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Abstract

The remaining driving range (RDR) has been identified as one of the main obstacles for the success of
electric vehicles. Offering the driver accurate information about the RDR reduces the range anxiety and
increases the acceptance of electric vehicles. The RDR is a random variable that depends not only on
deterministic factors like the vehicle’s weight or the battery’s capacity, but on stochastic factors such as
the driving style or the traffic situation. A reliable RDR prediction algorithm must account the inherent
uncertainty given by these factors. This paper introduces a model-based approach for predicting the RDR
by combining a particle filter with Markov chains. The predicted RDR is represented as a probability
distribution which is approximated by a set of weighted particles. Detailed models of the battery, the
electric powertrain and the vehicle dynamics are implemented in order to test the prediction algorithm.
The prediction is illustrated by means of simulation based experiments for different driving situations
and an established prognostic metric is used to evaluate its accuracy. The presented approach aims to
provide initial steps towards a solution for generating reliable information regarding the RDR which can
be used by driving assistance systems in electric vehicles.
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RDR. The randomness of these factors makes
the RDR prediction problem difficult.

1 Introduction

The remaining driving range (RDR) represents
one of the main obstacles for the success of
electric vehicles. The limited range together
with the long charging time has been pointed

To our knowledge, few works have been pub-
lished on the field of the RDR prediction. In [1] a
driving pattern identification based approach was

out as the main technical factors affecting the
acceptance of electric vehicles. A successful
integration of electric vehicles into future mobil-
ity concepts requires not only the development
of faster battery charging systems and facilities
but also the application of advanced driving
assistance systems that support the driver with
reliable information regarding the vehicle’s
driving range. To accomplish this, algorithms
that accurately model the driving load of the
road ahead, and thereby better predict the RDR,
are required.  Unfortunately future driving
conditions are difficult to predict. The driving
style, road conditions or the traffic situation are
some of the factors that stochastically affect the

introduced, where a library of driving patterns
is used for predicting the driving load of an
electric vehicle in dependence of the road ahead.
In [2] a two-step prediction algorithm is applied
to determine the RDR. Nine factors in total for
determining the RDR are considered. First, a
rough RDR prediction is done if the remaining
battery energy is higher than a preset critical
battery energy threshold. If the threshold is
crossed, a precise range estimation takes place.
In [3] a method that combines the use of a web
server, a digital map and a mobile application is
presented. The mobile device sends the position
of the vehicle and the current state of charge
(SOC) of the battery to the web server, which
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first estimates the energy consumption along
all possible routes and then, based on the SOC,
it calculates the maximum driving range. The
main drawback with these approaches is that the
RDR is treated as a deterministic quantity and
the uncertainties given by the driving behavior or
by the traffic situation are not taken into account.

Our aim is to introduce an approach that accounts
for these sources of uncertainty. In this paper the
RDR prediction problem is approached by com-
bining particle filtering with Markov chains. A
two-step algorithm, adapted from a prognostics
framework [4], is used to this aim. In the first
step, the battery states are estimated usin§ a par-
ticle filter. In the second step, the probability dis-
tribution of the RDR is determined by using the
estimated states and by propagating the particles
through a driving profile generated stochastically
via Markov chains. The remaining of this paper
is organized as follows. Section 2 formulates the
problem of the RDR prediction and introduces
the proposed prediction architecture. In section 3
the model of the electric vehicle is described.
Section 4 briefly discusses the particle filter used
for the estimation of the states of the model. Sec-
tion 5 discusses the proposed approach for the
RDR prediction. Section 6 presents simulation
results for demonstrating and validating the ap-
proach. Section 7 concludes the paper and pro-
vides an overview of the future work.

2 Prediction Methodology

The RDR is formally defined as the actual dis-
tance an electric vehicle can cover with the en-
ergy stored in the battery at given time k. The
RDR prediction problem can be formally for-
mulated by considering the electric vehicle as a
nonlinear system represented, in a discrete-time
form, by

xi = f (X1, Uk, Vi, W)
Y = h(Xkauk’7nk7Wk‘) 5

ey
where xj, is the state vector, wy, is the parame-
ter vector, vy is the process noise vector, uy is
the input vector, y,, is the output vector and ny, is
the measurement noise vector. f(-) and h(-) rep-
resent the state and output function respectively.
The RDR prediction is concerned with forecast-
ing the energy consumption of the electric vehi-
cle along the road ahead and identifying the point
at which new recharging is required. This point
can be mathematically determined by defining a
threshold as follows

70 ={ 4 @

with T" = 1 if new charge is required and 7' = 0
otherwise. It is important to notice that the

threshold is defined as T'(yy). The reason for
this is that the battery management system of

most electric vehicles prevent the battery cells to
discharge below the cell’s cut-off voltage, which
marks the point of total charge depletion. Since
the terminal voltage is an indicator for total
charge depletion and is a measurable quantity, it
represents the output y, of the system.

