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Short Abstract 

 The objective of this paper is to give recommendations for the component sizing of a Parallel Plug-

in Hybrid Electric Vehicle (PHEV) studying the influence of the Electric Motor (EM) size, Final Drive 

ratio (FD), the Battery Capacity (BAT) and the Internal Combustion Engine (ICE). A multiple options for 

the size of the components are in the market and conflicting on the vehicle efficiency and functionality. 

Their selection is very important in order to achieve reduced fuel consumption and assure the vehicle 

performance with the minimum cost. This study explains a proposal methodology to solve this problem, 

firstly doing a problem model approach, then reducing his complexity doing a parameterization and finally 

analyzing the optimal variables for the multiple objectives. In this publication the component sizing is 

analysed using the Response Surface Methodology (RSM) of the Design of Experiments (DoE) technique. 

The parallel HEV has been parameterized and simulated to obtain the fuel consumption over NEDC driving 

cycle using Modelica/Dymola [2]. This tool is very useful for modeling and simulating complex integrated 

systems, for the automotive, aerospace, robotics and other applications. This paper contains an 

introduction, a brief explanation of the Parallel HEV modeled, a description of the all electric range 

operating strategy based on a rules, an explanation of the RSM method, the simulation results, and finally 

the conclusions of this study. 

1 Introduction 

 In this paper a component sizing mathematical methodology for a Parallel PHEV is proposed. In a 

HEV there are a lot of components that affects directly to the fuel consumption and to the vehicle 

performance. There are some studies in the current literature about how to get the optimal components 

minimizing the fuel consumption using several techniques. This proposal is based on an intensive model 

parameterization applying Design of Experiments (DoE). Once the experiments are done a second order 

model fitting is used to calculate the coefficients of the equation terms and to obtain the parametric vehicle 

model in terms of fuel consumption and vehicle performance. As a first step, in order to evaluate the fuel 

consumption and the vehicle performance (acceleration and elasticity), two different sub models of a 

parallel PHEV has been modelled using Modelica/Dymola [5, 6]: energetic model and slip model. The 

energetic sub model with a rule-based operating strategy was done to obtain the fuel consumption under 

several driving conditions, meanwhile the slip sub model allows the evaluation of the acceleration and 

elasticity performance including a slip control in order to detect if wheels are slipping during acceleration. 

These sub models are used to evaluate the fuel consumption using different experiments changing the size 

of the components. In this case study, the influence of the electric motor size, final drive ratio, the size of 

the battery capacity, and the size of the engine has been studied. A rule-based operating strategy (All 

Electric Range strategy) was implemented and it selects the driving mode depending on the driver requests  
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Figure 1. Powertrain of parallel HEV model 

 

giving inputs to the electric motor (EM), internal combustion engine (ICE), gearbox and to the clutch. 

Simulating these vehicle models it is possible to obtain the fuel consumption and the vehicle performance 

under different driving conditions changing the size of the components with a total flexibility. As a second 

step of this study, a parameterization of the Modelica/Dymola PHEV models has been done applying 

Design of Experiments (DoE) using the Response Surface Methodology (RSM) in order to obtain a 

simplified mathematical model that gives a relation between the components (variables), and the fuel 

consumption, the acceleration, and elasticity performance (factors) as results. A screening process has been 

done in order to select the components than has a major influence on the results. The NEDC driving cycle 

is used in order to calculate the fuel consumption for each experiment changing the size of the EM, the 

ratio of the final drive, the capacity of the battery, and also the engine size. Once the experiments are done 

a second order model fitting is used to calculate the coefficients of the equation terms to know the 

curvature and the tendency of the fuel consumption for the components studied. After that the minimum of 

this model equation is computed in order to calculate the optimal size of the components that minimize the 

fuel consumption for this case study. 

