
frequency band for a specific excitation signal. Passive reference circuit is also obtaln_ed with a
The normalized standard deviation Nstd in % is square EIS approach. The corresponding results

also given in Eq.(7) in order to characterize the are plotted in Fig. 5. A NRMSE of 2.44 % and a
error dispersion: Nstd of 0.14 % are obtained.

o
Py

%

-Im(Z) [Ohm]
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Nyquist plots using square EIS version
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Fig. 5. Nyquist plot results using a square ElSizar.

5.4 PRBSresults

The PRBS described in 3.2.2 is used to estimate
the same impedance in the same frequency band.
The results are plotted in Fig. 6, where a NRMSE
of 2.6% and a Nstd of 0.19% are observed.

Nyquist plots using PRBS

=+=Theoratical Z
z
***- Precision interva

-Im(Z)[Ohm]

=]

0.1
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1.1
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Fig. 6. Nyquist plot results using a PRBS.

5.5 Discussion

We infer from these results that impedances can
be identified with signals constituted of square
patterns (PRBS and square waves) with an
estimation error which has a low dispersion
(similar value of the Nstd parameter for the three
methods), but a bias that cannot be neglected.
The NRMSE which include the bias information
is quite the same for the two methods including
square patterns (squared EIS and PRBS). Several
reasons may explain this difference with classical
EIS. Firstly, connectors on the circuit vary
slightly between classical EIS and square pattern
signals methods. Secondly, in the experimental
protocol we can only use a discharge current, so
that the mean dc part of the additive input current
is not zero and affects the voltage measurements.
However, the low dispersion of the estimation
error reveals that square pattern signals could be
useful for specific embedded applications. For
example, in the field of the EVs and HEVs where
the battery impedance is desired in order to
estimate state of charge and state of health

guantities, we need an accurate relative estimation
Based on a first impedance measurement at an
initial time, we can track the temporal evolution o
this quantity with an excellent relative accuracy.

6 Conclusion

This paper focuses on the usefulness of squared
pattern excitation signals for the identificatioh o
system impedance. A non-parametric identification
method has been theoretically introduced.
Experimental results ascertain that signals based
on square pattern like square waves and PRBS lead
to a biased broadband identification, but with a
very low dispersion. Consequently, such signals
are suitable for applications based on relative
impedance tracking, like state of charge or state o
health monitoring.
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