In practice there are many sources of uncer-
tainty that influence the prediction of the RDR,
e.g., the lack of knowledge about the system
states and parameters, the noise presented in
the measurements or the ignorance about the
future driving conditions. Given these sources
of uncertainty, it would be wrong to consider
the RDR as a deterministic quantity. Thus,
instead of predicting single RDR values, we

compute p (RDRkp|y0:kp), i.e., the probability
distribution of the RDR. Here k, is the time at
which the prediction takes place.

Fig. 1 depicts the adopted architecture for pre-
dicting the RDR. The RDR prediction proceeds
in two steps. In the first step, the state estimation
module uses ug and yj; to compute the poste-
rior estimate p (xx|yo.x), i.e., the most up to date
approximation of the states of the battery based
on measurements acquired up to time k. In the
second step, the RDR prediction module uses,
at time k,, the current posterior state estimate

P (xkp |y0:kp) together with an hypothesized fu-
ture driving profile {ukp, Uk, 415 e um} to com-
pute p (RDRy, |yo:x, ). For the sake of better un-
derstanding, a driving profile is characterized by

the speed (v) and acceleration (a) of the vehicle
and by the slope («) of the road.

3 System Modeling

3.1 Modeling Approach

To predict the RDR a detailed model that
determines the power demand of the electric
vehicle and describes the dynamic behavior of
the battery is needed.

This work employs a quasi-static model, for
modeling the chassis, the driveline and the
electric motor. The quasi-static approach is
computationally efficient since it assumes that
the vehicle moves exactly with the predicted
speed. This assumption is convenient because
no differential equations have to be solved and
the power requirements can be easily computed
by solving algebraic equations.

Nevertheless, the battery cannot be modeled us-
ing this approach since, as already mentioned,
the terminal voltage determines the threshold of
the prediction algorithm. It is then necessary to
model the battery in such a way, that the non-
linear effects, in the capacity and in the terminal
voltage, are taken into account. Fig. 2 shows the
implemented model of the electric vehicle. We
combine the quasi-static model with a dynamic
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Figure 1: RDR prediction architecture.

model to account for the aforementioned nonlin-
earities presented in the battery.
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Figure 2: Combined quasi-static/dynamic electric ve-
hicle model.

In the following two sections both parts of the
model are explained in detail. For the sake of bet-
ter understanding, we omit expressing the vari-
ables of the quasi-static model as time dependent,
since this model is described just by a set of al-
gebraic equations. The differential equations of
the dynamic model, instead, are expressed in a
discrete-time form, since both, the state estima-
tion and the RDR prediction modules, require a
discrete-time representation of the battery model.

3.2 Quasi-static Model

An electric vehicle is composed of many compo-
nents which, for simplification purposes, can be
considered to move uniformly. Thus, the electric
vehicle can be represented as one lumped mass.
As it can be seen in Fig. 3, the force £} needed
for moving the vehicle forward is given by

Fx:Fair+Fg+Fr+Ev (3)

where F,;, = %pairchUQ is the aerodynamic
drag force, F; = mgsin (o) is the hill climb-
ing force, F;. = mgK, is the rolling resistance
and F; = ma is the force needed to acceler-
ate/decelerate the electric vehicle. Here v repre-
sents the vehicle speed, p,;, is the air density, ¢,
is the aerodynamic drag coefficient, A and m are
the frontal area and the mass of the vehicle, g is
the gravitational acceleration, K is the rolling

Figure 3: Forces acting during the motion of a vehi-
cle.

resistance coefficient and « is the slope of the
road.

The mechanical power demand P,,.. is calcu-
lated from the definition of mechanical power
Pyec = FLv as follows

1 .
Prec = 5p,mchvg + mgsin (o) v +

+mgK,v + mav. 4

This model accurately calculates the mechanical
power demand of a vehicle with a very low
computational cost.

