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Abstract

An accurate onboard State-of-Charge (SOC) estimation is one of the key functions a Battery Management
System (BMS) has to perform in order to provide the optimal performance management of the battery
system under control.

In this framework, this paper presents a proposal of an Enhanced Coulomb Counting (CC) State-of-Charge
estimation algorithm based on Constant Voltage Charge Detection (CVCD) and Open Circuit Voltage
(OCV) model for LiFePO, batteries. Designed for onboard BMS implementation, it is characterized by its
simplicity and operability in wide operating conditions (under diverse load profiles, temperatures, SOC
ranges, etc.). The description of the algorithm at both, cell and battery-module level is detailed in the paper.
Furthermore, its on-line experimental validation and scope determination is tested under three different
traction applications and cell specimens in an own-developed real time validation platform: 2.5 Ah cells
(Type A) in a residential elevator application, 8 Ah cells (Type B) in a pure electric on-road vehicle
application and 100 Ah cells (Type C) in an electric railway vehicle application. According to the achieved
results, the accuracy and versatility of the algorithm for different operating scenarios is certainly proven. In
the worst case scenario the algorithm is capable of keeping the SOC estimation of the system under test

stabilized around 5% of error.
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1 Introduction

As part of the diagnostic approach, Battery measurements), closed-loop corrective ones (e.g.,

Management Systems perform the onboard SOC
estimation. Coulomb Counting (CC) method,
based on time integration of the battery current,
is the simplest technique for it. However, it is
very sensitive to measurement errors that are
accumulated over time and lead to drifts between
estimated and real state of charge of the battery.
In order to improve them, open-loop
recalibration algorithms (e.g., oCcVv

Kalman Filters [1], etc.) or estimation techniques
based on artificial intelligence (e.g., Neural
Networks [2], Fuzzy Logic [3], etc.) are used.

In general terms, the first ones are characterized by
their simplicity for BMS implementation. The
second and third ones are generally more
sophisticated and complex than the prior ones.
They provide precision at the expense of higher
computational cost.
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In this context, as a trade-off between accuracy
and BMS implementability, this research work
presents a proposal and full experimental
validation of a simple, modular and scalable SOC
estimation algorithm for LiFePO, batteries; cell
technology that according to future outlooks will
be spread in traction applications in the coming
years [4]. The algorithm in question consists of
an Enhanced Coulomb Counting technique based
on Constant Voltage Charge Detector and
OCV(SOC) precise model for dynamic
recalibration.

Section 2 describes the main essence of the
algorithm at cell and module level.

Section 3 demonstrates its scope at both levels
through a deep experimental validation process
where Type A, Type B and Type C cells are
cycled at real operating conditions of different
traction applications.

2 SOC estimation based on ECC
with CVCD and OCYV models

While the SOC estimation error caused by pure
Coulomb Counting increases in time diverging
its value from the real one, the hybrid algorithm
proposed in this paper aims to reduce and
stabilize it. Besides guaranteeing accuracy
regardless of the battery cycling time, it is
characterized by being simple (highly demanded
for BMS implementation), flexible (scalable and
modular), versatile (easily adaptable for different
cells) and reliable. All these features make the
algorithm suitable for its on-board BMS

application.
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Figure 1: Proposed cell level SOC estimation
algorithm based on ECC with CVCD and OCV model

The algorithm itself is designed for cell level
diagnostics. Nevertheless, with some slight
adaptations it is applied for battery-module level
estimations as well.

2.1 Cell level SOC estimation

Cell level SOC diagnostic algorithm is depicted in
Fig. 1. It is based on a system state detector (State
Machine) which, depending on the real time
measurements of the cell (current, voltage and
temperature samples), detects its current state: if
the cell is charging or discharging, if it is at rest or
in equilibrium state. Moreover, during a constant
current - constant voltage (CC-CV) charge process
it can also detect if the cell is involved in the CV
charge step. Depending on the identified state, the
State Machine activates the appropriate SOC
estimation approaches. When the system is
charging or discharging CC technique. In case the
State Machine identifies a Constant Voltage
Charge process the CVCD estimation method.
Finally, OCV(SOC) model in case the cell is at
equilibrium state.