 

2 Parallel PHEV model 

 The parallel hybrid configuration switches between the two power converters, the internal 

combustion engine and the electric motor. Depending on the situation, both power sources can also be used 

simultaneously to achieve maximum power output. Figure 1 shows the system configuration of a parallel 

PHEV. The advantage of this vehicle structure is that the system has the ability to offer high efficiency 

during highway driving conditions avoiding low efficient points of the ICE. On the other hand, the electric 

motor can be used during urban driving cycles to prevent the ICE from operating in its low-efficiency 

range, thus providing higher overall efficiency. In order to evaluate the fuel consumption, the acceleration 

and elasticity performance, two different models of a parallel PHEV (figure 2) has been modeled using 

Modelica/Dymola [1, 2]: energetic model and slip model. The energetic model has been done to obtain the 

fuel consumption under several driving conditions, meanwhile the slip model allows the evaluation of the 

acceleration and elasticity performance due to is more focused on the wheels and has a slip control in order 

to detect if wheels are slipping during acceleration. These models are based on a systematic approach using 

sub-models for the different vehicle subsystems. For the internal combustion engine (ICE) is used a look-

up-table for the fuel consumption, and for the electric motor (EM) a loss map. Also models of the rest of 

the powertrain such as gearbox, clutch, inverter, battery, and of the operation as battery management 

system or hybrid control unit (HCU) are implemented. Furthermore in order to simulate the vehicle model a 

cycle, driver and driving resistances are modelled too [3, 4].   

 In figure 2 it is shown a blocks diagram of the model developed. The driver controls the 

accelerator and brake pedals to achieve the vehicle speed. HCU (Hybrid Control Unit) controls the 

operating strategy. The battery can be recharged during the trip by the combustion engine or by connecting 

it to the electric grid. Once the vehicle model was done, it had been validated in a motor test bench, in order 

to adjust the model to the reality using Hardware in the loop (HIL). The main components in this validation 

are the ICE and EM. In order to validate the ICE a conventional vehicle model had been tested, and to 

validate the EM an electric vehicle model was used. 
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Figure 2: Blocks diagram of a parallel PHEV model 

  

 

3 All Electric Range operating strategy 

 To simulate the fuel consumption using this vehicle model under the NEDC driving cycle, a basic 

operating strategy was implemented in the hybrid control unit model. The All Electric Range (AER) 

operating strategy based on rules has two different modes called charge depleting (CD) and charge 

sustaining (CS). For each mode (figure 3) five operating modes are implemented (figure 4). The CD mode 

uses the energy stored in the battery until to reach a minimum SOC (State Of Charge) of 20 % using 

electric and regeneration modes. Afterwards in CS part the strategy attempts to maintain this minimum 

level SOC mode using also recharge, boost and ICE driving mode. At the time that the battery SOC reaches 

his minimum, the strategy enters the CS mode, in which the combustion engine is also used.   

 Depending on the vehicle speed, in this case at 50 km/h, the vehicle enters the hybrid mode (Boost 

or Charge) or remains in electric mode. The strategy has to choose the mode of operation, the gear and 

torque set point of the engines. The ICE and the EM, in a parallel hybrid electric vehicle, work on the same 

mechanical axis to add their torque. The maximum torque is the sum of the curves of maximum torque of 

EM and ICE. When power demand is low, it may be sufficient to use only the EM (“Electric mode”). In 

regenerative braking the electric motor is used as a generator charging the battery when the SOC does not 

exceed its maximum value, which means that the battery can store this energy (“Regeneration mode”). In 

hybrid mode has been implemented “Recharge mode” and “Boost mode”, where in both the traction motors 

are used. In “Recharge mode” mode, combustion engine generates more torque demanded by the driver to 

recharge the battery. If the driver, demands more power than the electric motor can generate, “Boost mode” 

is entered, in which the two machines accelerate the vehicle. Finally the “ICE mode” is used when the SOC 

is too low and the ICE power is directly transferred to the wheel. The changing process between the modes 

depends on the SOC of the battery. To avoid continuous changes between the modes, a hysteresis of 5 km/h 

has included, in case that the vehicle drives just at this edge. At speeds above 50 km/h the engine is turned 

on and the vehicle enters to the hybrid mode. Therefore if the vehicle speed exceeds the limit of the 

maximum speed in electric mode, the car changes into the hybrid mode. This means that the ICE is on and 

the two machines contribute to the acceleration of the vehicle. The strategy intends to use the ICE at every 

moment at the highest efficiency point of the current angular velocity. If the driver request more torque, the 

strategy sends the maximum possible torque, getting out of this efficient curve. The gear is chosen by the 

vehicle through the Hybrid Control Unit subsystem, the driver has no chance of selection, and is 

determined according to the speed. Moreover, the decision of the gear follows the same strategy in hybrid 

mode as in electric mode. The shift points are adapted while driving at low speed to the EM and at high 

speed to the ICE, as this engine has to always work in his optimum zone. 
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Figure 3. All Electric range operating strategy 