To properly employ Eq.(4) in the RDR predic-
tion algorithm, we neegil to differentiate between
input variables and parameters. As already men-
tioned, in this paper a, v and « are considered
as input variables. All the other terms of Eq.(4),
namely, puir, Cw, A, m, g, and K, are assumed
to remain constant, since they rarely change or
change slowly during a trip. Accordingly, the in-
gut vector for the electric vehicle model is given
y

u=|[v aa]T. )

The power of the electric motor is calculated
from the torque demand 7,, and from the rota-
tional speed w,, at the rotor. As stated above, the
dynamic behavior of the driveline components is
not modeled. Therefore, T;,, and w,,, can be eas-
ily determined by

T, = & _ Fx?ﬂtire’ (6)
1d 1d
) Vig
Wm = Wylq = @)

)
Ttire
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where 4. and iq are the tire’s radius and the
gear ratio of the driveline respectively.

The relationship between the mechanical power
Ppec and the electrical power P, can be calcu-
lated without a detailed model by using a station-
ary map of the electric motor’s efficiency 7, as a
function of w,,, and T},,. In this case the electrical
power is calculated by

Pree
Pje=—1—"——. (8)
cle Tim (Wm7 Tm)

One main feature of electric vehicles is that a cer-
tain amount of the kinetic energy can be recov-
ered by means of regenerative braking. During
regenerative braking, the motor works as a gen-
erator and delivers power back to the battery. In
such a case, the generated power is given by

Pele = Pmecng (wmv Tm) (9)

It is worth mentioning that the efficiency 7, in
generator mode differs from the efficiency 7,, in
motor mode. The total power Pr, that is obtained
or supplied to the battery, is given by both the
electric motor and the auxiliary components, as
depicted in Fig. 2. The total power demand is
then calculated as

n
Pr =P+ Y P, (10)
=1

where P; represents the power consumed by both
the main and the secondary auxiliary components
such as the compressor of the air conditioning
system or the lights. For the sake of simplicity
the power demand of all auxiliary components is
considered to be constant.

3.3 Dynamic Battery Model

We employ a model of a Li-ion cell, as shown
in Fig. 4. The model combines the Kinetic
Battery Model (KiBaM) [5] for capturing the
nonlinear effects in the battery capacity, such as
the recovery and the rate capacity effect, with
a second order equivalent circuit based model
which captures the dynamic response of the
Li-ion cell. Furthermore, the combined model
demands low computational effort, which makes
it suitable for real-time applications. Even
though the KiBaM was initially developed for
lead acid batteries, it has shown to be suitable
for modeling the capacity behavior of Li-ion
cells [6].

The Kinetic Battery Model abstracts the chem-
ical processes of the battery discharge to its
kinetic properties. The model assumes that the
total charge of the battery is distributed with a
capacity ratio 0 < ¢ < 1 between two charge
wells. On the one hand, the first well has the
available charge and delivers it directly to the
load. The second well, on the other hand, can

Kinetic Battery Model Circuit-based Battery Model

N

Cs(- Cy(-
Ro() s(+) ()
1—c¢ c
ko ha| | M SOt Rs() Ri()
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~ ik Voc(80C) Viatt
i

Figure 4: Combined battery model.

supply charge only to the first well by means of
the parameter d. The rate of charge that flows
from the second well to the first well depends on
both d and on the height difference between the
wells (hg — hq). If the first well is empty, then
the battery is considered to be fully discharged.

By applying load to the battery, the charge
inythep %glst %vell is reduced, WhiCyh leads to §n
increment in the height difference between both
wells. After removing the load, certain amount
of charge flows from the second well to the
first well until the height of both wells is the
same. In this way the recovery effect is taken
into account by the model. The rate capacity
effect is also considered in this model. For high
discharge currents, the charge in the first well
is delivered faster to the load in comparison
to the charge that flows from the second well.
In this scenario there is an amount of charge
that remains unused. The consideration of this
effect is especially important for applications in
electric vehicles, since the unused charge can
eventually increase the driving range.