Each of the cited techniques is based on a singular
model that having BMS acquisitions as input
provide SOC estimation values as output. In this
hybrid arrangement, all model-outputs (SOCcc,
SOCcvep, SOCocv) participate specifically in the
overall SOC estimation.

In addition to performing the SOC estimation, the
algorithm also considers the maximum errors that
each estimation technique introduces
(ASOCcc(I,T,,T),ASOCcvep(V,T),ASOCocy(V,T).
They are due to modelling errors and current,
voltage and temperature inaccuracies introduced
by the deployed measurement hardware. Thus, the
algorithm defines the instantaneous maximum
error bands relative to each technique ([SOCccmin,
SOCCClnax]> [SOCCVCDmin, SOCCVCDmax]a
[SOCocvmin, SOCocvmax])-

Once estimation and error bands are specified,
with the aim at achieving the most reliable final
estimation, SOC Weighting module weights the
contribution of the CC, CVCD and OCV based
estimation techniques. According to their
instantaneous error bandwidth it gives higher
priority to the most precise one at every instant.
The models of each estimation strategy are roughly
discussed in the next subsections.

2.1.1 CC model

CC model consists of the already introduced Ah
counting technique. It integrates the
charge/discharge current of a cell in time and
makes it relative to its capacity in order to provide
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the SOC estimation. Regarding this technique,
the precision of the current measurement system
and the sample time used for current integration
are factors that have direct impact on the final
estimation accuracy.

2.1.2 CVCD model

CVCD model relates the CV value of a CC-CV
charge process of a cell with its final SOC state.
In order to get this CVCDV(SOC) map, several
CC-CV charge processes to different CV values
(e.g., 3.6, 3.55, 3.5, 3.45, etc.) have to be
performed to a cell at different temperatures. Fig.
2 and Fig. 3 show some of the results obtained
from the cell-characterization process carried out
for the modelling.

In the particular case of Fig. 2, it is observed that
at 25 °C, for example, charge processes with CV
values superior to 3.4V mean that the final SOC
of a Type C cell is higher than 98%. Below 3.4V
in contrast, 50 mV differences turn into big SOC
differences.

As it was expected, the SOC of the cell varies
significantly ~with temperature. At lower
temperature, lower the SOC at the same CV
value.
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Figure 2: CVCDV(SOC) map of a Type C cell at 10 °C,
25°C and 45 °C

Furthermore, not all the cells have the same
CVCDV(SOC) relation. The results illustrated in
Fig. 3 show that in case of the compared Type A
and Type C cells, while at high SOCs the relation
is similar, as CV wvalue decreases, these
differences diverge notably.
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Figure 2: CVCDV(SOC) map of Type A and Type C

cells at 25 °C

The accuracy of the voltage measurement system
used for the characterization of the model and for
the final diagnosis system (BMS hardware) will
determine the precision of the technique in
question.

2.1.3 OCV(SOC) model

A measurement of voltage in terminals of a cell
when it is at equilibrium state gives information
about its SOC state.

For most Li-Ion chemistries, this relation between
the SOC and OCYV can be considered direct and is
modelled by a monotonic function. For lithium
iron phosphate (LiFePO,) batteries nevertheless, it
becomes a many-to-many mapping family of
curves, determined by the cycling history of the
cell. This fact becomes the SOC estimation of such
batteries challenging. It is necessary, consequently,
a high precision voltage measurement system and
an accurate OCV model to consider the flat shape
and pronounced hysteresis phenomena they
present [5].

From the deep OCV sensitivity assessment
performed with Type A Type B and Type C
LiFePO, cells, it is concluded that the factors that
mainly affect the variability of the OCV of such
cells and therefore, can lead to estimation errors
are: the time of the cell under relaxation, the
hysteresis phenomena (Fig. 4 and Fig. 5) and
temperature variations (Fig. 6). Current seems not
to have a direct impact on it (Fig. 7).

Fig. 4 and Fig. 5 depict OCV major and minor
loops of Type B and Type C cells. The first loops
are formed when a fully charged cell is
subsequently fully discharged, and vice-versa. The
second ones, when partial consecutive charge
discharge cycles are applied to a cell. The
importance of considering the cycling history of a
cell is patent. Otherwise, a 3.29 V in Fig. 4, for
example, could represent any value between 30%
and 70% of SOC.

