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Abstract 

In a scenario of small and customized production of electric vehicle, it is important to set methods and tools 

to evaluate the Li-Ion cells heat source in EV battery. The main problem of the new lithium batteries is 

represented by the need to keep the battery packs at uniform and constant temperatures and avoid peaks of 

temperatures which cause degradation of performance and safety problem. The main issue concerns the 

characterization of a thermal model to calculate the heat generated by electrochemical reactions in a single 

battery cell. In order to achieve this objective, electrical tests have been conducted to obtain the parameters 

such as voltage curves, open circuit voltage, and capacity for different type of Li-Ion cells and different rate 

of current in charge and discharge. During experiments,  the use of an IR camera allows to acquire real 

temperature data under working conditions. These tests concern one cell per time, analyzed in natural 

convection condition at constant external temperature. The heat generation is evaluated solving the 

analytical thermal formula which depends on the current rate. The approach has been validated comparing 

the calculated temperature values with experimental data. The proposed methodology allows to determine 

the heat generated and  temperature for different working condition. 
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1 Introduction 
An important target of European environmental 
policy is to improve air quality both in large 
cities and small city-centers by reducing smog 
and pollution which is mainly caused by exhaust 
gases and particulates emitted from vehicles 
internal combustion engines. Many research 
activities concern the improvement of electric 
powertrain solution for EVs (Electric Vehicles) 
and HEVs (Hybrid Electric Vehicles). The 
attention is mainly focused on high efficiency 
electric motors, energy management, energy 
supply and battery efficiency. In particular, 
battery development is essential to replace fossil 
fuel on high efficiency pure-electric vehicles or 

in hybrid-electric ones. Electric powertrain 
requirements are: energy availability, high storage 
capacity battery and long lasting high power, high 
system efficiency, safety and little weight to 
improve vehicle performances. 
Most battery applications for HEVs and EVs use 
lithium-ion battery packs composed of several 
cells. In particular the LiFePO4 (lithium iron 
phosphate, also called LFP) polymeric cells 
provide high voltage, low self-discharge rate [1][2] 
and high energy density suitable for a wide range 
of applications. The main drawbacks are: high 
manufacturing cost, long-term stability and poor 
safety characteristics caused by high heat 
generation produced by electrochemical reactions 
during charge/discharge cycles [3]. In electric 
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vehicles, battery temperature increases with a 
high charge and discharge rate, especially in 
transitory utilization. Excessive temperature 
degrades performance, and a limited thermal 
dissipation can produce cell burning [4]. Several 
recent studies have analyzed two aspect for 
lithium-ion batteries: the perspective of a deep 
electrochemical characterization through study of 
ion concentrations and electrons moving to 
evaluate voltage and state of charge at different 
current rate, and the thermal behavior analysis 
with numerical simulations and experimental 
tests to optimize the cooling system. The 
proposed research presents a working 
methodology which allows to determine the heat 
generated from a single cell at different working 
conditions. All this allows to obtain the cell 
average temperature, and to support the designer 
in the definition of suitable cooling system. The 
present work focuses the design of custom 
battery packs for automotive, but can be applied 
to any use of the batteries, such as UPS. 

2 Background research 
The performance, life, and safety of lithium-ion 
batteries depend on operative and storage 
temperatures. In this section a brief overview of 
main theories studied for the determination of the 
heat generated by electrochemical reactions in 
lithium-ion batteries. The batteries heat 
generation is a complex process that requires the 
comprehension of the electrochemical reaction 
rates change with time and temperature and of 
current distribution within larger batteries. Many 
researchers have studied thermal heat dissipation 
characteristics both inside one cell and inside a 
battery pack. The heat output in lithium-ion 
batteries is generated by three sources: activation 
(on kinetics interfacial), concentration (transport 
species), and ohmic losses (also known as Joule 
heating due to particles moving in electric 
circuit). A first important study, regarding 
electrochemical and thermal analysis of lithium-
ion batteries, was made by Bernardi [5]. In this 
analysis, the heat generated depends on the 
thermodynamic equilibrium inside each cell. The 
first law of thermodynamics is applied around 
the control volume (excluding connectors), as 
reported in Eq. (1) formulated by Bernardi [5]. 

ሶܳ ൌ ሺܸܫ െ ଴ሻܧ െ ܶܫ
డாబ
డ்

െ ∑ ௜ܪ∆
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∑׬ ൫ܪഥ௝ െ ഥ௝ܪ
௔௩௚൯௝

డ௖ೕ
డ௧
݀߭   (1) 

Then, Rao and Newman [6] observed the 
calculation of heat generated would have been 
analyzed by two different approaches: the 
thermodynamic energy balance, and the method of 
local heat generation. For the energy balance, they 
neglected some phase changes and the mixing 
effects. However they used the average local 
concentration in each phase to determine the rate 
of enthalpy change for each species and phases 
inside the battery. They have neglected the 
concentration dependence of the reference 
enthalpy. Applying Faraday’s law, Rao and 
Newman arrived at the following expression for 
the battery heat generation in Eq. (2). 

