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Abstract 

An accurate onboard State-of-Charge (SOC) estimation is one of the key functions a Battery Management 

System (BMS) has to perform in order to provide the optimal performance management of the battery 

system under control. 

In this framework, this paper presents a proposal of an Enhanced Coulomb Counting (CC) State-of-Charge 

estimation algorithm based on Constant Voltage Charge Detection (CVCD) and Open Circuit Voltage 

(OCV) model for LiFePO4 batteries. Designed for onboard BMS implementation, it is characterized by its 

simplicity and operability in wide operating conditions (under diverse load profiles, temperatures, SOC 

ranges, etc.). The description of the algorithm at both, cell and battery-module level is detailed in the paper. 

Furthermore, its on-line experimental validation and scope determination is tested under three different 

traction applications and cell specimens in an own-developed real time validation platform: 2.5 Ah cells 

(Type A) in a residential elevator application, 8 Ah cells (Type B) in a pure electric on-road vehicle 

application and 100 Ah cells (Type C) in an electric railway vehicle application. According to the achieved 

results, the accuracy and versatility of the algorithm for different operating scenarios is certainly proven. In 

the worst case scenario the algorithm is capable of keeping the SOC estimation of the system under test 

stabilized around 5% of error. 
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1 Introduction 
As part of the diagnostic approach, Battery 
Management Systems perform the onboard SOC 
estimation. Coulomb Counting (CC) method, 
based on time integration of the battery current, 
is the simplest technique for it. However, it is 
very sensitive to measurement errors that are 
accumulated over time and lead to drifts between 
estimated and real state of charge of the battery. 
In order to improve them, open-loop 
recalibration algorithms (e.g., OCV  
 

 
 

measurements), closed-loop corrective ones (e.g., 
Kalman Filters [1], etc.) or estimation techniques 
based on artificial intelligence (e.g., Neural 
Networks [2], Fuzzy Logic [3], etc.) are used. 
In general terms, the first ones are characterized by 
their simplicity for BMS implementation. The 
second and third ones are generally more 
sophisticated and complex than the prior ones. 
They provide precision at the expense of higher 
computational cost. 
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In this context, as a trade-off between accuracy 
and BMS implementability, this research work 
presents a proposal and full experimental 
validation of a simple, modular and scalable SOC 
estimation algorithm for LiFePO4 batteries; cell 
technology that according to future outlooks will 
be spread in traction applications in the coming 
years [4]. The algorithm in question consists of 
an Enhanced Coulomb Counting technique based 
on Constant Voltage Charge Detector and 
OCV(SOC) precise model for dynamic 
recalibration. 
Section 2 describes the main essence of the 
algorithm at cell and module level. 
Section 3 demonstrates its scope at both levels 
through a deep experimental validation process 
where Type A, Type B and Type C cells are 
cycled at real operating conditions of different 
traction applications. 

2 SOC estimation based on ECC 
with CVCD and OCV models 

While the SOC estimation error caused by pure 
Coulomb Counting increases in time diverging 
its value from the real one, the hybrid algorithm 
proposed in this paper aims to reduce and 
stabilize it. Besides guaranteeing accuracy 
regardless of the battery cycling time, it is 
characterized by being simple (highly demanded 
for BMS implementation), flexible (scalable and 
modular), versatile (easily adaptable for different 
cells) and reliable. All these features make the 
algorithm suitable for its on-board BMS 
application. 

Figure 1: Proposed cell level SOC estimation 
algorithm based on ECC with CVCD and OCV model 

The algorithm itself is designed for cell level 
diagnostics. Nevertheless, with some slight 
adaptations it is applied for battery-module level 
estimations as well. 

