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Abstract

The Netherlands Organisation for Applied Scientific Research (TNO) is engaged in research, development

and testing of a range of technologies relating to hybrid and electric vehicle energy management and

performance. The impact of driver behaviour on vehicle energy consumption is a significant factor, and one

which can often be reduced with eco-driving, typically 5-10% or higher in some cases. Eco-driving can be

extended not only to take into account information sources, improved user acceptance, and integration with

powertrain control. In this paper, TNO illustrates the possible applications of model-based control for

(hybrid) electric vehicles and shows preliminary results of the developed system.
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1 Introduction

Over the past decades, there has been an
increased rise on the number of hybrid and
electric vehicles, which is a trend expected to
continue in order to meet the European
greenhouse gas emission levels. One of the main
market points of HEVs and EVs is their
improved fuel economy and effective range
respectively. It is therefore unsurprising that
many of the vehicles on the market are closely
linked with driver feedback systems, wherein the
successful operation of the wvehicle is centred
around a strong driver-vehicle combination. As
increasing degrees of integration of ICT services
and coupling of PHEV and EVs with the grid
become more prevalent in future, the
comprehensive management of energy becomes
a key topic.

Besides energy efficiency, energy storage is
important for electric vehicles specifically.
Lithium-ion batteries have emerged as a
preferred means of energy storage, partly owing
to their high energy density.
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Figure 1: Trends and predicted focus in powertrain
development [8]

However, it is recognised that the current cost and
energy density (both mass and volume) for battery
systems are major limiting factors in the mass
take-up of EVs, particularly with public concern
over widespread anxiety that limited driving range
is predominant over conventionally fuelled
alternatives.

Furthermore limitations of existing battery energy
storage (and the requirement to keep battery pack
size to a minimum) prompts more efficient and
effective use of the available energy. The
combination of measures to ensure better energy
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efficiency is a significant topic, and comprises
many contributing factors.

To mitigate range anxiety, it is important to both
offer an accurate range prediction to the driver,
as well as a comprehensive means to manage the
energy efficiency within the vehicle and improve
wherever possible.

2 Eco-Driving

The area of eco-driving, particularly that
supported by human-machine interfaces (HMI)
has received increased interest over recent years,
for both conventional and advanced powertrains.
The features of eco-driving typically include, but
at not limited, to the following [1]:

e Moderation of acceleration

e Keeping the engine at low RPM:
moderation of gear shifts

e Anticipating traffic signals avoiding
sudden start-stops

e Maintaining an even driving pace
(including use of cruise control and
coasting)

e Driving at or below the speed limit

e Eliminating excessive idling

e Minimising use of auxiliary systems

Eco-driving for both conventional light duty and
heavy duty range from 5-10% in fuel
consumption reduction dependent partially on
whether an HMI is provided, as well as the time
and mode of vehicle operation [1]:
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Figure 2: Schematic of Eco-Driver Architecture [6]

For the purposes of this paper, we categorise eco-
driving support into five levels:

o Level 1: General eco-driving training and
the offline provision of advice

e Level 2: Data collection from OBD or
CAN to provide driver advice offline

e Level 3: Integrated (in-vehicle) coaching
system making use of a predictive model

o Level 4: Integrated advice system taking
input from external information sources

e Level 5: Fully integrated system:
including external sources and interaction
with powertrain control

Level 1 does have an immediate effect on energy
consumption, but the effect of a training is
gradually lost over time [2][17].

The next generation of systems under development
(Levels 4-5) take additional information sources
relating to traffic light state, and other vehicle and
external information to present a more
comprehensive view. This is further described in
Section 3. Because of this effect, driver support
systems are a logical next step. The system
complexity increases with the eco-driving support
level. Because of driver acceptance, it is important
to provide accurate advice to the driver. A model-
based approach therefore is very useful [7].

Within the market for hybrid and electric vehicles,
many of the existing commercially used vehicles
have some form of driver fuel-efficiency feedback
(typically Level 1-3). Some of these approaches
extend to mode switching (e.g. the Honda Eco
Assist and ECON mode, NISSAN CARWINGS
and Toyota Prius Eco Mode). More advanced
systems of level 3 and higher typically have an
architecture that is similar to the one shown in
Figure 2: information is gathered from the vehicle
and its environment. Predictions make use of a
vehicle model and are used for generating advice.
Advice  (consisting of  feedback  and/or
feedforward) is presented to the driver in an HMI
and can be altered based on the driver’s
performance.