 

RECHARGE

• v > 50 Km/h 

And SOC < 20%

RECHARGE

• v > 50 Km/h 

And SOC < 20%

BOOST

• Acceleration and

v > 50 Km/h

BOOST

• Acceleration and

v > 50 Km/h

REGENERATION

• Braking

REGENERATION

• Braking

ELECTRIC

• power < 60kW

and v < 50 Km/h

• E-drive

ELECTRIC

• power < 60kW

and v < 50 Km/h

• E-drive

 

ICE

• SOC < 20%

ICE

• SOC < 20%

 

Figure 4. Operating modes of parallel HEV model 

 

4 Definition of the parameters for this case study 

 The selected sizes of the components evaluated for each experiment are in a reasonable range, 

being any option as a real possible solution for a parallel HEV. The fixed size of the vehicle parameters are 

shown in table 1. To size the EM, the efficiency map is used for the nominal value, and an adaptation of 

this is done for the upper and lower size taking into account the losses in each electric motor tested (table 
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2). In table 3 it is shown the Battery mass depending on the battery capacity. And finally the driving cycle 

used in overall simulations is the standard NEDC (figure 6). 

 

Table 1: Fixed size of the vehicle parameters 

Components Size 

ICE  (kW) 51 

Battery Voltage (V) 300 

Weight (kg) 1450 

Af (m
2
) 2,2 

Gears 7 

Table 2: Size of the of the powertrain variables tested 

Compone

nts 
Lower Nominal Upper 

EM 

(kW) 
30 40 50 

Battery 

Capacity 

(kWh) 

4 8 12 

Final 

drive ratio 
3,5 4 4,5 

ICE (kW) 43 51 60 

 

Table 3: Battery mass depending on the battery capacity tested using a 50W/kg of density 

Battery Capacity 

(kWh) 
Size 

Battery 

Mass (kg) 

Lower 4 58 

Nominal 8 115 

Upper 12 180 
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Figure 6: Speed profile of NEDC driving cycle 

 

5 Design of Experiments parameterization 

 In order to evaluate the influence of the EM size, final drive ratio and battery capacity a DoE 

parameterization is applied using Matlab/Simulink. The concept of DoE uses a set of experiments which 

has to be performed by the experimenter. The aim of this so-called design is to parameterize a process or 

system by performing each experiment and to draw conclusions about the significant behaviour of the 

studied object from the results of the experiments [5]. As a second step of this study, a parameterization of 

the Modelica/Dymola PHEV models has been done using Design of Experiments (DoE) in order to obtain a 

simplified mathematical model that gives a relation between the components as variables, and the fuel 

consumption, the acceleration and elasticity performance as factors or results.  

 A screening process has been done in order to select the components than has a major influence on 

the results. As processes and products require more carefully controlled conditions to obtain lower costs 

and better quality, it will be necessary to conduct relatively complex experimental studies that examine four 

variables. The full-factorial designs are used in case that the studies of this nature were not very costly, and 

don’t requires an inordinate amount of experimental time in order to test all the experiments of the region. 

Otherwise, such studies will be prohibitively expensive and can reduce the costs and time required using 

fractional-factorial designs. A full factorial design with four factors and three levels for each factor is 

created in this case study. This means that the DoE design matrix is formed by eighty-one experiments (4 

factors ^ 3 levels = 81 experiments). In this case it is possible to use full factorial design because the 

simulation run time, and the number of experiments are reasonable to be calculated in less than 200h. These 

experiments are different options for the size and possible combinations of the EM size, final drive ratio, 

ICE size and battery capacity. Each row of such a design contains a combination of the values of those 

variables that are changed within their limits of variation. In the context under consideration here, each of 

these input-variable combinations is used for parameterization of a simulation run, in that the values from 

the respective input variable combination are used to parameterize the size of the EM and ICE, the final 

drive ratio and the battery capacity of the vehicle incorporated in the simulation model.  