2.1 Cell level SOC estimation 
Cell level SOC diagnostic algorithm is depicted in 
Fig. 1. It is based on a system state detector (State 
Machine) which, depending on the real time 
measurements of the cell (current, voltage and 
temperature samples), detects its current state: if 
the cell is charging or discharging, if it is at rest or 
in equilibrium state. Moreover, during a constant 
current - constant voltage (CC-CV) charge process 
it can also detect if the cell is involved in the CV 
charge step. Depending on the identified state, the 
State Machine activates the appropriate SOC 
estimation approaches. When the system is 
charging or discharging CC technique. In case the 
State Machine identifies a Constant Voltage 
Charge process the CVCD estimation method. 
Finally, OCV(SOC) model in case the cell is at 
equilibrium state.  
Each of the cited techniques is based on a singular 
model that having BMS acquisitions as input 
provide SOC estimation values as output. In this 
hybrid arrangement, all model-outputs (SOCCC, 
SOCCVCD, SOCOCV) participate specifically in the 
overall SOC estimation. 
In addition to performing the SOC estimation, the 
algorithm also considers the maximum errors that 
each estimation technique introduces 
(ΔSOCCC(I,Ts,T),ΔSOCCVCD(V,T),ΔSOCOCV(V,T). 
They are due to modelling errors and current, 
voltage and temperature inaccuracies introduced 
by the deployed measurement hardware. Thus, the 
algorithm defines the instantaneous maximum 
error bands relative to each technique ([SOCCCmin, 
SOCCCmax], [SOCCVCDmin, SOCCVCDmax], 
[SOCOCVmin, SOCOCVmax]). 
Once estimation and error bands are specified, 
with the aim at achieving the most reliable final 
estimation, SOC Weighting module weights the 
contribution of the CC, CVCD and OCV based 
estimation techniques. According to their 
instantaneous error bandwidth it gives higher 
priority to the most precise one at every instant. 
The models of each estimation strategy are roughly 
discussed in the next subsections. 

2.1.1 CC model 

CC model consists of the already introduced Ah 
counting technique. It integrates the 
charge/discharge current of a cell in time and 
makes it relative to its capacity in order to provide 
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the SOC estimation. Regarding this technique, 
the precision of the current measurement system 
and the sample time used for current integration 
are factors that have direct impact on the final 
estimation accuracy. 

2.1.2 CVCD model 

CVCD model relates the CV value of a CC-CV 
charge process of a cell with its final SOC state. 
In order to get this CVCDV(SOC) map, several 
CC-CV charge processes to different CV values 
(e.g., 3.6, 3.55, 3.5, 3.45, etc.) have to be 
performed to a cell at different temperatures. Fig. 
2 and Fig. 3 show some of the results obtained 
from the cell-characterization process carried out 
for the modelling. 
In the particular case of Fig. 2, it is observed that 
at 25 ºC, for example, charge processes with CV 
values superior to 3.4V mean that the final SOC 
of a Type C cell is higher than 98%. Below 3.4V 
in contrast, 50 mV differences turn into big SOC 
differences.  
As it was expected, the SOC of the cell varies 
significantly with temperature. At lower 
temperature, lower the SOC at the same CV 
value. 

 
Furthermore, not all the cells have the same 
CVCDV(SOC) relation. The results illustrated in 
Fig. 3 show that in case of the compared Type A 
and Type C cells, while at high SOCs the relation 
is similar, as CV value decreases, these 
differences diverge notably. 

 

The accuracy of the voltage measurement system 
used for the characterization of the model and for 
the final diagnosis system (BMS hardware) will 
determine the precision of the technique in 
question. 

2.1.3 OCV(SOC) model 

A measurement of voltage in terminals of a cell 
when it is at equilibrium state gives information 
about its SOC state. 
For most Li-Ion chemistries, this relation between 
the SOC and OCV can be considered direct and is 
modelled by a monotonic function. For lithium 
iron phosphate (LiFePO4) batteries nevertheless, it 
becomes a many-to-many mapping family of 
curves, determined by the cycling history of the 
cell. This fact becomes the SOC estimation of such 
batteries challenging. It is necessary, consequently, 
a high precision voltage measurement system and 
an accurate OCV model to consider the flat shape 
and pronounced hysteresis phenomena they 
present [5].  
From the deep OCV sensitivity assessment 
performed with Type A Type B and Type C 
LiFePO4 cells, it is concluded that the factors that 
mainly affect the variability of the OCV of such 
cells and therefore, can lead to estimation errors 
are: the time of the cell under relaxation, the 
hysteresis phenomena (Fig. 4 and Fig. 5) and 
temperature variations (Fig. 6). Current seems not 
to have a direct impact on it (Fig. 7). 
Fig. 4 and Fig. 5 depict OCV major and minor 
loops of Type B and Type C cells. The first loops 
are formed when a fully charged cell is 
subsequently fully discharged, and vice-versa. The 
second ones, when partial consecutive charge 
discharge cycles are applied to a cell. The 
importance of considering the cycling history of a 
cell is patent. Otherwise, a 3.29 V in Fig. 4, for 
example, could represent any value between 30% 
and 70% of SOC. 
Regarding temperature, OCV shows a big 
variability as well (Fig. 6). In this case, the same 
3.29 OCV measurement at different temperatures 
could imply an estimation error of 30% of SOC. 
Between all the different OCV(SOC) models 
identified in literature (e.g. [6]-[10]), the one 
presented in [11] was used as the basis for the 
design of an enhanced OCV model in this research 
work. The developed approach consists of an 
empirical model that improved in terms of 
precision considers all the quoted OCV influential 
factors. It is capable therefore to operate at a wide 
range of operating conditions with high accuracy. 
Appropriately parameterized, it is suitable for 

