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Abstract 

One of the most relevant tasks that must be carried out by a Battery Management System (BMS) is the 

diagnosis of the battery state. An important part of the algorithms used for determining the State of Charge 

(SOC) or the State of Health (SOH) requires a cell model to run. The most precise is the model used, the 

best is the estimation achieved by the algorithm. In this paper, two techniques for obtaining a model of the 

cell dynamics and calculating its parameters are analyzed: the time domain characterization and the 

frequency domain or impedance-based characterization. Their principal characteristics and some relevant 

considerations to take into account are explained, as well as the obtained results. The performance of both 

models is compared in terms of the voltage error and the requirements to use them. Finally, a combined 

methodology is proposed to overcome the problems which can appear when each technique is employed. 

The resultant model is validated at 25 ºC in all SOC range using real measurements of a 40 Ah Li-ion cell 

with different current profiles, including pulses of diverse lengths and FUDS driving cycles. The tests show 

small error between the real response of the cell and the output of the model. 

Keywords: battery model, BMS, diagnosis, EV, impedance spectroscopy  

1 Introduction 
An accurate SOC determination is critical in 
Electric Vehicles (EVs) as an indicator of the 
vehicle autonomy [1]. In general, the Li-ion cell 
or full battery pack diagnosis is performed by the 
BMS as one of the main duties in conjunction 
with the accomplishment of protection functions.  
 
There are many different techniques that can be 
used to perform an estimation of the state of a 
battery [2]. The adaptive or closed loop 
algorithms like Kalman Filtering produce a 
highly reliable estimation as they can mitigate 
the inaccuracies caused by measurement errors 
[3] or changing work conditions. However, this 

kind of algorithms requires a precise model of the 
cell or the battery pack to achieve an accurate 
estimation. In the case of EVs, the model must 
work with a wide variety of dynamics, depending 
on accelerations and decelerations. 
 
A cell model is often composed of two main parts: 
a static model which relates the Open Circuit 
Voltage (OCV) to the SOC, and a model of the cell 
dynamics which describes the reactions to changes 
in the system inputs. In this paper, the part 
corresponding to the cell dynamics will be 
analysed. Some different cell models can be found 
in the literature [4-10]. Electrochemical models are 
based in the representation of chemical effects 
which occur inside the cell using equations with 
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certain complexity [5, 6]. On the other hand, 
mathematical or electrical equivalent models 
represent the relationship between the inputs and 
outputs of a system constituted by the cell or the 
pack, while they do not model directly the 
processes that actually happen inside the cell [7-
10]. This work is focused on electrical equivalent 
circuit models, because although they are simpler 
to compute and therefore suitable for being 
implemented in a BMS, their parameters can be 
associated with measurable effects of the cell 
dynamics.  
 
Two main techniques can be used to calculate the 
model parameters. The first is explained in 
section 2 and uses time domain measurements, 
while the second one, detailed in section 3, is 
based on frequency domain. Both techniques will 
be analysed and the response of the obtained 
models to different current profiles with a 40 Ah 
NMC Li-ion cell will be shown. In section 4 a 
combined methodology which solves some of the 
problems found with the two methods explained 
is proposed, and in section 5 the obtained model 
is validated with several tests, including driving 
cycles. Finally, the conclusions of this work are 
presented in section 6. 

2 Time domain identification 
Employing time domain measurements, the 
parameters of the model can be extracted 
applying current pulses and using the least square 
technique to match the response of the model 
with the real measurement of the cell voltage. A 
model based on second order Randles has been 
selected like in [11] and it is represented in 
Figure 1.  

 
 

Figure 1: Second order Randles model adjusted to the 
temporal measurements 

The voltage source represents the OCV of the 
cell and it is non-linearly dependent on the 
current SOC. This relationship is implemented 
by means of a look-up table. 
 

The profile used in the adjustment of the 
considered model consists of five pulses of 20 A 
and 10 s, with a 15 s pause between each pulse and 
a final relaxing period.  
  
As the Figure 2 shows, one RC circuit is not 
enough to represent the response to several pulses, 
because it would be difficult to model properly the 
dynamics which appear within the pulses and the 
progressive decrease of voltage between each 
pulse. In this figure, the reduction in the OCV 
caused by the discharge has been compensated to 
appreciate the effect clearly.  
 

