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Abstract 

Electrochemical impedance spectroscopy or ac impedance methods are popularly used for the diagnosis of 

electrochemical generators (batteries or fuel cell). It is now possible to acquire and quantitatively interpret 

the experimental electrical impedances of such systems, whose evolutions indirectly reflect the 

modifications of the internal electrochemical process. The scope of these measurement methods is to 

identify the frequency response function of the system under test by applying a small signal perturbation to 

the system input, and measuring the corresponding response.  Once identified, and according to the 

application, frequency response functions can provide useful information about the characteristics of the 

system. Classical EIS consists in applying a set of frequency-controlled sine waves to the input of the 

system. However, the most difficult problem is the integration of this type of measuring device in 

embedded systems. In order to overcome this problem, we propose to apply squared pattern excitation 

signals to perform such impedance measurements. In this paper, we quantify and compare the performance 

of classical EIS and the proposed broadband identification method applied to a well-known impedance 

circuit. 
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1 Introduction 
Electrochemical Impedance Spectroscopy (EIS) 
[1] has revealed its importance and value through 
several applications. It has been shown that it is a 
powerful device to characterize electrochemical 
processes occurring in a battery and to thereby 
estimate useful states indicators [2]. Therefore, it 
has become a major tool for investigating the 
properties of batteries in EVs and HEVs [3] [4] 
[5]. Classical EIS is based on recordings of sine 
waves injected as an additive perturbation on the 
input current/voltage signal, and of the 

corresponding voltage/current response. Though 
its robustness and high accuracy results, it is still 
more common in laboratory tests than in online 
field equipment. [6], [7] and [8] investigate 
identification methods based on broadband signals. 
[6] aims to identify biological impedance while [7] 
and [8] work on battery impedance measurements. 
These methods have a number of advantages over 
classical EIS. It requires the application of a short 
broadband signal [9] [10], and therefore allows the 
measurement of impedances over a frequency 
band.  
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However, for embedded systems, studies look for 
simple signals that can be easily generated. In 
this paper, we focus on squared pattern signals 
(pseudo random binary sequence or PRBS, 
square waves) and evaluate their performance 
relative to those of the classical EIS. This 
comparison has been performed thanks to a 
statistical study using a reference passive electric 
circuit with a well-known impedance. 

2 Spectroscopy 
Classical EIS commonly used in laboratory 
consists in exciting the system with a small 

sinusoidal current i(t) of frequency f , 
i(t) = Imax sin(2πft), superimposed (or not) to a 
DC current, and measuring its voltage response 

)2sin()( max ϕπ −= ftVtv  [1]. Therefore, the 
voltage/current ratio at this particular frequency 
is expressed as a complex-valued impedance: 

Zest( f ) =
Vmax

Imax

*exp(− jϕ)
 

(1) 

Though robustness and accuracy of the results, 
electrochemical spectroscopy is not suitable for 
embedded systems like EV and HEV 
applications due to several reasons. Firstly, an 
expensive complex electronic is needed to 
generate sine waves. Secondly, a large frequency 
band scan with fine frequency resolution takes a 
long time to be completed. And finally, for 
embedded systems where the evolution of the 
impedance must be tracked, the use of the EIS 
technique imposes a new whole measurement 
each time an updated impedance estimate is 
desired. An alternative solution based on 
broadband identification techniques [11] is 
proposed in section 3. 

3 Non parametric identification 

3.1 Method 
A single input single output (SI/SO) system   H  
is represented in Fig. 1, where x n[ ] and y n[ ] 
are its input and output signals respectively, and 
z n[ ] is its noisy measured output. The unknown 

measurement noise b n[ ] is supposed to be 

additive and uncorrelated with x n[ ] and 

therefore with y n[ ] [12]. 

 

Fig. 1. Non-parametric identification of a (SI/SO) LTI 
system   H  in the frequency domain. 