The KiBaM yields two differential equations
which describe the change of capacity in both
wells in dependence of the load i, the conduc-
tance d and the capacity ratio c:

W1 kg1 = A1W1k + agwa i + byig, (11)
Wo k1 = A3Wyk + aqwa g + baig,  (12)
where
_k Kk
c 1—c At
al a2 = e( % _ﬁ )
az a4 ’
_k Kk
c 1—c 9
by At ( Kk ) 1
= c 1—c d9 .
(0 )-1e ;

The term At is the sampling time used in the dis-
cretization. The battery SOC is then given by

w1,k

SOC, = «C,,3600’

13)

where (), is the nominal capacity of the battery.
The right-hand-side equivalent circuit of Fig. 4
is compound of three parts, namely, the open
circuit voltage Vo, a resistance R, and two RC
networks.
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The voltage Vo changes at different SOC lev-
els, as depicted in Fig. 5. The ohmic resistance
R, captures the I-R drop, i.e., the instantaneous
voltage drop due to a step load current event.
The R;C, and R;C) networks capture the voltage
drops due to the electrochemical and the concen-
tration polarization, respectively. In Fig. 4 the
dependency of these parameters on the tempera-
ture and on the SOC is represented by the term

()-

Voc [V]

\ \ \ \
0 0.2 0.4 0.6 0.8 1

SOC

Figure 5: Voo — SOC relationship.

This part of the model yields two differential
e(tluations which describe the transient response
of the battery:

_ At __At )
Ug k1l =€ FsCsvgp + (—Rse RsCs + RS) Tk,

(14)
_ac _ e
g1 =€ Mg+ <_Rle i + Rz) i

(15)
Accordingly, the state vector of the battery model
is given by

T
xp=[ wig wor ver v | . (16)

The battery terminal voltage Va1 1 given by
the sum of the open circuit voltage, the voltage
drop at R, and the transient voltages v, j, and vy
as follows

Vaatt,k (SOC) = Voo (SOC) + Ryig + vy, +vs -

(17)
As presented in the previous section, the quasi-
static part of the electric vehicle model computes
the total electrical power demand Pr. Neverthe-
less, the battery model requires the load current
1, as the input variable. Therefore, it is necessary
to express i in terms of Pr. The load current
13 can be obtained from the definition of electri-
cal power P = IV. Considering P = Pr and
V' = Vpau the terminal voltage can be expressed

as P
Voatt = TT (18)

By substituting Eq.(18) into Eq.(17) and solving
it for ¢, the current at time k is given by

_C—/C? —4Pr(u;)R,
2R, ’

(19)

i =

where
C = (Voc(SOC) + Vs i + Ul,k:) .

Ppr(uy) expresses the dependency of the total
electrical power demand on the input vector
given by Eq.(5). The solution with the posi-
tive part in the square root term of Eq.(19) is
neglected, since its consideration would cause
some current to be supplied by the battery in the
case of no load, i.e., when Pr = 0, which is
physically not meaningful.

4 Battery State Estimation

As explained in section 2, the states of the
battery have to be estimated before the pre-
diction module computes the RDR. The state
estimation establishes a starting point for the
prediction step. The task of the estimation
module is to compute p(xX|yo.x), i.e., to rep-
resent the most up-to-date knowledge of the
system states (shown in Eq.(16)) at given time
k based the current and on all past measurements.

To address this estimation, recursive Bayesian
tracking techniques such as particle (filter
(PF) [7], the extended Kalman filter (EKF) or
the unscented Kalman filter (UKF) [8] have
emerged as very promising solutions. This work
uses a particle filter for estimating the states
of the battery. The advantage of the particle
filter over ot%/er approaches is that it does not
require linearizing the system model and no
Gaussian distribution of the system states has to
be assumed.

The particle filter approximates the posterior
probability distribution p(xy|yo.x) by a set of

. . . . N(L
N."” weighted particles Sg = {x}w w}v}izl. Here
x;, is the set of particles representing the state

space and wj, are the associated importance

weights. Each particle is sampled from an a
priori estimation of the state space and it is

propagated through the function f(-). The value
of each particle is recursively updated from
measurements through the output function h(-).

Then, the probability distribution of the state
variables at time k is approximated by

N,
1 o= . .
p(Xk|yo:x) ~ A E wid (xp —x},)  (20)
T =1

where () describes the Dirac delta function
located at xj,.

An important issue with the application of the
particle filter is the so called particle degener-
acy, i.e., all but few particles have negligible
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weights. Particle degeneracy leads to a poor ap-
proximation of the state variables and, since most
weights are close to zero, valuable computational
effort is wasted by updating insignificant parti-
cles. To overcome this issue the sequential im-
portance resampling (SIR) [9] is employed. The
idea behind the SIR is to duplicate particles with
large weights and to eliminate those with small
weights.