Regarding temperature, OCV shows a big
variability as well (Fig. 6). In this case, the same
3.29 OCV measurement at different temperatures
could imply an estimation error of 30% of SOC.
Between all the different OCV(SOC) models
identified in literature (e.g. [6]-[10]), the one
presented in [11] was used as the basis for the
design of an enhanced OCV model in this research
work. The developed approach consists of an
empirical model that improved in terms of
precision considers all the quoted OCV influential
factors. It is capable therefore to operate at a wide
range of operating conditions with high accuracy.
Appropriately parameterized, it is suitable for
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Figure 4: OCV major and minor hysteresis loops of
Type B cell
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Figure 5: OCV major and minor hysteresis loops of
Type C cell

LiFePO, cells from diverse manufacturers and
formats with different energy and power
characteristics.

2.2 Battery-module
estimation

level SOC

Before the complexity and computational cost
that the direct cell-by-cell implementation of the
algorithm introduced in Section 2.1 could imply,
a more manageable method that keeps the trade-
off between cost and performance is set out
(Fig. 8).
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Figure 6: OCV major loops of Type A cell at different
temperatures [T=5°C, 10°C, 15°C, 25°C and 45°C]
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Figure 6: OCV major loops of Type A cell at different
currents [[=1C, 2C and 4C]

Based on the proposed single cell ECC SOC
estimation method, three SOC estimations are
performed in parallel to achieve the module level
one: (i) SOCyy with the lowest cell voltage, (ii)
SOCyax with the highest cell voltage, and (iii)
SOC v with the average voltage of all cells in the
battery-module. As a result of these three
estimations, the SOC range where the battery pack
operates can be calculated. Accordingly, SOCyax
and SOCyn give information about the proximity
of the system to the end of charge and discharge
states, while SOCay represents the average state
of the battery-module.

BMS measurements
in real-time (I, V,, Ty)

Cell with
minimum voltage (Vyin)

Average cell voltage (V)

Cell with
maximum voltage (Vi)

CVCs CVCs CVCs
State Machine DS State Machine DS
CVCD model ‘ OCV(SOC) model ‘ ‘ CC model ‘ CVCD model ‘ OCV(SOC) model ‘ ‘ CC model ‘ CVCD model ‘ OCV(SOC) model ‘ ‘ CC model ‘
{ SOC Weighting SOC Weighting SOC Weighting }

Battery-module
SOCyn estimation

Battery-module
SOCavg estimation

Battery-module
SOCpax estimation

Figure 8: Proposed battery-module level SOC estimation algorithm
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3 Applied experimental validation

For the experimental validation and scope
determination of the proposed SOC estimation
algorithm at both, cell and battery-module level,
a set of three different traction scenarios are
studied: (i) 2.5 Ah cylindrical cells (already
known as Type A) in a residential elevator
application, (ii) 8 Ah cylindrical cells (Type B)
in an electric on-road vehicle application and (iii)
100 Ah prismatic cells (Type C) in an electric
railway vehicle application.

The variety of these selected case studies aims at
proving the versatility of the algorithm when
applied to LiFePO, cells with different design
features (energy and power characteristics,
format and manufacturer) intended for working
under diverse operating conditions (load profile,
temperature, SOC operating range, etc.).

The setup of the validation framework as well as
the estimation results at each validation scenario
are reported in the next subsections.

3.1 Validation setup

The experimental validation platform consists of
a rapid prototyping approach that enables
running own developed diagnostic algorithms in
real time. Its strength relies on the capacity of
proving them under realistic application
conditions time and cost-effectively. Therefore, it
is used as a fast and easy tune-up and reliable
evaluation tool before the implementation of a
new developed algorithm in the final BMS
product.

The setup comprises a Module Management
System (MMS) prototype, a virtual prototyping
system (dSPACE), a link module, a battery
tester, a climatic test chamber and finally the cell
or battery-module under test. Fig. 9 depicts the
overall configuration by a block diagram.

The MMS (Fig. 10), fully developed by IK4-
Ikerlan, is responsible for the monitoring,

P | 1 Pack +
e ‘
Link Module
Climatic
Chamber Pack-
Vn —_;\ 1 Module Tester
V3 =&
V2 m—
VI =
Battery-
module

Figure 9: Experimental platform used by IK4-Ikerlan
for the fast prototyping of diagnostic algorithms

protection and balancing of the battery-module. It
collects measurements of every cell voltage and
several temperatures along the system. It then
processes this data and extracts information for
battery protection and diagnostic determination.