If   H  is linear and time invariant (LTI), it is 
completely characterized by its frequency response 

function H λ( ), where λ ∈ −
1
2

,
1
2

 
  

 
  
 is the 

normalized frequency, leading to the frequency f  
in Hertz when multiplied by the sampling 
frequency. Indeed, for periodic deterministic and 
stationary random signals, the frequency domain 
input-output relationship of such systems is 
simply: 
 

Szx λ( ) = Syx λ( ) = H λ( )Sxx λ( ) (2) 

where Sxx λ( ) is the power spectral density (PSD) 

of x n[ ] and Syx λ( ) is the cross power spectral 

density (CPSD) between x n[ ] and y n[ ]. Eq. (2) 
is the foundation of non-parametric identification 
of LTI systems in the frequency domain [13] [14]. 
Therefore, on the frequency bands where the input 
PSD verifies Sxx λ( )≠ 0, the unknown frequency 

response function H λ( ) can be calculated 
through: 
 

H λ( ) =
Szx λ( )
Sxx λ( )

 if Sxx λ( )≠ 0. (3) 

 
This finally leads to a frequency domain 
identification method of the unknown system   H . 
Eq. (3) shows that PSDs and CPSDs must be 
estimated in order to estimate the desired 
frequency response function H λ( ), which is 
realized by using Welch modified periodogram 
[15]. Measured signals are first split-up into L  
data segments of length N . All these segments are 
then windowed by a window function w n[ ] of 
length N , and the discrete Fourier transform of 
each windowed segment is computed by the use of 
the fast Fourier transform algorithm. Finally, 
products of these discrete Fourier transforms are 
averaged in order to estimate the desired spectral 
quantities. As an example, the corresponding 
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estimator of the CPSD between  z n[ ] and x n[ ]  
is given by: 
 

ˆ S zx λ( ) =
A

L
Zk λ( )Xk

* λ( )
k=0

L −1

∑  (4) 

where: 
- A is a normalization factor, 
- Zk λ( ) (resp. Xk λ( )) is the discrete 

Fourier transform of the kth windowed 
segment of z n[ ] (resp. x n[ ]), 

- * denotes the complex conjugate. 
Similarly, the estimator of the PSD of x n[ ] 
ˆ S xx λ( ) is obtained by replacing Zk λ( ) by 

Xk λ( ) in Eq. (4). 
Simple estimators can now be obtained to 
estimate the desired frequency response function 
H λ( ) by using Eq. (4) in Eq. (3) leading to: 
 

ˆ H λ( ) =
ˆ S zx λ( )
ˆ S xx λ( )

  if  ˆ S xx λ( )≠ 0 (5) 

 
Finally, Eq. (4) and (5) constitute the 
"identification algorithm" appearing in Fig. 1 that 
is used to estimate the frequency response 
function H λ( ) of an unknown LTI system 

through its input x n[ ] and noisy measured 

output z n[ ]. 

3.2 Square pattern signals 
In order to estimate the whole electrical 
impedance, the input signal should be able to 
excite the system in the frequency band of 
interest.  
We choose two particular signals: the pseudo 
random binary sequence (PRBS) which is a 
broadband signal since it presents an almost flat 
power spectrum, and a square version of EIS 
where square waves are applied instead of sine 
waves. These particular signals have been chosen 
since they are based on squared patterns, and are 
therefore easily implemented in embedded 
systems.  

3.2.1 Pseudo random binary sequence 
A PRBS is a deterministic periodic sequence of 
length N  bits that switches between two levels 
+A and –A. And by choosing the time for one bit 
Tbit  corresponding to the bit frequency 

Fbit =
1

Tbit

, the highest frequency that will be 

excited is considered to be 
bitFf *4.0max =  as a 

good rule of thumb, while the lowest one is 

N
Ff bit=min

. The corresponding PRBS then presents 

an almost flat power spectrum over the frequency 

band [ ]maxmin , ff  [11].  

3.2.2 Square EIS version 
A square version of the classical EIS is also 
developed. A square wave of frequency f  is used 

where f scans the frequency band of interest. This 

signal is a suitable signal for embedded 
applications since a square wave can be simply 
generated by the analog drive of a transistor.  