 During a simulation run, the selected values are assigned to the variables of the experiment, and 

the fuel consumption and electrical autonomy under the standardized cycle (NEDC) are obtained. A second 

order model fitting has been obtained for each factor, calculating the mathematical influence of each 

component in the result. Applying Response Surface Methodology (RSM) is it possible to analyse 

graphically these influences. 
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Figure 7: Example of Response Surface Methodology concept using two factors and obtaining the optimal 

region. In this paper case will be the minimization of the fuel consumption 

 

6 Response Surface Methodology 

 The complexity of the hybrid drivetrains results in a large number of potential independent 

variables that affect the dependent variable under consideration to different extents. For this reason it is 

important to know how strong the effects of these factors are. A useful tool to know an optimal design for 

regression models, in this case the design that minimizes the fuel consumption is the RSM. The regression 

analysis is needed for modelling and to analyze several variables, to obtain the relationship between a 

dependent variable and independent variables. This means to calculate how the typical value of the 

dependent variable changes when any one of the independent variables is varied, while the other 

independent variables are held fixed. RSM is applied to the results in order to evaluate the influence of each 

component on the final result, in this case the fuel consumption during charge sustaining mode. The RSM 

(figure 7) explores the relationships between several explanatory variables and one or more response 

variables. The main idea of RSM [6, 7] is to use a sequence of designed experiments to obtain an optimal 

response, the minimum of fuel consumption. Since the dependency of fuel consumption on the large 

number of variables does not exist as an explicit target function, they are approximated in the preceding 

process step of modeling, in the form of an adapted polynomial (equation 1). A second order model for the 

regression fitting is used to analyze the curvature and shape of the obtained model. Analyzing the surface 

obtained it is possible to estimate the influence of each component studied [8, 9]. 
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7 Parametric vehicle model validation 
 In order to validate the parametric vehicle model, has been done in tables 4, 5 and 6 a comparison 

with the Dymola model using for the acceleration time, the speed from 0 to 100 km/h meanwhile for the 

elasticity time from 80 to 120 km/h: 

 

Table 4: Parametric model validation results of the experiment using the components with the lower values 

Responses Dymola model Parametric model 
Difference 

(%) 

Fuel consumption for NEDC 

(l/100km) 
2,48 2,56 3,12 

 Acceleration 

Time (s) 
12,86 12,75 0,86 

Elasticity (s) 6,99 7 0,14 



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium         8 

Table 5: Parametric model validation results of the experiment using the components with the nominal values 

Responses Dymola model Parametric model 
Difference 

(%) 

Fuel consumption for NEDC 

(l/100km) 
2,4 2,31 3,89 

 Acceleration 

Time (s) 
11,2 11,23 0,26 

Elasticity (s) 6,28 6,29 0,15 

 

 

Table 6: Parametric model validation results of the experiment using the components with the upper values 

Responses Dymola model Parametric model 
Difference 

(%) 

Fuel consumption for NEDC 

(l/100km) 
3,25 3,36 3,27 

 Acceleration 

Time (s) 
10,86 10,79 0,64 

Elasticity (s) 6,28 6,27 0,15 

 

8 Parameterization Results 

 When planning an experimental program that will allow carrying out the study on the effect of 

factors on the response variable, the first step to take is the choice of factors that will be used in the 

experiment. In this case the factors selected are the EM power, the ratio of the final drive and the battery 

capacity. Once the factors are determined, the next step is to select the ranges of each factor to be analyzed 

in the experimental region selected. The experimental design matrix used is (equation 2): 

 

X = [-1   -1   -1  -1 

        -1   -1   -1   0 

       …..................];            (2) 

 

all possible combinations [factors X number of experiments]-->[4 x 81] 

where each row corresponds to one experiment, first column to the final drive ratio, second column to the 

electric motor size, third column battery capacity and fourth column to the engine size. The values are 

coded meaning “-1” the lower value, “0” the nominal value, and “1” the upper value.  