One important trade-off one encounters when it
comes to eco-driving is between energy
consumption and time. Lower vehicle speeds
(usually) lead to lower energy consumption.
However, a driver’s decisions are based on time .
For (plug-in H)EV’s, the charging time has to be
taken into account as well. Model-based routing
advice can also take into account charging times
and charge station availability[12].
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Figure 3: Energy Consumption as a Function of Driver-Cycle Grade [15]

3 Integrated Eco-Driving

Eco-driving is achieved if the vehicle speed is
such that the energy efficiency for travelling a
specific distance is improved. Advising the
driver to control the vehicle speed to the desired
speed can be achieved in various ways. Potential
savings increase from Levels 1 to 4 simply
because the driver behaviour can be advised
better if more data on the actual situation are
available. The Sentience programme
demonstrated an integrated EMS (Energy
Management System), saving through simulation
of 6-16% with track demonstration at 5-24%
using a hybrid [18]. Zhang showed in simulation
a saving of 13% for a PHEV [20] although it is
most likely to be this effective in hilly
environments [9].

External information can be used to identify
future constraints on the vehicle’s path. Then,
using a vehicle model, a vehicle-specific advice
can be generated to guide the driver through
constraints set by his environment. An
illustrative example is provided in Figure 4,
which origins from a previous project [10] on
using an electronic horizon (eHorizon). A real-
world scenario was recorded and used as a
baseline. The hybrid truck (orange, at bottom of
figure) receives information on the (future)
traffic light states: distance to the intersection,
time-to-red, time-to-green and length of the
gueue. Subsequently, the driver is advised to
adapt the vehicle speed to that. The green dashed
area indicates a queue at the intersection, where
it is assumed that the queue dissolves linearly.

The eco-friendly alternative speed profile is driven
on a closed test track as it would not be possible to
encounter the exact same situation again on the
public road. Driver compliance was perfect, as he
was accurately instructed by the passenger. The
fuel savings resulting from this traffic light
preview information is significant: 14 per cent,
which corresponded to simulation results.

Although traffic light preview is not common yet,
more and more test sites across Europe show that
this is a trend for the future. However, integrated
eco-driving in general has found its way to the
market already. Most examples can be found in the
heavy-duty and luxury segment [3].

Amongst others, Scania and Freightliner both have
“predictive cruise controls”, which take into
account hill preview information and automatically
adapt the cruise control set point in order to reduce
the amount of braking whilst going downhill. To
compensate for time loss at these slower sections,
the cruise control speeds up before going uphill.

Amongst others, Porsche and BMW show “active
cruise controls”, which are able to adapt the
vehicle speed based on radar information, but also
on curve radius preview. With systems like these,
both safety and energy efficiency is increased [13].

Aforementioned examples indicate that integrated
eco-driving is increasingly applied. Future
developments will show more automated
interventions in the wvehicle behavior, going
towards autonomous driving.
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Figure 4: Illustration of eHorizon concepts for vehicle control and driver advice [10]

Advanced traffic management and a growing
market share for smartphones both contribute to
the availability of information for integrated
systems. Together with the availability of safety
systems on newer vehicles (e.g. radar and/or
camera, rain sensors, etc.) the automotive world
seems to be ready for advanced eco-driving.

4 Integrated Powertrain Control

Overall, Integrated Powertrain Control (IPC)
represents a trade-off between fuel consumption,
emissions, as well as maintaining driveability of
the vehicle within operational cases.

Energy
efficienc

Driveability

Figure 5: Integrated factors, adapted from [5]

The term ‘driveability’ is often subjective and
requires clarification based on the context. For the
purposes of this paper, the term is used to define
the acceptance range for influencing the driver
behaviour, without a compromise on the vehicle
operation.

Control of advanced powertrains to achieve
maximum energy efficiency within the applicable
emission constraints has become a great challenge
for the automotive industry. For maximum
performance all components in the powertrain
should cooperate seamlessly. IPC is a supervisory
control system for powertrains of conventional,
hybrid and electric vehicles that exploits system
interactions in a systematic and modular way. IPC
uses a cost-based optimisation strategy (typically
based around ECMS) that explicitly deals with
requirements on pollutant emissions and
driveability [11][19].