5 RDR Prediction

The second step applies the particle filter for
predicting the RDR at given time k). To this aim

the RDR prediction module uses the posterior
estimate (X, |yo:x,) as initial condition.

By assuming that the set of particles

. A
{x}fp,w}cp}‘ accurately  represents the

1=
unknown states at the time of prediction, it is
possible to approximate the probability density
function of system states at any time k, + m
in the future by means of the law of total
probabilities [10]

p (ka+m|§(kp:kp+m—1) ~

Nz

i NN 5
Zwkp+m—1p (ka—i-m‘xkp—&-m—l) - @D
i=1

To account for the fact, that during the prediction
the shape of the states probability distribution
may change, due to noise and process nonlin-
earities, Eq.(21) requires the set of weights to
be updated at each iteration. However, during
the prediction step no new measurements, which
could serve for updating the weights, can be
acquired. This implies that an update procedure
for the particle weights, as it would happen in a
typical filtering problem, cannot be carried out.
This issue is addressed by assuming the weights
as invariant from k,, to k, + m. This assumption
is justified by considering the uncertainty added
by model inaccuracies or by the ignorance
about future driving conditions to be large in
comparison to the uncertainty which comes from
considering constant particle weights. In this
Ny
way, the set of weighted particles {x}cp, w,’ﬁp } -
1=
is simply propagated forward into the future by
simulating the behavior of the electric vehicle
as reaction to a future driving profile, until
minimum allowable battery terminal voltage is
reached.

Once all particles have reached the cut-off bat-
tery voltage, i.e., T,zp = 1, the traveled dis-

tance RDR};p of each particle is determined and
combined with its weight w,i, to approximate
P

p (RDRkp Iyo;kp) as follows

Ny

p (RDRy, |yox,) &~ Y _wj, RDR}, . (22)
i=1

As already mentioned, Eq.(22) requires an hy-
pothesized driving profile, which serves as the
reference for the propagation of particles. We
employ a stochastic approach to predict the driv-
ing profile in such a way, that real-world driving
patterns are captured. The following section in-
%roduces the approach for predicting driving pro-
les.

5.1 Driving Profile Prediction

It has been shown that driving profiles can be
modeled as a discrete-time Markov chain [11].
For predicting the entire driving profile two
Markov chains are used. First, future values of
speed and acceleration are generated by a 2D
chain. Second, the slope profile is predicted
by means of a 1D Markov chain independent
of the speed and the acceleration. To apply a
Markov chain the input space is quantized for
the speed/acceleration pair and for the slope
in such a way that each input variable takes
a finite number of values. The input space
is then given by {uj* uj?®, ..,u’¢} and by
{uf,ug,...,ul,}, where u’® = {v,a} and
u® = « represent parts of the input vector given
by the speed/acceleration pair and by the slope
respectively, with m as the horizon length of the
predicted profiles.

For the sake of brevity, here we just explain the
generation of the speed/acceleration profiles.
The prediction of the slope profile proceeds in a
similar fashion.

The Markov chain assumes that the transi-
tion probability from a state uj® to a state
up? |, where k is a discrete time instant (k =
to,t1,12,...), only depends on the current state
and not on the sequence of states that precede it.
The transition probabilities between all possible
states are grouped in a transition probability ma-

trix (TPM) P € R™*! such that
pij = P (uih, = jlup® = i), (23)

where p;; is the ij*" element of P. In this pa-
per the transition probabilities are estimated from
historical driving data and from standard driv-
ing cycles. The maximum likelihood estimation
method [12] is applied for estimating the TPM.
The transition probability p;; is computed by
pij = 52— = #, (24)
2 mij
j=1

where n;; is the number of times a transition
from u* to u;-’a has occurred, and n; is the
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total number of occurrences of uj“. Fig. 6
depicts an example of the TPM used for the
speed/acceleration profile prediction. The matrix
is composed of n columns and [ rows, which rep-
resent the finite states of speed and acceleration
respectively.

V| oo | o |V | e | o |UR
a1 [0 [0
sl (N0 R [RIRNIRN[NR(N
BNIRRISRINAIRNISAIN
aj [0 ]P0
OO T O O[]
OO O[O [T
a AT O OO OO
Vi—1 Vg Vi+1
aj71
aj
Aj+1] p(u};‘ilzuf";_‘_ﬁu};a:ufj@)

Sy ={vi,a541}
Figure 6: Transition probability matrix for {v;,a;} at
time k.