In order to provide the greatest validation
reliability, the MMS is designed to have the
necessary features the final BMS product approach
is required. In general terms, it is composed by 3
monitoring and protection daisy-chained specific
ICs (bq76PL536 from Texas Instruments) and a
microcontroller (R5F21236DFP from Renesas
Technology). Each of the ICs monitors 2
temperatures and between 3 to 6 cells with a
+3 mV typical accuracy at once and sends this
information to the immediately below IC. The
microcontroller is connected to the bottom IC
through SPI (Serial Peripheral Interface) and in the
present arrangement has the role of transmitting all
the data acquired by the ICs to the dSPACE by a
CAN (Controller Area Network) bus.

For the battery-module safety guarantee, the MMS
provides hardware and software protection with
programmable thresholds and delay times against
over- and under-voltages and over-temperatures. In
case of approaching any hazardous situation
relative to these factors, it activates a fault alarm
that opens the main contactors of the power
circuitry.

Additionally, the MMS includes a dissipative
balancing system and low-power sleep mode
functionalities for the cases the battery-module is
unbalanced and inoperative.

In the present framework, the dSPACE becomes
the calculation core of the platform. It receives the
battery-module information from the MMS and
provides the on-line execution and monitoring of
the proposed SOC estimation algorithm. It also
performs the cell balancing management and the
record of historics.
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Figure 10: Module Management System (MMS)
prototype fully developed by IK4-Ikerlan
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The link module, in turn, includes a current
sensor for diagnostic purposes and all the
hardware related to the battery-module
protection. It comprises main contactors and
fuses to open both poles of the circuit in the
event of a failure and even a residual current
device to avoid current leakages though the user,
in case of insulation absence.

Finally, the battery-module tester (Digatron BNT
100-100-2 BDBT) and the climatic test chamber
(CTS T-40/600/Li) are used to emulate the real
operating  conditions (load profiles and
temperature variations) of the battery-module
under certain application tests.

3.2 Validation scenario 1:
Residential Elevator application

The first wvalidation scenario consists of
reproducing the operation of a LiFePO, battery
in a domestic elevator application.

The integration of batteries in such applications
pursues mainly three objectives: cost saving by
reducing the power peaks demanded from the
electric grid, efficiency increase by saving
regenerative breaking energy from the traction
motor and automatic rescue functionality by
providing stored energy to the system in case of a
power outage. Fig. 11 block diagram represents a
three-phase residential elevator with a Li-Ion
storage system.

Rectifier Inverter

s SAILIARO

Grid Elevator motor

Li-lon }
| |Battery Pack ||
|

Figure 11: Block diagram of a three-phase residential
elevator with a Li-Ion storage system

The cells selected for the validation of the
proposed SOC estimation algorithm at this
operation environment are ANR26650M1-B cells
from the A123 systems manufacturer (Type A).
They are characterized by a 2.5 Ah nominal
capacity, 4C and 28C maximum continuous
charge and discharge current rates and operating
temperatures between -30 °C and 50 °C.

The validation test profile, in turn, consists of an
elevator operating profile that simulates 30 days
of use. In order to accelerate the time under test
nevertheless, all trips that an elevator performs in
a day are linked together without any pause in

between. Only a pause of 2h is introduced at the
end of each simulated day to simulate night
periods.

Fig. 12 depicts a fraction of the quoted load profile
and Fig. 13 and Fig. 14 show some of the acquired
results of the algorithm once characterized for the
cells and application under study.

The scope of the introduced ECC algorithm is
calculated taking as a reference SOC estimations
carried out by a high precision current
measurement system (HPM) that the battery-
module tester incorporates.

As Fig. 14 depicts, the irregular shape that
|[SOCEgcc-SOChpy| term draws is due to the
variable participation of CC, CVCD and OCV
model in SOC estimation. After 30 days of use, the
algorithm is capable of keeping the estimation
error stable around a 5% of SOC.

For the wvalidation of the algorithm at
battery-module level, 12 of such cells are
assembled to build up a 92 Wh module prototype.
Table 1 gathers its main characteristics.