 

Figure 2: CVCDV(SOC) map of Type A and Type C
cells at 25 ºC 
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Figure 2: CVCDV(SOC) map of a Type C cell at 10 ºC,
25 ºC and 45 ºC 
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LiFePO4 cells from diverse manufacturers and 
formats with different energy and power 
characteristics. 

2.2 Battery-module level SOC 
estimation 

Before the complexity and computational cost 
that the direct cell-by-cell implementation of the 
algorithm introduced in Section 2.1 could imply, 
a more manageable method that keeps the trade-
off between cost and performance is set out 
(Fig. 8). 

Based on the proposed single cell ECC SOC 
estimation method, three SOC estimations are  
performed in parallel to achieve the module level 
one: (i) SOCMIN with the lowest cell voltage, (ii) 
SOCMAX with the highest cell voltage, and (iii) 
SOCAVG with the average voltage of all cells in the 
battery-module. As a result of these three 
estimations, the SOC range where the battery pack 
operates can be calculated. Accordingly, SOCMAX 
and SOCMIN give information about the proximity 
of the system to the end of charge and discharge 
states, while SOCAVG represents the average state 
of the battery-module. 

Figure 8: Proposed battery-module level SOC estimation algorithm 

 

Figure 4: OCV major and minor hysteresis loops of 
Type B cell 

Figure 6: OCV major loops of Type A cell at different 
temperatures [T=5ºC, 10ºC, 15ºC, 25ºC and 45ºC] 

 

Figure 5: OCV major and minor hysteresis loops of 
Type C cell 

Figure 6: OCV major loops of Type A cell at different 
currents [I=1C, 2C and 4C] 
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3 Applied experimental validation 
For the experimental validation and scope 
determination of the proposed SOC estimation 
algorithm at both, cell and battery-module level, 
a set of three different traction scenarios are 
studied: (i) 2.5 Ah cylindrical cells (already 
known as Type A) in a residential elevator 
application, (ii) 8 Ah cylindrical cells (Type B) 
in an electric on-road vehicle application and (iii) 
100 Ah prismatic cells (Type C) in an electric 
railway vehicle application. 
The variety of these selected case studies aims at 
proving the versatility of the algorithm when 
applied to LiFePO4 cells with different design 
features (energy and power characteristics, 
format and manufacturer) intended for working 
under diverse operating conditions (load profile, 
temperature, SOC operating range, etc.). 
The setup of the validation framework as well as 
the estimation results at each validation scenario 
are reported in the next subsections. 

3.1 Validation setup 
The experimental validation platform consists of 
a rapid prototyping approach that enables 
running own developed diagnostic algorithms in 
real time. Its strength relies on the capacity of 
proving them under realistic application 
conditions time and cost-effectively. Therefore, it 
is used as a fast and easy tune-up and reliable 
evaluation tool before the implementation of a 
new developed algorithm in the final BMS 
product. 
The setup comprises a Module Management 
System (MMS) prototype, a virtual prototyping 
system (dSPACE), a link module, a battery 
tester, a climatic test chamber and finally the cell 
or battery-module under test. Fig. 9 depicts the 
overall configuration by a block diagram. 
The MMS (Fig. 10), fully developed by IK4-
Ikerlan, is responsible for the monitoring,  