4 Experimental considerations 

4.1 Square pattern signal generation 
An electronic circuit was designed especially to 
perform the experiments on an electrochemical 
source (like a battery). Only three main devices 
allow the generation of input currents with square 
patterns (square version EIS and PRBS). A 
transistor is controlled by a microcontroller where 
the desired signal is implemented and a few other 
basic components (like a small current driver to 
better drive the transistor’s gate). A resistance R is 
inserted in series with the transistor to control the 
amplitude of the input current (given that the 
nominal voltage of the system under test does not 
change during the test). By controlling the 
transistor switch on or off, a desired amount of 
current delivered by the electrochemical source is 
derived in the resistance R. Therefore, the current 
seen by the system to identify follows the desired 
squared pattern. This circuit, described in Fig. 2, 
has to be connected carefully to the system to 
identify. It respects the four-terminal measurement 
technique [1]. It is extremely important when 
measuring low impedance devices such as 
batteries, fuel cells and ultra-capacitors. When 
measuring very low impedance cells, the 
impedance of the connection cables may be of the 
same order of magnitude as the impedance of the 
cell itself. The 4-terminal technique ensures that 
the voltage drop measured by the instrument is 
measured directly across the cell and does not 
include the voltage drop in the cables, and 
therefore provides accurate measurement of the 
cell voltage. 
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Fig. 2. Simplified structure of the electronic used to 
generate square pattern currents. 

The acquisition of the input current (calculated 
from the voltage drop measured across the 
resistor R) and the corresponding output voltage 
response has been performed under a large SNR 
level thanks to an OR-36, a high performance 
acquisition device (24 bits). 

4.2 Classical EIS 
The classical EIS has been performed with a 
VMP-300 Biologic system, using a booster of 
10A. EC-Lab® software, supplied with the 
VMP-300, is used to select spectroscopy 
parameters (frequencies, number of periods, sine 
amplitude…).  

4.3 Input signals characteristics 
In what follows, the classical EIS, its square 

version and the previous non-parametric 
identification method using a PRBS are 
performed on a well-known impedance circuit. 
The identified frequency response functions 
obtained by these different methods are then 
compared to the theoretical one. As an example, 
we focus on the frequency band from 4 to 96 Hz. 
All the signals have the same total time duration 
of approximately 5 seconds.  
For PRBS, a sequence of 63=N  bits with 
frequency bit 240=bitF  Hz is considered. It leads 

to frequency band limits HzNFf bit 4/min ≈=  and 

HzFf bit 96240*4.0*4.0max === . Data are split-up 

into L=18 disjoint segments of length 
2688=wN  samples. Consequently, each 

segment has a time duration of 

s

w

f
NT = =0.2625 seconds, which results in a 

frequency resolution of 
T

1 = 4 Hz.  

For classical and square version EIS, the 
fundamental frequency scans the set of 
frequencies between 4 Hz and 96 Hz with a 
frequency step of 4 Hz, and 5 fundamental 
periods are used for each measurement step. 

4.4 Reference circuit 
In order to compare EIS and the broadband 
method, a passive electrical circuit with a well-
known impedance is used (Fig. 3(a)). It consists of 
a resistance ( %12001 ±Ω= mR ) in series with a 

parallel bridge of a resistance ( %112 ±Ω=R ) and 

a capacitor ( %18202 ±= µFC ). The Nyquist 

diagram of such a circuit is a portion of a circle in 
the frequency band of interest with a “resonant” 
frequency equal to 194 Hz. A parasitic resistance 

%1122 ±Ω= mR p  is given by the manufacturer 

and is considered to be in series with 
2C .   

4.5 Experimental protocol  
As the electronic of Fig. 2 is designed with passive 
components, it requires the use of an external 
energy source (like a battery) and a two-step 
measurement protocol (Fig. 3(b)). A Li-ion battery 
is connected at J4. In this work, we used a 
graphite/LiFePO4 cell with a nominal capacity of 
2.3 Ah (ANR26650m1 battery from A123 Systems 
Company Ltd).  At J6 is connected either the 
VMP-300 biologic system or the electronic 
described in Fig. 2.  
A set of jumpers (JPi, i=1,..,4) is used to switch 
between the two steps of the measurement 
protocol. Firstly, if JP1 and JP3 are “on”, the 
current is applied only to the battery cell and its 
voltage response is measured. This set of data 
leads to identify only the battery impedance 

( )λ1Ẑ . Secondly, the activation of JP2 and JP4 

provides the set of data to identify impedance 

( )λ2Ẑ , consisting of the sum of the battery 

impedance and the passive reference circuit 
impedance.  
The impedance of the passive reference circuit 
alone can then be estimated by: 

( ) ( ) ( )λλλ 12_
ˆˆˆ ZZZ circuitpassive −=    (6) 

To perform this experiment, it is important to keep 
in mind that the battery must behave as a linear 
and time invariant system. This is verified if the 
two following conditions are satisfied: 

- the additive input current is sufficiently 
low in magnitude, 

- the battery is in a stationary state, or its 
impedance is stable for the duration of the 
measurement, and this corresponds to a 
SOC between 60% and 80% for the used 
Li-ion battery over the selected frequency 
band (4Hz, 96Hz).  