The chain is initialized at £ = 0 with the pair
{vk =0,a;, =0}. Then, we randomly draw
for the next state {vg11,ar11} according to the
probability distribution represented by the dis-
crete transition probabilities located at {vg, ay }.
Once the next state {vg41, ar+1} has been deter-
mined, the process is repeated until the desired
size of the chain, i.e., the desired length of the
profile is reached.

5.2 Characterization of the RDR

Until now the RDR prediction, as formulated in
Eq.(22), requires propagating the set of particles
through a single predicted driving profile. How-
ever, such a propagation accounts just for the un-
certainty introduced in the state estimation step
but it does not consider the uncertainty related to
the predicted driving profile. Taking this uncer-
tainty into account would require propagating the
set of particles through multiple predicted driv-
ing profiles, and not through a single one. The
computational complexity of such a prediction
becomes a function of N, x N,, [13], where N, is
the number of weighted particles used in the state
estimation and Ni is the number of predicted
driving profiles. The set of weighted particles is
then propagated through multiple driving profiles
until all particles, along all predicted profiles,

have reached the cut-off voltage, i.e., lei = 1.
Here j represents each generated driving profile.
The probability distribution p (RDRkp ]yo;kp) is

then approximated by

Nu N
1 Yo le g
p (RDRy, [youx,) =~ N YN wj,, RDRy/ .

U i=14=1

(25)

It must be noted that all predicted profiles are
equally weighted by means of N%J

6 Results and Discussions

This section presents the results obtained from
predicting the RDR for different driving scenar-
10s. The o — X and the relative accuracy (RA)
metrics [14] are applied for evaluating the per-
formance of the approach.

6.1 Simulation Results

To validate the performance of the proposed
approach, a number of simulations describing
different driving situations is performed. The
RDR prediction is tested by letting the electric
vehicle follow repeatedly the standard drive
cycles shown in Fig. 7, namely, the UDDS
and the ARTEMIS rural and motorway drive
cycles [15]. These drive cycles are representative
of typical driving patterns shown in the city, in
rural areas and on the highway.

UDDS

100

Speed [km/h]
o
o
T
!

20
0 |
0 500 1,000

ARTEMIS Rural

100 |- ‘ ‘ ]

50

Speed [km/h]

\ | | |
00 200 400 600 800 1,000

ARTEMIS Motorway
150 T T T
100 |- B
50 |, .

Speed [km/h]

0 | | | | |
0 200 400 600 800 1,000

Time [s]

Figure 7: Standard drive cycles used in the simula-
tion.

The parameters of the quasi-static model are cho-
sen according to the parameters of the Nissan
Leaf, as shown in Table 1. In this case the pa-
rameter are obtained from manufacturer’s data
sheets. The battery model is tuned using experi-
mental data of a 2.15 Ah Li-ion cell. The battery
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pack of the Nissan Leaf is emulated by scaling up
the battery capacity to 24 kWh and the voltage to
403.2 V. Table 2 presents the model parameters
of the identified Li-ion cell.

Table 1: Parameters of the quasi-static part of the
electric vehicle model.

Parameter Value

A 2.29 m?
Cuw 0.28

m 1520 kg
K, 0.7
Trmomax 280 Nm
Pele,max 80 kW
Ttire 0.3m

Table 2: Model parameters of the Li-ion cell.

Parameter Value

C, 2.15 Ah
‘/IIOII] 4.2 V

Viim 28V

d 1.4 x 107°
c 0.96

At each experiment, the electric vehicle follows
the speed profile imposed by the driving cycle.
For the sake of analysis, at the beginning of
each simulation the battery is assumed to be fully
charged. In this way the maximum driving range
that the electric vehicle can reach under differ-
ent driving situations is compared. During the
simulation, the battery states are estimated by the
particle filter at each iteration step and then this
estimate is used for predicting the RDR. To re-
duce the computational burden of the simulation,
a RDR prediction is performed every 1000 sec-
onds if the battery SOC is larger than 30%. After
thi(s1 point the RDR is predicted every 500 sec-
onds.

