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Abstract

The powertrain control strategy and component sizing can significantly influence the vehicle
performance, cost and fuel economy. This paper presents an evaluation study of the current and future Fuel
Cell Hybrid Vehicles (FCHEVs) powertrains from the point of view of the fuel economy, volume, mass
and cost. In this research, different FCHEV powertrains (such as Fuel Cell/Supercapacitor (FC/SC), Fuel
Cell/Battery (FC/B), and FC/SC/B) and different control strategies are designed and simulated by using
Matlab/Simulink. In this paper, two standard driving cycles (NEDC and FTP75) are used to evaluate the
fuel consumption. Within this study, two control strategies based on the knowledge of the fuel cell
efficiency map are implemented to minimize the hydrogen consumption of the FCHEV powertrains. These
control strategies are control strategy based on Efficiency Map (CSEM) and control strategy based on
Particle Swarm Optimization (CSPSO). Furthermore, a comparative study of different FCHEV
powertrains is provided for adequately selecting of the proper FCHEV powertrain, which could be used in
industrial applications.

Keywords: Fuel cell Hybrid Electric Vehicle (FCHEV), Powertrain Modeling, Particle Swarm Optimization (PSO),

Control Strategy, Efficiency Map Control, Fuel Economy

1 Introduction

I n recent decades, Fuel Cell (FC) technologies are
expected to become a viable solution for vehicular
applications because they use alternative fuel
converters and are environment friendly. Although
there are various FC technologies available for the
use in vehicular systems, the proton exchange
membrane FC (PEMFC) has been found to be a good
candidate, since PEMFC has high power density with
lower operating temperatures when compared to the
other FC systems [1]-[4]. A stand-alone FC system
integrated into an automotive powertrain is not
always sufficient to satisfy the load demands of a
vehicle. Although FC systems exhibit good power
capability during steady-state operation, the response
of fuel cells during transient and instantaneous peak
power demands is relatively poor. Consequently, the
high cost and slow dynamics of the FC systems are

the major challenges for the commercialization of
fuel cell electric vehicles (FCEVS).

To overcome these challenges, the FC system
should be hybridized with single or multiple
energy storage systems (ESS) (such as battery and
supercapacitor) to meet the total power demand of
a hybrid electric vehicle (HEV) and to improve the
efficiency [5], [7], [8], [9]. In the last decades,
many research studies in the power distribution
strategy of hybrid vehicles and sizing have been
done. Some control algorithms, based on a priori
knowledge of a scheduled driving cycle, have been
proposed to achieve fairly fuel economy with
minimum cost [3]-[9]. For example, in [6], [7], the
power management and the design optimization of
FC / battery HEV were obtained by using dynamic
programming (DP). However, this methodology
did not consider the variation of the battery
parameters in function of the state of charge (SoC).
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Furthermore, the DP can achieve the minimum value,
but it has many drawbacks such as high
computational load and high memory storage
capacity. In [7], [8], [9], PSO algorithm was
proposed to achieve the optimal design and power
flow of FC/battery and FC/supercapacitor hybrid
electric vehicles.

The main objective of this paper is to give an
evaluation study of different FCHEV powertrains
from the point of view of the fuel economy, cost and
powertrain component sizing. In addition, the
FCHEV powertrains are designed and simulated by
using Matlab/Simulink over different driving cycles
(such as NEDC and FTP75). CSPSO and CSEM
control strategies are utilized to minimize the fuel
consumption. This paper is organized as follows:
Section Il presents the FCHEV powertrains
description.  The modeling of the wvehicle, the
dynamic modeling of a PEMFC, the dynamic
modeling of the battery system and the dynamic
modeling of the SC are described in section Ill. The
control strategies (CSPSO and CSEM) are illustrated
in section IV. Simulation results are presented in
Section V. Section VI is the conclusion.

2 FCHEV Powertrains

The investigation of different FCHEV
powertrains (i.e., FC/B, FC/SC, and FC/B/SC) is
explained in detail. In this paper, an interleaved
Multiple-input power electronics converter (IMIPEC)
is used to connect multiple sources with common dc-
link in order to reduce the size of the passive
components of the DC/DC converter and to reduce
the input/output ripples. The IMIPEC can improve
the efficiency of the DC/DC converter, which is used
in vehicle powertrain especially at low load. In the
IMIPEC, the FC is connected to DC-link via a three-
phase interleaved boost DC/DC port (Ng = Neonv)s
while the battery and SC are connected to DC-link
through bidirectional three-phase interleaved DC/DC
ports (Ng/g = Nconv)- In this study, the desired value
of the DC-link voltage is selected to be 500 V with
variations of + 5% are permissible.