(a) 
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(b) 

 

Fig. 3. Passive reference circuit structure. 

5 Experimental results 

5.1 Estimation error quantification 
The analytical expression of the impedance of 

the reference circuit can be computed from the 
electrical equivalent circuit given in Fig. 3(a). It 
is then compared with the estimated electrical 
impedances in order to evaluate the quality of the 
three identification methods through a statistical 
study. For each input signal, 30 impedance 
measurements of the passive reference circuit are 
done. This leads to 60 sets of measurements 
(alternate Z1 and Z2 impedances) from which we 
compute the normalized root mean square 
estimation error NRMSE in % defined by 
Eq. (7). This error quantifies the averaged 
normalized difference between the estimated 

impedance Z
)

 and its theoretical value Z  
averaged over realizations and over the selected 
frequency band for a specific excitation signal. 
The normalized standard deviation Nstd in % is 
also given in Eq.(7) in order to characterize the 
error dispersion: 

( ) ( )[ ]
( ) ( )[ ]
[ ]

( )[ ]
[ ]

( )[ ]2%

2%

2

2

)(
*100

)(
*100

ˆ,ˆ)(

,ˆ)(

fZmean

fVariancemean
NStd

fZmean

fMSEmean
NRMSE

fZmeanfkZmeanfVariance

fZfkZmeanfMSE

f

f

f

f

kk

k

=

=





 −=

−=
   

(7) 

where ˆ Z k, f( ) is the electrical impedance 

obtained at frequency f  with the kth realization. 

5.2 Classical EIS results 
In Fig. , the Nyquist plot of the theoretical 
impedance of the passive reference circuit is 
represented in blue. It is known within an interval 
due to the accuracy on the components values 
given by the manufacturer. The same impedance 
obtained by averaging 30 impedances estimated by 
a classical EIS is also plotted in green in the same 
figure. For this experiment, a NRMSE of 0.69 % 
and a Nstd of 0.41 % are obtained. 

 

Fig. 4. Nyquist plot results using an EIS laboratory 
apparatus. 

5.3 Square version EIS results 
A set of 30 estimations of the impedance of the 
passive reference circuit is also obtained with a 
square EIS approach. The corresponding results 
are plotted in Fig. 5. A NRMSE of 2.44 % and a 
Nstd of 0.14 % are obtained. 
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Fig. 5. Nyquist plot results using a square EIS version. 

5.4 PRBS results 
The PRBS described in 3.2.2 is used to estimate 
the same impedance in the same frequency band. 
The results are plotted in Fig. 6, where a NRMSE 
of 2.6% and a Nstd of 0.19% are observed. 

 

Fig. 6. Nyquist plot results using a PRBS. 

5.5 Discussion 
We infer from these results that impedances can 
be identified with signals constituted of square 
patterns (PRBS and square waves) with an 
estimation error which has a low dispersion 
(similar value of the Nstd parameter for the three 
methods), but a bias that cannot be neglected. 
The NRMSE which include the bias information 
is quite the same for the two methods including 
square patterns (squared EIS and PRBS). Several 
reasons may explain this difference with classical 
EIS. Firstly, connectors on the circuit vary 
slightly between classical EIS and square pattern 
signals methods. Secondly, in the experimental 
protocol we can only use a discharge current, so 
that the mean dc part of the additive input current 
is not zero and affects the voltage measurements. 
However, the low dispersion of the estimation 
error reveals that square pattern signals could be 
useful for specific embedded applications. For 
example, in the field of the EVs and HEVs where 
the battery impedance is desired in order to 
estimate state of charge and state of health 

quantities, we need an accurate relative estimation. 
Based on a first impedance measurement at an 
initial time, we can track the temporal evolution of 
this quantity with an excellent relative accuracy.  

6 Conclusion  
This paper focuses on the usefulness of squared 
pattern excitation signals for the identification of 
system impedance. A non-parametric identification 
method has been theoretically introduced. 
Experimental results ascertain that signals based 
on square pattern like square waves and PRBS lead 
to a biased broadband identification, but with a 
very low dispersion. Consequently, such signals 
are suitable for applications based on relative 
impedance tracking, like state of charge or state of 
health monitoring. 
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