 

Figure 2: Cell response to 20 A, 10 s current discharge 
pulses at 25 ºC, 80% SOC and compensation of the 

OCV decrease 

As it has been shown, the small changes in the 
SOC during the tests cause an OCV variation. 
Therefore, it is crucial to take into account the 
OCV compensation to adjust properly each 
parameter. For example, with the used cell, at 80% 
SOC, a variation of 0.8% SOC produces a voltage 
reduction of 4.7 mV, enough difference to 
invalidate the adjustment. If this OCV change is 
not corrected, the fitting of the parameters will be 
done as if there were too slow dynamics (which in 
fact do not exist) that produce a drop in the voltage 
which is not recovered in a long time. The OCV 
compensation can be computed with each new 
sample using the coulomb counting method to 
determine the SOC and the known relationship 
between itself and the OCV. 
 
Equation (1) describes the expression of the 
modelled cell voltage,	�����, discretized with 
sample time �� and the current �, considered 
positive in discharge. As the parameters of the 
model change with the SOC, it is necessary to 
repeat the fitting procedure at various SOC.  
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The response of the model fitted and the test used 
in the adjustment at 80% SOC are represented in 
Figure 3. 
 

 
Figure 3: Measured response of the cell and output of 

the model 

The use of the least square method presents some 
drawbacks. As this algorithm tries to minimize 
the mean least square error, this method becomes 
very sensitive to changes in the length of the set 
of samples. When slow and fast dynamics are 
included in the studied set, the adjustment of 
slow dynamics is prioritized. This is because the 
slow dynamics are composed by more samples, 
and therefore, they are more significant to reduce 
the Mean Square Error (MSE), according to 
equation (2). If the length of the set is reduced, 
maintaining the section where the fast dynamics 
are represented, and removing samples in the 
section of slow dynamics, they will lose 
importance in the final model. This effect can be 
appreciated when a set consisting in several 
pulses and a later relax period is adjusted. 
 

	
� = 1
�� 	(������(�) − �����(�))���

�

�
			 (2) 

 
Another drawback is the dependence on the 
width of the used pulses. The model obtained 
using this method represents with very low error 

pulses with durations similar to the pulses used in 
the adjustment, but it has more problems when the 
length of the pulses changes. The results of Figure 
3 show that the adjusted model can represent 
precisely the time constants similar to those used 
in the adjustment, but the error increases 
significantly representing slower dynamics. In 
addition, the values used in the initialization of the 
fitting algorithm have considerable influence on 
the obtained results. 
 
All this factors can produce quite variable 
parameters between different characterizations, 
making difficult the result comparison and the data 
interpolation to obtain a model valid in all SOC 
range. One possible solution requires the use of 
pulses of different lengths for the adjustment, to 
achieve modelling different dynamics accurately. 
Nevertheless, this option will increase the time of 
the process as it requires more RCs (a higher order 
model) to model more time constants, and it will 
prioritize the modelling of the slow dynamics 
because of the effect above explained.  
 
The parameters of the model change with the SOC 
and the temperature, so it is necessary to repeat all 
this process several times to characterize a model 
in the whole range of work. Moreover, it is 
necessary to use a correct initialization to model all 
the dynamics required. Additionally, when long 
pulses are used, an appreciable variation in the 
SOC can be produced, so it is not possible to 
characterize the model at a fixed SOC. Another 
problem found is related to the measurement 
equipment. Some peaks can be observed in the 
error at the fast transitions, which occurs because 
the filter included in the measurement equipment 
smooths the real response of the cell, causing an 
increment in the error. Consequently, this error is 
neglected when comparing the performance of the 
model. 

3 Impedance-based model 
The impedance-based model requires performing a 
characterization of the frequency response of the 
cell. The Electrochemical Impedance Spectroscopy 
(EIS) permits to obtain a measurement of the cell 
impedance which is used to develop the cell 
model. At each SOC, a new EIS is carried out. The 
measured impedance can be modelled with 
equivalent electrical components [12, 13]. In the 
Figure 4 the result of the EIS measurements in all 
SOC range and the equivalent electric components 
which can model the different parts of the 
impedance are shown. 
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Figure 4: EIS measurements at full range of SOC at  
25 ºC and representation of equivalent impedances 

 
At high frequencies the behaviour of the 
impedance is mainly inductive, but this 
parameter is commonly neglected because it 
represents very fast dynamics, so the employed 
model is composed of resistors and Constant 
Phase Elements (CPEs), whose impedance is 
expressed in equation (3). The model described 
above is represented in Figure 5. 
 