Table 1: Battery-module characteristics for a
Residential Elevator application

Battery-module

Ne cells 12s
Nominal Voltage (V) 38.4
Capacity (Ah) 2.4
Energy (Wh) 92.16
Max. Dch. Power (W) 675.84
Weight (kg) 1.2

Just as the procedure followed at cell level, the
overall battery-module system is excited with a
load profile relative to 30 days of operation of an
elevator (Fig. 12). Fig. 15, Fig. 16 and Fig. 17
show the experimental results for this case.

Fig. 15 comprises the voltage in terminals of every
cell in the battery-module. It can be distinguished
that all of them follow a singular path in time.
These results reflect the actual SOC dispersion that
exists between them. Nevertheless, thanks to the
proposed SOC estimation algorithm this dispersion
can be quantified and the cells that are limiting the
operation of the battery when reaching a full
(dis)charge state can be identified. In case of
having a balancing system [12], it will be possible
to correct the dispersion. In opposite case, it will
tend to increase. In the present capture (Fig. 16),
the difference between the most and least charged
cells is around 6% of SOC.

Regarding average SOC,pvyg estimation, ECC
diverges maximally 6% from the real SOC and
keeps the error stable around 4% in an accelerated
test that simulates 20 days of continuous operation.
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3.3 Validation scenario 2:
Electric On-Road Vehicle application

The second validation scenario consists of
reproducing the operation of a LiFePO, battery
in an electric road vehicle application. In this
case, the replacement of the internal combustion
engine of a traditional road vehicle by an electric
motor (in combination to a storage system) aims
at increasing the efficiency of the overall traction
system and reducing CO, emissions to
atmosphere. Fig. 18 describes the simplified
integration of a Li-lon battery in an on-road pure
electric vehicle application.

DC AC

Differential

Battery Pack
===

Traction
motor

Charger W=————

Figure 18: Block diagram of an on-road pure electric
vehicle with a Li-Ion storage system

For the validation of the ECC algorithm in this
environment, FTP-75 test procedure defined by
the US Environmental Protection Agency (EPA)
[13] is used in combination with constant 5 W
charging processes to simulate a one-day cell
level city driving profile of an electric road
vehicle (Fig. 19). On this occasion, the cells
selected for testing are several LiFePO, cells of
type OMLIFE-8AH-HP manufactured by OMT
(Type B). They are characterized by a 8 Ah
nominal capacity, 10C and 25C maximum
continuous charge and discharge current rates
and operating temperatures of 0...45 °C for
charging and -20...60 °C for discharging.

In this second validation framework, apart from
the evaluation of the algorithm at 25 °C, the
target is to check its suitability for a wide range
of operating temperatures. For this purpose,
individual cells are excited with the cited
validation  profile  pattern at  different
temperatures. Fig. 20 presents the voltage
response of one of them together with the OCV
estimation that the algorithm calculates. The
voltage in terminals of the cell varies as much as
around 400 mV depending on the temperature at
it is excited. However, as the ECC algorithm
considers the impact of this factor, the difference
between estimation and measurements (in
circles) does not exceed an average value of

3 mV in any of the three cases. The potential of the
algorithm for carrying out a proper SOC
estimation at different operating temperatures is
demonstrated therefore, as Fig. 22 results illustrate.
During a one day execution, the algorithm registers
a maximum error of 2% and is capable of keeping
the estimation error stable around this value at the
end of the day. It provides a 48% less error than
the simple Coulomb Counting technique.

3.4 Validation scenario 3:
Electric Railway Vehicle application

The third and last validation scenario involves an
energy storage system in an electric railway
vehicle application. Alone or in combination with
electric double layer capacitors it helps increasing
the efficiency of the system by recovering the
braking energy from the traction motor and
reducing the power peaks consumed from the
catenary. Moreover, its integration can provide an
electric railway vehicle with the possibility of
driving a certain distance without overhead power
cable. Fig. 23 represents the integration of a Li-Ion
battery pack in a railway vehicle application.

Catenary

N Catenary voltage

DC DC

‘f
‘\
l
! ) AC
!
|
‘\
‘\
|

Rail
Figure 23: Block diagram of an electric railway vehicle
with a Li-Ion storage system

For the performance assessment of the algorithm at
cell level, 100 Ah cells from the CALB
manufacturer (SEI00AHA) are used (Type C).
They can operate up to 0.3C between 0...45 °C in
charge and up to 3C between -20...55 °C in
discharge.