 

protection and balancing of the battery-module. It 
collects measurements of every cell voltage and 
several temperatures along the system. It then 
processes this data and extracts information for 
battery protection and diagnostic determination. 
In order to provide the greatest validation 
reliability, the MMS is designed to have the 
necessary features the final BMS product approach 
is required. In general terms, it is composed by 3 
monitoring and protection daisy-chained specific 
ICs (bq76PL536 from Texas Instruments) and a 
microcontroller (R5F21236DFP from Renesas 
Technology). Each of the ICs monitors 2 
temperatures and between 3 to 6 cells with a 
±3 mV typical accuracy at once and sends this 
information to the immediately below IC. The 
microcontroller is connected to the bottom IC 
through SPI (Serial Peripheral Interface) and in the 
present arrangement has the role of transmitting all 
the data acquired by the ICs to the dSPACE by a 
CAN (Controller Area Network) bus. 
For the battery-module safety guarantee, the MMS 
provides hardware and software protection with 
programmable thresholds and delay times against 
over- and under-voltages and over-temperatures. In 
case of approaching any hazardous situation 
relative to these factors, it activates a fault alarm 
that opens the main contactors of the power 
circuitry. 
Additionally, the MMS includes a dissipative 
balancing system and low-power sleep mode 
functionalities for the cases the battery-module is 
unbalanced and inoperative.  
In the present framework, the dSPACE becomes 
the calculation core of the platform. It receives the 
battery-module information from the MMS and 
provides the on-line execution and monitoring of 
the proposed SOC estimation algorithm. It also 
performs the cell balancing management and the 
record of historics. 

 

 

 

 

Figure 9: Experimental platform used by IK4-Ikerlan 
for the fast prototyping of diagnostic algorithms 

 Figure 10: Module Management System (MMS) 
prototype fully developed by IK4-Ikerlan 
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The link module, in turn, includes a current 
sensor for diagnostic purposes and all the 
hardware related to the battery-module 
protection. It comprises main contactors and 
fuses to open both poles of the circuit in the 
event of a failure and even a residual current 
device to avoid current leakages though the user, 
in case of insulation absence. 
Finally, the battery-module tester (Digatron BNT 
100-100-2 BDBT) and the climatic test chamber 
(CTS T-40/600/Li) are used to emulate the real 
operating conditions (load profiles and 
temperature variations) of the battery-module 
under certain application tests. 

3.2 Validation scenario 1: 
Residential Elevator application 

The first validation scenario consists of 
reproducing the operation of a LiFePO4 battery 
in a domestic elevator application. 
The integration of batteries in such applications 
pursues mainly three objectives: cost saving by 
reducing the power peaks demanded from the 
electric grid, efficiency increase by saving 
regenerative breaking energy from the traction 
motor and automatic rescue functionality by 
providing stored energy to the system in case of a 
power outage. Fig. 11 block diagram represents a 
three-phase residential elevator with a Li-Ion 
storage system. 

 
The cells selected for the validation of the 
proposed SOC estimation algorithm at this 
operation environment are ANR26650M1-B cells 
from the A123 systems manufacturer (Type A). 
They are characterized by a 2.5 Ah nominal 
capacity, 4C and 28C maximum continuous 
charge and discharge current rates and operating 
temperatures between -30 ºC and 50 ºC. 
The validation test profile, in turn, consists of an 
elevator operating profile that simulates 30 days 
of use. In order to accelerate the time under test 
nevertheless, all trips that an elevator performs in 
a day are linked together without any pause in 

between. Only a pause of 2h is introduced at the 
end of each simulated day to simulate night 
periods. 
Fig. 12 depicts a fraction of the quoted load profile 
and Fig. 13 and Fig. 14 show some of the acquired 
results of the algorithm once characterized for the 
cells and application under study. 
The scope of the introduced ECC algorithm is 
calculated taking as a reference SOC estimations 
carried out by a high precision current 
measurement system (HPM) that the battery-
module tester incorporates. 
As Fig. 14 depicts, the irregular shape that 
|SOCECC-SOCHPM| term draws is due to the 
variable participation of CC, CVCD and OCV 
model in SOC estimation. After 30 days of use, the 
algorithm is capable of keeping the estimation 
error stable around a 5% of SOC. 
For the validation of the algorithm at 
battery-module level, 12 of such cells are 
assembled to build up a 92 Wh module prototype. 
Table 1 gathers its main characteristics. 