-%./ = 0
(12)3 	 , 0 < 7 < 1 (3) 

 
Figure 5: Impedance-based model for the EIS 

measurements 

 
With the studied cell, the sub-circuit composed 
by one resistor (R&) and one CPE (CPE&) in 
parallel represents fast dynamics which can be 
also neglected. It is possible to check that the 
time constant of an RC adjusted to these 
frequencies has the same magnitude than the 
sample time used to register the measurements. 
Therefore, its effect is hardly appreciated and the 
voltage error caused for this approximation is 
very low. Hence, the final model employed 
consists of one CPE and one resistor, which 
includes the resistive part of the impedance R� 
and the resistor R& of the parallel sub-circuit that 
has been neglected. 

 
These two elements can be easily adjusted 
applying complex least squares, fitting the 
equation of the modelled impedance described in 
equation (4) to the impedance data measured in 
each EIS at the frequencies where the effect of the 
CPE is predominant. 

- = ! +	 0
(12)3 (4) 

where ! = !� + !&. 
 
The expression of the CPE is a fractional equation 
that cannot be simulated easily in time domain, so 
its impedance is approximated using RC sub-
circuits. The modelled impedance represents more 
accurately the measured impedance when more 
sub-circuits are used. The main difference between 
the time domain model and this model is that in 
this case the RCs are calculated adjusting the 
measured impedance instead of the time response 
of the cell.  
 
This approximation of the impedance allows 
performing the time domain simulation of the 
model for any input current. As the difference 
equations of the RCs are well known, it is possible 
to calculate the cell response in real time, and even 
to compute it in a BMS.  
 
The final model is composed by one resistor (!) 
and one CPE, which is approximated with several 
RC sub-circuits, as it is shown at Figure 6.  
 

 

Figure 6: Modelled impedance of the cell 

 
The main advantage of this method is that it is 
relatively easy to obtain an enough high order 
model to represent accurately a wide range of 
dynamics. Thereby, this technique can model the 
slow dynamics without increasing the error with 
the fast ones, fixing the most important problem 
that has been found using the time domain 
characterization.  
 
Furthermore, the obtained parameters with 
different EIS measurements have more stability as 
they present less variability. Their progressive 
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change with the SOC allows calculating a model 
valid at intermediate SOC values, in which the 
EIS has not been performed, using linear 
interpolation.  
 
All these characteristics make this model more 
general and suitable for reproducing the response 
of the real cell to pulses with different lengths 
and in all SOC range.  
 
The main problem found using this method 
appears when the EIS equipment and the cell are 
disconnected between different measurements, 
which can produce a significant variation in the 
real part of the impedance, corresponding with a 
change in the resistance expressed as a horizontal 
displacement of the curves in the Nyquist 
diagram. This causes difficulties to compare EIS 
measurements in different conditions. The 
displacement can be reduced using a careful 
setup, although some variation is unavoidable. 
The technique proposed in the next section 
allows the correction of the measurements to 
make them more consistent.  

4 Combined methodology 
A combined methodology is proposed to 
overcome some of the problems found with the 
previous techniques. This methodology requires 
the performance of EIS measurements and pulse 
current tests. The test is repeated over all the 
SOC range, as it was done before. At each 
selected SOC, an EIS is carried out after a period 
of relaxation of the cell. Then, when the cell is 
relaxed again, several discharge pulses are 
extracted, before starting a new discharge to 
reach the next SOC where the procedure is going 
to be performed. The current pulses employed 
are defined in the same way explained in the 
section 2. These pulses consume little energy, 
enough to not produce a relevant change in the 
SOC which could affect to the cell dynamics 
varying the parameters of the model, although 
sufficient information to accomplish two tasks 
can be gathered. The first task is the validation of 
the model fitted to the impedance measured in 
the frequency domain at that SOC, checking that 
it can reproduce the temporal effects with low 
error. The second task is the correction of the 
resistance ! in case of reconnections of the 
measurement equipment. It is possible to make 
the correction just comparing the instant voltage 
drop obtained with the pulses performed after the 
EIS, with other pulses performed with the new 
connection. This correction significantly affects 

to the response of the model. As an example, a 
little variation of only 0.6 mΩ provokes a 
difference of 12 mV when the current is 20 A. 