The power supplied by the powertrain has to be
obtaining from the power demand predicted by the
dynamics of the vehicle. The efficiency of each
component in the FCHEV powertrain is considered in
this study. The detailed models of the powertrain are
developed by using Matlab /Simulink. Figure 1, Fig.
2 and Fig. 3 illustrate the block diagrams of the FC/B
powertrain, FC/SC powertrain and FC/B/SC
powertrain, respectively.
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(IMIPC)
(L)

Figure 3: Block Diagram of FC/B/SC HEV powertrain

3 Powertrain Modeling

3.1 Modeling of the vehicle power
demand

The load force of the vehicle comprises
gravitational force (Fg), rolling resistance (Fron),
aerodynamic drag force (Fap) and acceleration
force (Fac), as shown in Fig.4. Hereby, the
required load power for vehicle acceleration can be
written as follows:

(Eg +Froll +FAD +Facc) 4

Ploga = Nes ()
Where
Fg = M.g. sin(x)
Fronn =M.g. f..cos(x)
Fap =050, Cp-Ag V2 @)
Facc =M- dd_\t/
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The total electric power required from the sources is
given by
Pload

p, =09 3
red Nm-Nmv-Nconv ( )
The parameters of the vehicle are reported in Table 1.
The analysis of FCHEV powertrains is performed on
two standard driving cycles (such as NEDC and
FTP75) in order to evaluate their performance. In this
paper, suppose that the average efficiencies of the
gearbox (ucg), the motor (yy), inverter (ny), and
DC/DC converter (comv= #8= 7 gs) are 0.90, 0.95,
0.94 and 0.95, respectively.

Table 1: The vehicle parameters [5], [8],[9]

M Vehicle mass (kg) 1450
fr  Rolling Resistance Coefficient 0.013
Cpo  Aerodynamic Drag Coefficient (Cp)  0.29
A;  Front Area (m?) 2.13
r,  Radius of the wheel (m) 0.28
pa  Air density (kg/m®) 1.202

Figure 4: Forces acting on a vehicle

3.2 Dynamic Modeling of a PEMFC

The electrical model of the PEMFC system
predicts the output voltage and the partial pressures
of hydrogen and oxygen in the FC stack at a certain
electric current. The voltage signal is fed to a control
voltage source in Matlab/simulation. In this study, FC
system comprises a FC stack with N, cells that are
connected in series, and N, strings that are
connected in parallel. The output voltage of the FC
stack can be calculated as follows [3], [7], [9]:

Vie = E 4 Nact + Nonmic 4)
where
Nact = —B ln(CIfc) )
Nohmic = —R™t Ifc (6)
RT PH2 \/Po2
E=N Ey+—1 _— 7
fcs [ 0+2F Og[ Diz0 ” ()

The Matlab/Simulink-based PEMFC system is
modeled in this paper using the aforementioned
equations. The specifications of the PEMFC system
are mentioned in Appendix A.

3.3 Dynamic Modeling of an ELDC

The natural structure of the supercapacitor
(SC) is appropriate to meet the transient and
instantaneous peak power demands. The SC is
also known as electrochemical double layer
capacitors (ELDCs). The simulated ELDC is a
Maxwell PC2500 whose characteristics are
reported in Appendix A. The ELDC Module
consists of Ny cells that are connected in series
and Ny, strings that are connected in parallel.
The output voltage of the ELDC can be expressed
as follows [3], [7], [9]:

Vsceenn = lcenn- Rs + V¢ (8)
where
1

Ve = Ef ic (t)dt + 'Uc(t = 0) (9)

o = ooy + (10)

lc = leen R,

Uc
SoCsc = (———)2.100 (11)
cellmax
SoCsc0

vC(t = 0) = Vcell,max . W (12)

3.4 Dynamic Modeling of Li-lon
Battery

In this section, the mathematical modeling of
the Li-lon battery package used in the simulation
program is defined as a Thevenin battery model. In
this study, all elements are functions of the battery
state of charge (SoCbh). The battery system
comprises a package with Ny, cells that are
connected in series and Nyq, that are connected
in parallel. The terminal voltage of the battery
pack V4. can be denoted as follows [8], [9]:

Voatt = Npates [ Voc + Ipate Rsp — ch] (13)
1 I,
S0Ch = S0Chinie + =00 f C“b“ dt (14)
Where:
ILoad
I = 15
batt Nbattp ( )
chp __ ch n Ipate (16)
dt CpRp Cp
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4 Power Control Strategies

4.1 Control Strategy Based on Efficiency
Map (CSEM)

This control strategy is applied to minimize the
hydrogen consumption for each driving cycle.
Therefore, the simulations are performed for each
driving cycle in such a way that the FC works
alternately in two operating points, namely “On” and
“Off”, according to the actual state of charge of the
energy storage system (ESS) (SoCgss(k)). These
operating points are given as follows [3], [7], [8]:

1- When SoCggs (k)< SoCyy;;, the FC is operated

at its point of maximum efficiency (called

“On” point), and

2- When SoCggs(k)> SoCip;:, the FC is turned

off (called “Off” point).
Where SoC;y,;; represents the initial state of charge,
where SoCgss (k) is the actual SoC of the ESS. Figure
5 shows the CSEM control scheme with the FC
operation to perform the operation of the system.