For a number of years TNO has been developing
IPC, focused on an integral approach to fuel
economy, emissions and other factors/constraints.
Even for long-haul applications, results have
shown potential savings on running costs up to
3.5% above existing hybrid control strategies, or
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savings on pollutant emissions up to 24.9%
depending on the calibration of IPC [11]. The
IPC approach is extended further by
accommodating external factors and monitoring
of the driver behaviour, such that in the case that
the driver cannot be influenced by driver
coaching systems, the supervisory control system
is adapted around the particular driver behaviour.
Typically, a hybrid vehicle has more powertrain-
based control parameters than conventional and
electric vehicles, which can offer a larger degree
of freedom to influences on energy efficiency for
hybrid vehicles. It is therefore expected that for
hybrid vehicles the potential for cost reduction
via powertrain control is highest. For
conventional and electric vehicles, the number of
parameters to control is often less than that of a
hybrid vehicle, particularly in regard to
propulsion management, and therefore the impact
of the driver is more significant. However, in all
cases, it is recognised that the behaviour of the
driver is an integral consideration for all vehicle

types.

5 Driver Classification and

Impact

It is recognised that driver behaviour plays a
significant factor in the energy efficiency of
vehicle [14][17]. In the case of plug-in hybrids
and electric vehicles, this behaviour can extend
to the charging strategies as well, recognizing the
higher energy efficiency of slow charging
compared to fast charging.

Rosca and Wilkins [15] present a sensitivity
analysis to assess at the impact of driver
behaviour on the energy consumption of a
current commercial electric vehicle (Nissan
Leaf). An algorithm has been developed to assign
a driver-cycle grade based on a reduced-order
vehicle model and driven speed profiles. In
parallel, the energy consumption of the vehicle
was measured at the battery.

Figure 3 shows the correlation found between the
driver grade obtained by a drive cycle and the
energy consumption per kilometre measured at
the battery terminals of the Nissan Leaf. It can be
seen that the driver-cycle grade, and as such the
driver behaviour, has a significant influence on
the energy consumption of the vehicle, variations
of up to 50% being visible in the results. The
maximum range also proves to be highly

sensitive to the level of aggressiveness on the drive
cycle.

The method applied to describe this effect uses two
drive cycle parameters. The first is the Relative
Positive Acceleration (RPA), which relates to the
inertial forces that have to be overcome. The
second is the Relative Cubic Speed (RCS), which
is related to the drag force.

In addition to the convenience of a longer range
through eco-driving, it is likely that the vehicle’s
battery pack will suffer from less wear. As eco-
driving decreases the energy use, the depth-of-
discharge (DoD) is lower. Repeated high DoD’s
cause damage to the battery pack.

6 Test Results from Driver HMI
and Acceptance

The hybrid truck example from section 3 had a
“perfect driver”, which followed the advice
closely. However, real-world applications will
require an HMI that is intuitive and therefore has a
low workload. Furthermore, it is important to
guide a driver within his own limits of comfort: a
driver should still feel safe and in control of
pursuing his own goals [16].

Work on testing realistic HMI’s has been
developed over several projects, and most recently
in EcoDriver [3] which runs from October 2011 —
September 2015. This section illustrates both
simulation and real world tests of the integrated
eco-driver system.

As shown in section 3, driver behaviour plays a
significant role in the energy efficiency of the
vehicle. Convincing the driver to adapt his
behaviour to the advice is necessary for the advice
to have impact. By giving the correct advice the
difference between actual driving behaviour and
optimal behaviour can be reduced. Higher
compliance, i.e. how much the driver follows the
advice, means more impact. High compliance
means that the driver is willing to follow the
advice. Whether or not the driver accepts the
advice depends on several factors, such as
credibility of the advice, possibility to actually
follow the advice and the manner in which the
advice is presented to the driver. This last part, the
human machine interface (HMI) has been tested
and developed in several projects, most recently in
EcoDriver [4]. This section illustrates both
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simulation and real world tests of the integration
of an eco-driver system.

In the ecoDriver project, besides the practical
implementation of a an ecodriving HMI, several
fundamental principles of ecodriving HMI’s have
been tested. A selection of the most interesting
principles and results found will be described in
this section.

Personalization

One of the findings of social psychology that are
relevant for increasing acceptance of HMI’s is
related to personalization. The idea behind this
concept is that different people respond
differently to different advice or feedback. In
other words, choosing the appropriate form of the
advice or feedback increases acceptance. In a
series of tests, different groups of drivers that
were identified to be sensitive to different kinds
of feedback were exposed to HMI’s tailored to
those different group. The effects of
personalization were studied and two dimensions
were identified. Their value orientation was
plotted on one dimension. This indicated whether
the driver belonged to a group sensitive to
increase their eco-driving performance for their
own personal gains and or for the better of all.