5 Model validation 
The model obtained with each methodology has 
been validated calculating its response to a certain 
current profile and comparing it with the real 
response of the cell. In these tests a NMC Li-ion 
40 Ah cell has been used. Some of the results 
obtained with the impedance-based model adjusted 
using the combined methodology are represented 
in the following figures. The current profiles are 
composed by pulses from 10 s to 900 s and FUDS 
driving cycles. 
 
Figure 7 represents the model response to 20 s 
pulses and Figure 8 the response to 900 s pulses. 
Figure 9 and Figure 10 show the response of the 
model to several FUDS cycles over a wide range 
of SOC, which is depicted in Figure 11. These 
results show small error (less than 8 mV with the 
pulses and 12 mV in the driving cycles) in the 
voltage estimation and in its equivalent SOC error. 
As it has been explained in section 2, some peaks 
in the error appear when the current has abrupt 
transitions, because the filter of the measurement 
equipment smooths the response of the cell. 
Accordingly, these peaks should not be taken into 
account. In the results corresponding to current 
pulses they have been deleted to achieve a clearer 
representation of the results. However, the tests 
with FUDS cycles are composed entirely of steps 
in the current profile so the suppression of this 
effect is not feasible. 
 
The error plot of the FUDS test (Figure 9) shows 
an offset which increases the global error. This 
offset remains even when the cell is relaxed, so it 
is not caused by the error of the model of the cell 
dynamics. Thus, it is caused by an error 
determining the OCV. The principal reason is that 
the effect of the hysteresis on the OCV has not 
been modelled, and this voltage has been supposed 
approximately equal to the discharge boundary of 
the OCV. The hysteresis effect on this cell is not 
very pronounced in comparison with other 
chemistries (e.g. LiFePO4), but it can make a 
difference of 6% SOC between the charge and the 
discharge OCV’s boundaries at the same voltage. 
This error can be reduced employing a more 
complex model of the OCV-SOC relationship 
including the hysteresis effect.   
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Figure 7: Impedance-based model response with 20 s, 20 A 
discharge pulses at 25 ºC and 100% SOC 

Figure 8: Impedance-based model response with a 900 s,  
20 A discharge pulses at 25 ºC and 95% SOC 

 

  
Figure 9: Impedance-based model response and voltage 

error with FUDS cycles at 25 ºC 
Figure 10: Zoom of the model response and equivalent 

SOC error in a FUDS cycle 

   

 Figure 11: Real SOC and equivalent SOC error during 
FUDS cycles at 25 ºC 

Figure 12: OCV-SOC relationship and calculation of the 
equivalent SOC error 
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In Figure 10 and Figure 11 the equivalent SOC 
error is represented. It is an approximation of the 
real SOC error when the model is used to 
determine the SOC of the cell with the OCV, 
which is calculated using the response of the 
model and the measurement of the cell voltage. 
The value of the equivalent SOC error is 
obtained from the voltage error (difference 
between the model output and the voltage 
measured), because it is also the error on the 
OCV determination in open loop. As it is shown 
in Figure 12, the OCV at the current SOC is 
obtained, and the voltage error is added to this 
value. The new voltage is transformed again into 
SOC to calculate the error as the difference 
between this SOC and the current SOC.  

6 Conclusions 
Two different methodologies for identifying cell 
model parameters have been analyzed. The 
frequency based method presents less variability 
in the obtained parameters, and it has been 
selected to generate a model valid in all SOC 
range and capable of simulating a wide variety of 
dynamics. A combined methodology has been 
proposed to take advantage of the strength of

both methods and solve problems which appear 
when one of the basic methods is used. The main 
advantages and disadvantages of each technique 
are summarized in Table 1. 
 
The performance of the model has been checked 
using different current profiles like pulses or 
FUDS driving cycles, showing little error in the 
simulated voltage. The model is suitable to be 
employed in an algorithm to determine the cell 
SOC in open or closed loop, and can be 
implemented in a BMS. This model allows to 
estimate the OCV without waiting until the cell is 
relaxed, and the obtained OCV can be used to 
perform the determination of the SOC or to correct 
the value obtained with another method as 
coulomb counting. The low equivalent SOC error 
shows that this model can be used effectively to 
get an accurate estimation. 
 
The future steps to improve and complete the 
model will be the introduction of a hysteresis 
model to reduce the error in the OCV-SOC 
relationship, and the definition of a methodology 
to extend the model to work at varying 
temperature.  
 
 

Table 1: Summary of the advantages and disadvantages of each method for obtaining the cell model 
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