 
Just as the procedure followed at cell level, the 
overall battery-module system is excited with a 
load profile relative to 30 days of operation of an 
elevator (Fig. 12). Fig. 15, Fig. 16 and Fig. 17 
show the experimental results for this case. 
Fig. 15 comprises the voltage in terminals of every 
cell in the battery-module. It can be distinguished 
that all of them follow a singular path in time. 
These results reflect the actual SOC dispersion that 
exists between them. Nevertheless, thanks to the 
proposed SOC estimation algorithm this dispersion 
can be quantified and the cells that are limiting the 
operation of the battery when reaching a full 
(dis)charge state can be identified. In case of 
having a balancing system [12], it will be possible 
to correct the dispersion. In opposite case, it will 
tend to increase. In the present capture (Fig. 16), 
the difference between the most and least charged 
cells is around 6% of SOC. 
Regarding average SOCAVG estimation, ECC 
diverges maximally 6% from the real SOC and 
keeps the error stable around 4% in an accelerated  
test that simulates 20 days of continuous operation. 

Table 1: Battery-module characteristics for a 
Residential Elevator application 

Battery-module 
Nº cells 12s 
Nominal Voltage (V) 38.4 
Capacity (Ah) 2.4 
Energy (Wh) 92.16 
Max. Dch. Power (W) 675.84 
Weight (kg) 1.2 

 
 

 

Figure 11: Block diagram of a three-phase residential
elevator with a Li-Ion storage system 
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3.3 Validation scenario 2: 
Electric On-Road Vehicle application 

The second validation scenario consists of 
reproducing the operation of a LiFePO4 battery 
in an electric road vehicle application. In this 
case, the replacement of the internal combustion 
engine of a traditional road vehicle by an electric 
motor (in combination to a storage system) aims 
at increasing the efficiency of the overall traction 
system and reducing CO2 emissions to 
atmosphere. Fig. 18 describes the simplified 
integration of a Li-Ion battery in an on-road pure 
electric vehicle application. 

 
For the validation of the ECC algorithm in this 
environment, FTP-75 test procedure defined by 
the US Environmental Protection Agency (EPA) 
[13] is used in combination with constant 5 W 
charging processes to simulate a one-day cell 
level city driving profile of an electric road 
vehicle (Fig. 19). On this occasion, the cells 
selected for testing are several LiFePO4 cells of 
type OMLIFE-8AH-HP manufactured by OMT 
(Type B). They are characterized by a 8 Ah 
nominal capacity, 10C and 25C maximum 
continuous charge and discharge current rates 
and operating temperatures of 0…45 ºC for 
charging and -20…60 ºC for discharging. 
In this second validation framework, apart from 
the evaluation of the algorithm at 25 ºC, the 
target is to check its suitability for a wide range 
of operating temperatures. For this purpose, 
individual cells are excited with the cited 
validation profile pattern at different 
temperatures. Fig. 20 presents the voltage 
response of one of them together with the OCV 
estimation that the algorithm calculates. The 
voltage in terminals of the cell varies as much as 
around 400 mV depending on the temperature at 
it is excited. However, as the ECC algorithm 
considers the impact of this factor, the difference 
between estimation and measurements (in 
circles) does not exceed an average value of 

3 mV in any of the three cases. The potential of the 
algorithm for carrying out a proper SOC 
estimation at different operating temperatures is 
demonstrated therefore, as Fig. 22 results illustrate. 
During a one day execution, the algorithm registers 
a maximum error of 2% and is capable of keeping 
the estimation error stable around this value at the 
end of the day. It provides a 48% less error than 
the simple Coulomb Counting technique. 

3.4 Validation scenario 3: 
Electric Railway Vehicle application 

The third and last validation scenario involves an 
energy storage system in an electric railway 
vehicle application. Alone or in combination with 
electric double layer capacitors it helps increasing 
the efficiency of the system by recovering the 
braking energy from the traction motor and 
reducing the power peaks consumed from the 
catenary. Moreover, its integration can provide an 
electric railway vehicle with the possibility of 
driving a certain distance without overhead power 
cable. Fig. 23 represents the integration of a Li-Ion 
battery pack in a railway vehicle application. 

 
For the performance assessment of the algorithm at 
cell level, 100 Ah cells from the CALB 
manufacturer (SE100AHA) are used (Type C). 
They can operate up to 0.3C between 0…45 ºC in 
charge and up to 3C between -20…55 ºC in 
discharge. 
In this case, the current profile used for validation 
(Fig. 24) is composed by six different railway 
vehicle day patterns (nights have been reduced to 
3h in order to reduce test duration). Fig. 25 shows 
the voltage response of the cell during the tested 
week and Fig. 26 reflects the scope of the 
algorithm, which results in a less than 2% of SOC 
estimation error. 
Shifting from cell to battery-module level, a 5kWh 
battery prototype based on the described cells 
(Table 2) is built up for the algorithm validation. 