Once the fuel consumption and electrical autonomy are obtained, it is possible to calculate the fuel 

consumption according ECE-R 101, where the fuel consumption for a PHEV based on the NEDC (figure 7) 

is defined as (equation 3): 
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FC1� Fuel consumption (l/100km) during charge depleting 
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De� Electric autonomy (km) 

 

 Using the design of the experiments performed it is very useful to obtain the response surface 

model fitting the data set collected at points of design to a polynomial equation. Using the data of fuel 

consumption simulated in all experiments it is possible to obtain a second-order mathematical model with 

terms linear, quadratic and binary interactions of the three independent variables ( 321 , , xxx ) analyzed 

(equation 4). 
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where, 

yµ = Average value of the response variable 

0β = Average value of the response 

1β = Lineal effect of factor 1 on the average response 

2β = Lineal effect of factor 2 on the average response 

3β = Lineal effect of factor 3 on the average response 

4β = Lineal effect of factor 4 on the average response 

11β = Quadratic effect of factor 1 on the average response 

22β = Quadratic effect of factor 2 on the average response 

33β = Quadratic effect of factor 3 on the average response 

44β = Quadratic effect of factor 4 on the average response 

12β = Interaction effect between 21  , xx on the response 

13β = Interaction effect between 31  , xx on the response 

14β = Interaction effect between 41  , xx on the response 

23β = Interaction effect between 32  , xx on the response 

24β = Interaction effect between 42  , xx on the response 

34β = Interaction effect between 43  , xx on the response 

ζ = error 
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 The obtained coefficients of each term are shown in table 7. Using the equation (4) and the values 

of each term calculated in table 7 it is possible to formulate the three parameterized equations for fuel 

consumption, acceleration and elasticity time. Notice that the major components that contribute more to the 

fuel consumption result are the BAT and the ICE. 

 

Table 7: Coefficient results for second order model 

Equation Case study 

Fuel 

Consumption 

Results 

Acceleration 

Results 

Elasticity 

Results 

0β  Constant 2,29144 11,2042 6,28715 

1β  FD 0,048085 0,035148 -0,04906 

2β  EM 0,032978 -1,00494 -0,44639 

3β  BAT -0,81286 0,090204 0,129278 

4β  ICE 1,08715 -0,09763 2,16E-17 

11β  FD*FD 0,15832 0,034963 0,049056 

22β  EM*EM -0,01143 0,512685 0,446389 

33β  BAT*BAT 0,312469 0,065685 -0,12928 

44β  ICE*ICE 0,445753 0,034963 1,53E-17 

12β  FD*EM 0,00817 -0,03808 -0,00292 

13β  FD*BAT -0,01641 0,065194 0,001333 

14β  FD*ICE 0,014989 0,001639 -1,68E-17 

23β  EM*BAT -0,02236 -0,06761 -0,01092 

24β  EM*ICE -4,07E-04 -0,03081 -2,47E-18 

34β  BAT*ICE -0,31307 -0,03883 -7,05E-18 

ζ  error 0,0517 0,0309 0,0001 
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Figure 8: Response surface of fuel consumption among BAT capacity and ICE size fixing to the nominal 

value the FD and EM. On the ICE power it is possible to see an optimal on their lower value, when the 

power is far from the lower the fuel consumption increases over a NEDC 

 

 

 

Figure 9: Response surface of acceleration time among EM size and BAT capacity fixing to the nominal 

value the FD and ICE. The BAT capacity is directly related to its weight and as greater is the EM size the 

acceleration time is reduced 

 

 In figure 8 it is shown the response surface for both components. As the BAT is greater the fuel 

consumption is reduced due to the Autonomy. It has been seen a strong influence of the BAT capacity 

below proportional, doubling the electrical autonomy, the fuel consumption is reduced by less than half. 

The current high cost of the battery makes this component very important on the process selection for the 

optimal set of components. The FD ratio has a direct influence on the fuel consumption in CS mode, and 

indirectly through electric consumption due to the electrical autonomy increases. The fuel consumption is 

reduced as the ICE power is low, due to a consumption map of an ICE with a less power than other one, the 

fuel consumption is also minus. The most efficient region obtained is when the battery size is big due to its 

influence on the autonomy, and also it happens when the power of the ICE is low.  
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Figure 10: Response surface of elasticity among EM size and BAT capacity fixing to the nominal value the 

FD and ICE. The EM size and the BAT capacity are the components with the strong influence on the 

elasticity time due to this contribution in the elasticity margin 

 

 The figure 9 shows that the EM power and BAT capacity has an important contribution to the 

acceleration time, meanwhile the FD ratio and ICE size has a minor effect compared to the other ones. The 

EM size has a strong effect because is the main power source during the acceleration time, and also the 

weight of BAT contributes negatively to the acceleration time response. It is possible to say that as the 

power of the EM is bigger, the acceleration time of the vehicle will be reduced at least 0,2s each 1kW till 

the nominal value. Then when the EM power is increasing beyond the nominal value, the reduction of the 

acceleration time is lower as 0,2s each 5kW. 

