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Abstract

This paper presents a bidirectional on-board battery charger for Electric Vehicles designed to perform both

Grid to Vehicle (G2V) and Vehicle to Grid (V2G) operation. The charger can also operate with single or

three-phase power grid connection, regulates the battery charging current and presents input unity power

factor. A high frequency three-phase transformer has been included in the charger, this providing galvanic

isolation.
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1 Introduction

CENIT VERDE [www.cenitverde.es] was a
R&D collaboration program funded by Spanish
government, leaded by SEAT (VW Group) and
with 16 partners located in Spain. The scope of
the program was the advanced development of a
complete electrical vehicle, together with the
appropriate  infrastructure recharge points,
integration in the power grid, etc).

The program started in September 2009 and
ended in 2012 with the validation of the products
developed in a demonstrator.

In electrical vehicles it is necessary a device to
charge the batteries. According to [6] there’re
different modes to charge such batteries. The
object of this development is focused in the mode
3 (despite it’s also compatible to mode 2) and to
be placed on-board (OBC). Currently the most
on-board chargers appeared into the marked are
rated at 3,3KW where the estimated recharging
time is set around 8h from a 230Vac plug for a
22KWh battery. In order to reduce drastically the
time of charge while improving charging
performance Lear has gone one step forward

with the development of a 20KW battery charger
supplied from the three-phase power net.

Design constraints for the OBC equipment have
been:

1. Efficiency, size and weight of the power stage.
The size and weight of the reactive elements
has been optimized until the efficiency of the
equipment has reached a certain minimum
value, considering the ripple currents and
voltages.

2. V2G capability. The charger can operate in
both operations: Grid to Vehicle (G2V) and
Vehicle to Grid (V2G). In the first case, the
charger has a unity power factor and charging
control and in the second one, it has to work as
a low harmonic distortion inverter injecting
current to the grid.

3. Single and three-phase power grid connection.

Automatic detection of the input.

Galvanic isolation.

Communications. The OBC has been

conceived to have internal communications

with the vehicle through CAN and with the
utility through PLC, keeping the compatibility
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with [6] through the 2 dedicated pins in the
charging socket.

The result of the activities is a prototype, which
main characteristics are presented in this paper.

2 Battery Charger power stage

The power circuit is composed by an AC/DC
stage and a DC/DC converter [1]-[5]. A circuit
scheme of the battery charger can be seen in Fig.
1. The AC/DC power circuit uses an input filter
to reduce electromagnetic interferences to the
grid and a three-phase power factor correction
circuit which is in charge of both to regulate the
output voltage (bus voltage) and to achieve the
desired unity power factor in the point of
connection to the grid. The DC/DC power circuit
is a Zero Voltage Switching (ZVS) full-bridge
DC/DC converter with phase-shift control and
includes galvanic isolation by using a high-
frequency three-phase wye-wye connected
transformer. The use of a three-phase transformer
minimizes the output current ripple and reduces
the values of the components of the output filter.

Advanced digital controllers have been also
designed and programmed in a digital signal
processor (DSP). In particular, the goals of unity
power factor and low harmonic distortion have
been achieved by means of resonator-based
controllers and the performance of bus voltage
and battery current regulation have been
accomplished by utilizing anti-windup PI
controllers.
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3 Results and discussion

This section presents some experimental results
obtained from the built battery charger for
different operation cases.

3.1 Single-phase grid connection

First set of results shows the charger performance
when is connected to single-phase grid. Fig. 2
presents an oscilloscope screen dump of the input
voltage and current and the bus voltage ripple.
Notice that the charger operates with a unity power
factor in spite of the high voltage ripple when
manages 6 kW. The high voltage ripple can be
only reduced by increasing the capacity of the
voltage link (bus) which, in turn, would have the
undesirable effect of increase the weight, size and
volume of the equipment. Alternatively, the
DC/DC converter controller has been designed
using advanced control techniques to compensate
the effect of the high bus voltage ripple.
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Figure2: Single-phase connection of 6 kW
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Figurel: 20 kW Battery Charger Scheme



3.2 Three-phase grid connection

Fig. 3 shows the oscilloscope capture of the PFC
inductor current and its ripple when the charger
manages 20 kW. The high value of the ripple can
be reduced by adding more inductance at the
input. The result shown is a trade-off taking into
account its weight and size. Figure 4 depicts the
DC bus voltage ripple and the input voltage and
current of the R-phase for the case of 13 kW.
From this oscilloscope capture, it can be inferred
that the charger operates with a unity power
factor.
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Figure3: Three-phase connection: inductor current and
its ripple for 20 kW case
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Figure4: Three-phase connection: current and voltage of
the R-phase and bus voltage ripple for 13 kW case

Batteries vary their voltage depending of the state
of charge. In this work, a battery voltage range
from 280 V to 360 V has been considered with a
nominal value of 320 V. Fig. 5 shows an
oscilloscope capture of the charger output voltage
and current and the transformer currents when the
output voltage changes suddenly (from 320 V to
280 V, left plot, and from 320 V to 360 V, right
plot) and the current is regulated to 10 A. From
this figure, it can be inferred the robustness of the
equipment with respect to the battery voltage
variations and the good performance of the charger
due to the proper controller design.
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Figure 5: Three-phase connection: charger output voltage and current and transformer currents for an output current
regulation of 10 A
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Figure 6: Battery current vs. phase-shift angle
The charger can operate in both modes: V2G and
G2V. The operation mode is selected by ACkHOWledgments

changing the phase-shift angle of the ZVS
DC/DC full-bridge power converter and the sign
of the reference current of the PFC controller.
The charging (or discharging) power amount is
directly given by the phase-shift angle value. Fig.
6 depicts the experimental measure of the battery
current with respect to the phase-shift angle. As
it can be seen in the figure the charger can
operate in V2G and G2V by only adjusting the
phase-shift angle. Additionally, from Fig. 6 are
deduced that the relationship between the output
current (power) vs. the phase-shift angle (control
variable) is not linear. As a consequence, the
design of the controller, in charge to regulate the
battery current, should take into account this fact.
Finally, Fig. 7 plots the efficiency of the charger
in G2V operation. As it can be seen in the figure
the efficiency is higher than 90 % in a large
range corresponding to medium-high power.
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Figure 6: Efficiency vs. Power
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