 

Figure 23: Block diagram of an electric railway vehicle
with a Li-Ion storage system 
 

 

Figure 18: Block diagram of an on-road pure electric
vehicle with a Li-Ion storage system 
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As in the previous case, the battery-module is 
tested under the current profile introduced in 
Fig. 24. 

 

Fig. 27 illustrates the voltage response of every 
cell to the excitation current in question. Little 
voltage divergences reflect the SOC differences 
among the cells. According to Fig. 28, the 
estimation error caused by the algorithm when 
calculating the average SOC of the system is 5%. 
Therefore, in this application passing from cell to 
module level estimation means incrementing the 
estimation error in 3%. 
 
 

Table 2: Battery-module characteristics for an Electric 
Railway Vehicle application 

Battery-module 
Nº cells 16s 
Nominal Voltage (V) 51.2 
Capacity (Ah) 100 
Energy (kWh) 5.12 
Max. Dch. Power (kW) 15.36 
Weight (kg) 59.6 

 

Figure 12: Accelerated one day current profile of a 
cell in a residential elevator application 

 

Figure 13: Voltage response of a cell in a residential 
elevator application to an accelerated one day current 
profile 

Figure 14: SOC estimation comparison between ECC 
and simple CC of a cell along 30 days in a residential 
elevator operation 

 

 

 

Figure 16: SOCMAX, SOCMIN and SOCAVG of a battery-
module during a one-day cycling in a residential 
elevator operation 

Figure 15: Voltage response of the cells of a battery-
module during a one-day cycling in a residential 
elevator operation 

Figure 17: Average SOC estimation comparison 
between ECC and simple CC of a battery-module in a 
residential elevator operation 

Experimental results of validation scenario 1 
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Figure 24: One week current profile of a cell in an 
electric railway vehicle application 

 

Figure 25: Voltage response of a cell in an electric 
railway vehicle application to a one week current 
profile 

Figure 26: SOC estimation comparison between ECC 
and a simple CC of a cell in a one week electric railway 
vehicle operation 

Figure 27: Voltage response of the cells of a battery-
module during a set of cycles in an electric railway 
vehicle operation 

Figure 28: Average SOC estimation comparison 
between ECC and simple CC of a battery-module in a 
one week electric railway vehicle operation 

Experimental results of validation scenario 3 
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Figure 19: One day current profile of a cell in an on-
road pure electric vehicle application 

Figure 21: Ideal one day SOC profile of a cell in an on-
road pure electric vehicle application 

Figure 20: Voltage response of a cell in an on-road pure 
electric vehicle application to a one day current profile 

Figure 22: SOC estimation comparison between ECC 
and simple CC of a cell in a one day on-road pure 
electric vehicle operation 

Experimental results of validation scenario 2 
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4 Conclusions 
An Enhanced Coulomb Counting State-of-
Charge estimation technique based on Constant 
Voltage Charge Detector and Open Circuit 
Voltage model has been presented for the 
diagnosis of LiFePO4 batteries. Based on the 
hybridization of three independent SOC 
estimation methods, its accuracy and 
implementability make the algorithm suitable for 
BMS application. When applied to cell level, the 
algorithm estimates the SOC of the cell under 
test. When applied to battery-module level, it 
provides the SOC range where it operates: 
SOCMAX (relative to the most charged cell), 
SOCMIN (relative to the least charged cell) and 
SOCAVG (relative to the average). Thanks to this 
information, a balancing strategy can be 
performed to correct the SOC dispersion between 
the cells and prolong the operation of the battery. 
As part of the diagnostic approach, an 
OCV(SOC) model has been designed and 
developed. It considers the hysteresis effect that 
characterizes LiFePO4 cells as well as 
temperature and current factors. This ensures the 
validity of the model for a wide range of 
operating conditions. A CVCD model has also 
been developed. The description of both models 
has been supported by experimental data of 
different LiFePO4 cells. 
The full algorithm has been validated at cell and 
module level. For this purpose, a real-time 
validation platform based on an own developed 
MMS and a dSPACE has been used. The target 
has been to prove the scope of the algorithm at 
final application conditions. For versatility 
evaluation three different traction scenarios have 
been tested. In the worst case, the algorithm has 
kept the SOC estimation stabilized around 5% of 
error. 
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