Another dimension to split types of advice or
feedback on is the goal orientation of drivers, i.e.
whether drivers are more interested in developing
their own skills or in comparing their current
performance with other people. An experiment
comparing the effects of personalization on this
goal orientation dimension, performed in the
ecoDriver project, showed the effects of tailoring
the HMI to the type. In the experiment the
behavior of drivers with a performance goal
orientation was compared with the behavior of
drivers with a learning goal orientation. Both
groups drove with a basic advice HMI, indicating
solely the most energy efficient speed to drive at
and two HMI’s that were tailored to the groups.
One was tailored to the learning orientation
group, the other to the learning orientation group.

First results show that the performance group
gave the (mismatched) learning oriented HMI a
lower rating on acceptance, ease of use,
favoritism and a lower general rating. The
learning oriented group rated both adapted
systems higher than performance group and rated
the systems also higher than the basic HMI on

acceptation, general rating and favored both
adapted systems over the basic version.

Overall compliance was better with the adapted
HMTI’s; here no clear difference between groups
was found. Compliance with advised speed around
traffic lights, showed a group difference, where
both the learning and performance oriented
complied best when using their matched HMI.

Both subjective and objective data suggest that
personalizing the HMI increased the impact of the
given advice by increasing acceptance or
compliance.

Driver type detection

From the previous subsection one can draw the
conclusion that it is important to know what kind
of driver is behind the wheel. This may help in
personalizing the advice and increasing the impact
of the advice because of better compliance. As
described in section 3, there are also different
driver behavior aspects that have a direct impact
on energy efficiency. Taking these characteristics
into account, i.e. giving the correct advise for this
particular driver, may increase the impact of the
advice too. For the latter, we also need to know
what kind of driver is in the vehicle. The preferred
method for this would be that a system within the
vehicle can establish the type of driver from
driving behavior recorded and analyzed while
driving. An automatic system would mean low
intrusiveness which is necessary for such a system
to be acceptable for drivers. Driver type detection
would preferably be based on driving behavior
measured via OBD or CAN and include driving
speed, acceleration, rpm and other measures that
may be associated with a particular driver type.

Within the ecoDriver project a prototype has been
developed for on-trip driver type detection. The
prototype makes use of a two-stage approach
adopting Neural-Symbolic Cognitive Agents to
model the performance and driver type indicators.
It also enables the extraction of learned knowledge
in human readable form for offline validation of
the models. To develop a method for on-trip
automated driver type detection we need to model
the correlations between the collected vehicle data
and driver type indicators. Driver types, such as
described in  the previous section on
personalisation, need to be correlated to
performance indicators that describe low level
driving behaviour. These performance indicators
are based on temporal relations in the collected
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vehicle data (e.g. “RPM > 4000 for a large
amount of time”).

Evaluation results on the training data and data
left out of the training set are very good (average
F1-score (test accuracy between 0 and 1) and
average MCC (Matthews Correlation Coefficient
between -1 and +1) were determined to be 0.528
and 0.727 respectively, with the exception of a
few participants for which the prediction on the
social and sportive were incorrect. Reasons for
these exceptions can be that the used models
need further optimization and/or that the driver
type indications from the questionnaire
contradicted with the actual driving behaviour.
To deal with the latter the system could take into
account future pre-trip questionnaires with
regular interval (e.g. every month or half a year)
to update the models with new information on
driver type indications and related driving
behaviour.

The overall conclusion is that the driver type
detection module works fine, perhaps even better
than may be expected from results reported in
literature.

7 Discussion and Conclusion

It is possible to collect data from a vehicle and
provide eco-driving advice, making use of OBD,
CAN or a nomadic device. The advice is then
based on this data and checks the conformity
with the advice methodology described in Level
1. When an eco-coaching system can make use
of a vehicle model, advice can really be
generated for a specific vehicle. This way
efficient operating points and many vehicle-
specific control strategies (e.g. the gear-shifting
algorithm in an automatic transmission) can be
taken into account.

When data is collected from the vehicle, the
driver behaviour can be compared with
alternative behaviour and using the wvehicle
model, the driver can receive quantitative
feedback. If the driver type is known, the
feedback can also be personalized. Some drivers
might be triggered if they beat their own personal
record, whereas others are more competitive and
can better be motivated through a comparison
with others. This way of personalization is likely
to increase the acceptance level even more.

When an eco-coaching system can make use of
external data, an advice for the future becomes
possible. Often, this is called eHorizon-based
advice. One can use data from the infrastructure,
but also from a radar/LIDAR system to monitor
other road users.

The combination of an advanced powertrain and a
well-performing driver seems to be a good one.
Because of the complexity, integrated systems
guide the driver in performing eco-friendly and are
more and more intervening in addition to that. It
can be expected that future ecodriving systems
have higher intervention levels and therefore the
vehicles will become more autonomous as well.
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