6.1.1 RDR Prediction Performance

In this section, we evaluate the prediction per-
formance for the different scenarios. For a
given prediction time k,, metrics of accuracy

and spread are computed. Since the estimate
p (RDRkp|y0;kp) is usually non Gaussian, we

rely on the median for estimating the RDR and
on quantiles as the measure of spread [16]. The
RA metric for evaluating the accuracy of the pre-
diction is computed by

RDR; — RDRy,
RDR;, ’
(26)

RAy, =100 [ 1 —

where RDRZP represents the ground truth RDR,

at time k), obtained later after the simulation fin-
ishes and RDRy,, is the median of the predicted
RDR at that time.

The approach has shown similar performance for
each driving scenario. Table 3 summarizes the
relative accuracy calculated for the prediction at
different prediction times. Fig. 8 shows the pre-
dictions for the UDDS drive cycle. As it can
be seen, for most part of the time, the predicted
RDR lies within the boundaries given by the
a — A metric (¢ = 0.15). Also the quantiles
Qs and Qg5 lie within the boundaries for most
of the time. It can be observed that, even though
the accuracy of the prediction at k, = 1 is high,
the uncertainty in the prediction is large. This is
caused by the uncertainty related to the state es-
timation. At the beginning of the simulation the
particle filter does not accurately track the battery
states. A certain time is needed for the filter to
converge. Therefore, the ignorance about the ini-
tial state of the battery causes the RDR prediction
to be highly uncertain. Fig. 9 depicts the simula-
tion results for the ARTEMIS rural drive cycle.
The results are similar to those obtained with the
UDDS. Itis important to notice that fewer predic-
tions have been carried out. This is because the
average speed of the driving {>r0ﬁle is higher and
therefore the time each particle needs to drive un-

til TIZ = 1 is lower. Fig. 10 shows the prediction

carried out with the ARTEMIS motorway driving
profile. This case shows the best performance of
all driving scenarios. The high accuracy in the
prediction is due to the few drastic changes pre-
sented in the drive cycle. In this case a transition
probability matrix of the highway for predicting
the driving profiles is used and therefore the gen-
erated profiles have very similar characteristics
to the chosen drive cycle.

Table 3: RDR prediction performance.

k, RAupps RArurar RAMOTORWAY
1 99.32 94.50 99.66
2 97.65 93.55 95.18
4 92.82 97.60 99.60
6 91.73 97.39 99.79
8 92.54 96.09 98.61
10 90.92 77.27 94.89
12 91.25 —— ——
14 88.75 —— ——
16 88.19 —— ——
18 91.71 —— ——

7 Conclusions and Future Work

In this paper, a model-based approach for pre-
dicting the remaining driving range in electric
vehicles is implemented. The proposed approach
takes into account different sources of uncer-
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Figure 8: RDR prediction results for the city drive

cycle UDDS.
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Figure 9: RDR prediction results for the ARTEMIS
rural drive cycle.

100 — RDR*
90 b (1—a)RDR*,(1 + a)RDR*
N ® Median RDR prediction
80 O\ e Q5/Qos RDR prediction
0

70 ¢
60 
50 +
40 +
30t
20 t
10 +
0

Predicted RDR [km]

0 10 20 30 40 50 60 70 80
Traveled distance [km]

Figure 10: RDR prediction results for the ARTEMIS
motorway drive cycle.

tainty such as the one related to variability of
the driving profile. Also the inherent uncertainty
caused by measurements noise and by the
estimation of the battery states is considered in
the prediction.

The state estimation is carried out by a particle
filter. Then, a set of weighted particles, which
approximate the posterior estimate of the battery
states, is propagated forward in time through
predicted driving profiles until all particles reach
the minimum allowable battery terminal voltage.
The driving profiles are modeled as stochastic
processes and they are predicted with the help of
Markov chains. The RDR is then computed as
a probability density function approximated by
the distribution of the propagated particles.

For demonstration and validation purposes, the
approach is tested in the simulation. Three
representative standard drive cycles have been
used as reference. The simulations have shown
that the proposed approach predicts the RDR for
all driving scenarios with an acceptable accuracy
and computational effort.

In the future, we aim to investigate new meth-
ods for speeding up the prediction time so that
a real time application can be integrated in our
test vehicle. It is also of high importance to in-
vestigate methods for describing the driving pro-
file in a parametric form. In this way probability
distributions for the parameters can be identified,
with the help of experimental data, so that analyt-
ical methods for uncertainty propagation can be
employed. The use of analytical methods would
further increase the efficiency of the prediction
algorithm, on the one hand, and would produce
repeatable calculations, on the other hand.
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