ݍ ൌ െ׬ ൫∑ ܽ݅௡,௟ܷ௛,௟݀ݒ௟ ൯ െ ௩ܸܫ   (2) 

The integral term in Eq. (2) is the average enthalpy 
potential where the reactions are actually taking 
place across the thickness of the battery. For this 
method, Rao and Newman neglect phase changes, 
concentration gradients in the electrolyte phase, 
and thermal effects from lithium diffusion. In this 
approach the temperature of the cell is assumed to 
be uniform. 
Afterwards, Thomas and Newman studied the heat 
due to mixing effect inside a battery containing a 
porous insertion electrode. They noted that, 
although Rao and Newman neglected mixing 
effects, they really did account for the heat of 
mixing inside the bulk electrode through variation 
in local current density on the effective electrode 
open circuit potential [7]. This is one of the four 
possible mixing inside the cell. The other modes of 
mixing heat regarding concentration gradients 
inside the spherical particles, bulk electrolyte, and 
inside the electrolyte pores of the insertion 
electrode. In order to calculate the enthalpy of 
mixing in each case, Thomas and Newman 
determined expressions for the difference in 
enthalpy from the operating state to the relaxed 
state using a Taylor-series expansion for the molar 
enthalpy of each species, while neglecting density 
and temperature changes and concentration 
dependence on the second derivative of partial 
molar volume with respect to partial molar 
enthalpy. Although these mathematical 
formulations are very accurate, they require many 
information regarding materials and each sub-layer 
for Li-ion cells. 
Usually the designer of lithium-ion battery packs 
needs of a methodology based on the elaboration 
of few available data, due to difficult to solve 
completely the previous described equations. A 
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solution is the application of the simplified Eq. 
(5)  analyzed by Thomas and Newman [7]. 
Furthermore, the scenario considered involves 
the use of rapid design methods for small and 
medium-sized enterprises, which produce and 
sale customized products and need to reduce the 
lead time to market. 
In the following paragraphs the simplified 
formula of Bernardi will be analyzed and applied 
to different type of cells. 

3 Thermal Characterization 
The thermal characterization of a lithium-ion 
battery is an important step to evaluate the 
performance, lifetime and safety of a battery. In 
particular, the research work focuses the thermal 
characterization of cell model. The behavior of 
temperature distribution is an important aspect 
that every designer have to take into account in 
the definition and design of lithium-ion storage 
systems. 

3.1 Analytical approach 
The study of Bernardi [5] is considered the 
milestone of all subsequent research on 
electrochemistry regarding lithium-ion batteries. 
Analyzing Eq. (1), that indicates the thermal load 
due to the electrochemical reactions, term 
ሶܳ 	indicates the heat generated, ܸ the cell voltage, 
 the current ܫ ,଴ the OCV (open circuit voltage)ܧ
 ,(is >0 in charge phase and <0 in discharge one ܫ)
ܶ the temperature,  ∆ܪ௜

௔௩௚ the variation of 
enthalpy of a chemical reaction i, ri the rate of 
reaction i,	ܪഥ௝

௔௩௚   the partial molar enthalpy of 
species j, cj its concentration, with t the time, υ 
the volume and the apex “avg” indicates a 
property evaluated at the averaged volume 
concentration [8].  
The proposed thermal approach is based on a 
study by Thomas and Newman [7] which 
evaluates the heat produced by single cell. In 
particular Eq. (1) can be simplified in the first 
two terms: one is the exothermic and irreversible 
heat and the other one is the heat due to entropy 
changes of specifics reactions. This latter can be 
either endothermic or exothermic in function of 
current and state of charge. 
The term ܫሺܸ െ  is the irreversible heat	଴ሻܧ
generated by Joule effect, its value is always 
positive (exothermic reaction) and depends on 
the internal resistance Ri, as reported in Eq. (3). 
 
ሶܳ ௜௥௥ ൌ ሺܸܫ െ ଴ሻܧ ൌ  ଶܴ௜   (3)ܫ

 

The expression ܧ߲ܶܫ଴/߲ܶ indicates the reversible 
heat generated by the entropy change and reported 
in Eq. (4). Specifying, the ratio ∂E0/∂T can be 
replaced as ΔS/nF , when ΔS is the entropy change 
of the cell reaction which can be either positive or 
negative (reduction reaction), n indicates the 
number of exchanged electrons and F is the 
Faraday’s constant.  

ሶܳ ௥ ൌ ܶܫ
డாబ
డ்

ൌ ܶΔܵ
ூ

௡ி
   (4) 

The last two terms in Eq. (1) can be neglected 
[10]; one depends on side reactions accounting for 
aging which are assumed to be slow enough to be 
neglected, and the other one is the heat of mixing 
which is due to the formation and relaxation of 
concentration gradients within the cell. This term 
can be considered almost zero because materials 
used have good electrochemical transport 
properties so concentration gradients are limited 
and the heat of mixing can be ignored. Considering 
the geometry of a small pouch cell and the 
materials, we can consider negligible the last two 
terms and consider the relationship of heat 
generation as follows. 
 
ሶܳ ൌ ܳ௜௥௥ାܳ௥ ൌ ሺܸܫ െ ଴ሻܧ െ ܶܫ

డாబ
డ்

 (5) 

 
Temperature is the major impact factor on battery 
behavior and it influences all occurring processes 
such as chemical and electrochemical reactions, 
mass transport and conductivity of electrodes and 
electrolyte. 

3.2 Calculation methodology 
The aim of proposed analysis is the evaluation of 
the average temperature for a single cell during 
operative phase. The cooling fluid, considered in 
this research, is air, but the same procedure can be 
extended to other Newtonian fluid. Thus, Eq. (6) 
proposes the main energy balance between the 
generated electrochemical reaction heat, the 
convective cooling and the variation of thermal 
capacity. Specifically, term hcomb is the  heat 
transfer coefficient which includes convective and 
radiation aspects, term A is the external surface of 
one cell, term mcell and cp regard mass and specific 
heat capacity, term T∞ indicates the  fluid 
temperature (cooling temperature); term T is the 
average internal temperature of cell and  Tsup is the 
superficial temperature [9]. The analyzed cells are 
slim, that means that the thickness value is very 
small than width and height. Due to this, our 
approach considers the same average value for 
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