In this case, the current profile used for validation
(Fig. 24) is composed by six different railway
vehicle day patterns (nights have been reduced to
3h in order to reduce test duration). Fig. 25 shows
the voltage response of the cell during the tested
week and Fig. 26 reflects the scope of the
algorithm, which results in a less than 2% of SOC
estimation error.

Shifting from cell to battery-module level, a SkWh
battery prototype based on the described cells
(Table 2) is built up for the algorithm validation.
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As in the previous case, the battery-module is
tested under the current profile introduced in
Fig. 24.

Table 2: Battery-module characteristics for an Electric
Railway Vehicle application

Battery-module

Ne cells 16s
Nominal Voltage (V) 51.2
Capacity (Ah) 100
Energy (kWh) 5.12
Max. Dch. Power (kW) 15.36
Weight (kg) 59.6
z
12 125 13 135 14 tlrnle[h] 15 155 16 16.5 17

Figure 12: Accelerated one day current profile of a
cell in a residential elevator application
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Figure 13: Voltage response of a cell in a residential
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Fig. 27 illustrates the voltage response of every
cell to the excitation current in question. Little
voltage divergences reflect the SOC differences
among the cells. According to Fig. 28, the
estimation error caused by the algorithm when
calculating the average SOC of the system is 5%.
Therefore, in this application passing from cell to
module level estimation means incrementing the
estimation error in 3%.
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Figure 14: SOC estimation comparison between ECC
and simple CC of a cell along 30 days in a residential
elevator operation
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Figure 16: SOCyax, SOCyy and SOC,yg of a battery-
module during a one-day cycling in a residential
elevator operation
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Figure 17: Average SOC estimation comparison
between ECC and simple CC of a battery-module in a
residential elevator operation

Figure 15: Voltage response of the cells of a battery-
module during a one-day cycling in a residential
elevator operation

Experimental results of validation scenario 1
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Figure 19: One day current profile of a cell in an on-

road pure electric vehicle application
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Figure 20: Voltage response of a cell in an on-road pure

electric vehicle application to a one day current profile
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Figure 21: Ideal one day SOC profile of a cell in an on-

road pure electric vehicle application
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Figure 22: SOC estimation comparison between
and simple CC of a cell in a one day on-road
electric vehicle operation
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Figure 24: One week current profile of a cell in an

electric railway vehicle application
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Figure 25: Voltage response of a cell in an electric
railway vehicle application to a one week current
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Figure 27: Voltage response of the cells of a battery-
module during a set of cycles in an electric railway

vehicle operation
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Figure 26: SOC estimation comparison between

ECC

and a simple CC of a cell in a one week electric railway

vehicle operation
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Figure 28: Average SOC estimation comparison
between ECC and simple CC of a battery-module in a

one week electric railway vehicle operation
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4 Conclusions

An Enhanced Coulomb Counting State-of-
Charge estimation technique based on Constant
Voltage Charge Detector and Open Circuit
Voltage model has been presented for the
diagnosis of LiFePO, batteries. Based on the
hybridization of three independent SOC
estimation  methods, its accuracy and
implementability make the algorithm suitable for
BMS application. When applied to cell level, the
algorithm estimates the SOC of the cell under
test. When applied to battery-module level, it
provides the SOC range where it operates:
SOCwmax (relative to the most charged cell),
SOCyn (relative to the least charged cell) and
SOCavg (relative to the average). Thanks to this
information, a balancing strategy can be
performed to correct the SOC dispersion between
the cells and prolong the operation of the battery.
As part of the diagnostic approach, an
OCV(SOC) model has been designed and
developed. It considers the hysteresis effect that
characterizes LiFePO,; cells as well as
temperature and current factors. This ensures the
validity of the model for a wide range of
operating conditions. A CVCD model has also
been developed. The description of both models
has been supported by experimental data of
different LiFePOy, cells.

The full algorithm has been validated at cell and
module level. For this purpose, a real-time
validation platform based on an own developed
MMS and a dSPACE has been used. The target
has been to prove the scope of the algorithm at
final application conditions. For versatility
evaluation three different traction scenarios have
been tested. In the worst case, the algorithm has
kept the SOC estimation stabilized around 5% of
error.
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