 

 In figure 10 it has been analysed the elasticity time. In this case also the BAT capacity and the EM 

size are the components with the most influence on the response. Notice that there is an optimal region 

between the nominal and upper value of the BAT capacity when the EM size is around the nominal and 

upper value too. A vehicle with a bigger EM power has a quick elasticity time response, without depending 

directly of the BAT capacity. 

 

9 Multiobjective Optimization 

 As a third step, multiobjective optimization has been done in order to obtain the pareto front 

solutions [10, 11] that reduces the fuel consumption maintaining the vehicle performance, in this case the 

acceleration performance (figure 11). In table 8 it is shown the internal parameters of the multiobjective 

optimization obtained as the total number of generations used, the total number of function evaluations to 

obtain the pareto front, the average distance of the solutions on the pareto front, and the spread. A smaller 

average distance measure indicates that the solutions on the Pareto front are evenly distributed. 

 

 After that the experiments that not accomplish with the acceleration time required, are not 

considered and are discarded to be the best options to use in a parallel PHEV. Therefore it is possible to 

guarantee a set of possible solutions with a required acceleration and elasticity performance meanwhile the 

fuel consumption is reduced (figure 12). 

 

 The combination that minimizes the fuel consumption is using the highest BAT capacity and the 
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nominal value of ICE size in order to accomplish with the acceleration time and elasticity requirements. 

The minimum is 2,01 l/100km of fuel consumption using the nominal FD, high size of the EM, high BAT 

capacity and nominal size of the ICE. 

 

Vehicle performance assured 

Vehicle performance not 
assured

Pareto front solutions

Vehicle performance assured 

Vehicle performance not 
assured

Vehicle performance assured 

Vehicle performance not 
assured

Vehicle performance assured 

Vehicle performance not 
assured

Pareto front solutionsPareto front solutionsPareto front solutions

 
 

Figure 11 Pareto front results for an optimization of fuel consumption (objective 1) and the acceleration 

performance (objective 2) 

 

 

 
 

Figure 12: Optimal points that assure the vehicle performance. As a restrictions on the optimization process 

has been considered only the options that accomplish with an acceleration time less than 10,8 seconds and 

an elasticity less than 6,5 seconds 

 

 

Table 8: Parameters of the multiobjective optimization 

Total number of generations 148 

Total number of function evaluations 15646 

Average distance 0,0062 

Spread 0,1240 
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10 Conclusions 
 This study gives a methodological way to solve the component sizing optimization of a Parallel 

PHEV describing the system in an analytic way. In this case has been studied the acceleration time, 

elasticity, and the fuel consumption defined as restrictions and objective respectively. Design of 

Experiments has been used to analyze the influence of the components and how it affects on the fuel 

consumption. Therefore has been calculated a parameterized equation that describes the system on an 

analytic way regarding the fuel consumption using ECE-R101. It has been observed a strong influence of 

the BAT capacity below proportional, in example, doubling the electrical autonomy, the fuel consumption 

is reduced by less than half. For this reason the BAT selection is very important on a optimal PHEV in 

terms of cost. The FD ratio has a direct influence on the fuel consumption in CS mode, and indirectly 

through electric consumption due to the electrical autonomy increases. In this case study, the EM size has a 

little influence due to the electrical machine is always working on an optimal efficiency region, but directly 

affects with a big influence to minimizes the acceleration and elasticity times. For the acceleration time it 

has been proved that the EM size and BAT capacity are the components with the strongest influence due to 

the EM is the main power source of the vehicle that is working on that speeds region, and also the BAT 

weight affects directly and negatively to have a quick acceleration time response. On the elasticity time 

analysis it can be seen that also the EM size and BAT capacity are the main components affecting on the 

results. To conclude it is possible to say that the selection of the components is a trade-off between 

reducing the fuel consumption and keeping the vehicle performance (acceleration and elasticity time) in 

order to produce more efficient PHEV vehicles maintaining the drivability performance. 
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