On

SoCinit

Off

0 5 10 15 20 25 30 35 40 45 50
Fuel Cell Pawer (Ko}

Figure 5: The scheme of the control strategy based on
Efficiency Map (CSEM)

4.2 Control Strategy Based on PSO
(CSPSO)

The main objective of the CSPSO is to
instantaneously distribute the power between the
multiple sources with the aim to minimize the
hydrogen consumption while maintaining the SoC of
the ESS over the driving cycle [5], [6]. Figure 6
illustrates the block diagram of the optimal power
control based on CSPSO. It can be observed in
Figure 6 that the input variables of the CSPSO
control scheme are the demand power from the
energy sources, the SoC of the ESS (defined by SC or
battery), and the driving cycle, while the outputs are
the optimal power of the FC and ESS. The
parameters of the PSO, which are used in this study,
are mentioned in Appendix A.

N Vie(k)
Paemana (k) | &
Pre_opti (k) -~ Ire rer (k)
SoCrssl) | \/
CSPSO
Driving Cycle | Pkss (k) Tess_rer (k).
(Speed)

VEss(k)

Figure 6: The block diagram of the optimal power sharing

The sum of power from both sources has to be
equal to the required power at all times [9]:

Preq @® = Pfc ) + Pgss ) a7
And
kfc(t) = Pfc (t)/Preq () (18)

The net energy consumed from the FC at time t
can be computed as follows:
t Pfc(t)

Erc(t) = jo n—(Pfc (t))dt (19)

Then, the hydrogen consumption of the FC is
calculated by
1 jt Pfc(t)
Elow,HZ 0 n(Pfc(t))
where My, is the hydrogen mass, and Ej,,, y, iS
the lower heating value of the hydrogen, here
Eiownz = 120 M] /kg.

In this study, the components of the fitness
vector are the fuel consumption, H,, and the
variation of the SoC, which have to be minimized.
The cost function can be formulated as follows:

N
1 Pfc opti (k)
F(x) = > e AT (21)
Elow,Hz kzon(Pfc,opti (k))
The Optimal FC power output (Prcopei) IS
calculated based on the SoC of the ESS and power

demand P, as follows:
Pfc,opti (k)
= kfc (k). Preq (k) + ksoc (k) (Pfc,max
S0Cyer — SoC (k)
- Pfc,min) — 2
(SOCmax SOCmin)

where N= T/AT is the number of samples during
the driving cycle [T] and AT=1 sec is the sampling
time. In this paper, the time is only discretized
because the standard driving cycles are defined
every 1 sec.

In this article, the control objective is to
determine the value k. , degree of hybridization,
for each t in [0,T], which minimizes the fuel
consumption (hydrogen), and to evaluate the
proportional controller gain k.. which maintains
the SoCrss (SoCgss (T) = SoCiy;e) during the
charging period from the FC.

MHZ

dt (20)

(22)

5 Simulation Results

To investigate the FCHEV powertrains, the
required vehicle performance and the power of the
powertrain corresponding to standard driving
cycles (such as NEDC and FTP75) are simulated
and presented. Furthermore, a comparative study
of the vehicle performance between FC/B, FC/SC
and FC/B/SC powertrains is provided in order to
select the appropriate powertrain.  Simulation
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results are obtained by using Matlab/Simulink and
SimPowerSystems by implementing the detailed
mathematical and electrical models of the FCHEV
powertrains that are described earlier in Section 2.

Figure 7 and Fig.8 show the comparative of the
cost and the mass of the FC and ESS at different
driving cycles, respectively. The volume of the FC
and ESS of each powertrain is shown in Fig.9.

u FC/B HEV W FC/SC HEV = FC/B/SC HEV

Cost (€)

-

NEDC FTP75

Figure 7: Comparison of the total cost of the electric
sources based driving cycles
BFC/BHEV W FC/SCHEV W FC/B/SCHEV

375.1 3708

Mass (Kg)

T
NEDC FTP75

Figure 8: Comparison of the total mass of the electric
sources based driving cycles
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Figure 9: Comparison of the total volume of the electric
sources based driving cycles
Figure 10 demonstrates the comparative of the
hydrogen improvement between the FCHEV
powertrains over different driving cycles. For
example, Fig. 11 presents the power sharing between
the FC and SC, and the evolution of the SoCsc during

CSPSO running on the NEDC driving cycle.
Figure 12 presents the power sharing between the
FC and battery, and the evolution of the SoCb
during CSPSO running on the NEDC driving
cycle. Furthermore, Fig. 13 shows the power
sharing between the FC, SC and battery when
applying the CSPSO on the NEDC driving cycle.

HFC/BHEV W FC/SCHEV W FC/B/SCHEV
13.7
14 - 12.6
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E 10 75
o
]
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o T
NEDC FTP75
(@) The hydrogen improvement after using CSEM
B FC/BHEV B FC/SCHEV W FC/BfSCHEV

182

Hyrogen Improvement (%)

NEDC FTP75

(b) The hydrogen improvement after using
CSPSO

Figure 10: The hydrogen improvements with respect to
FC alone without hybridization with ESS
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Figure 11: The optimal power splitting between FC and
SC running on NEDC based CSPSO
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Figure 12: The optimal power splitting between FC and
Battery running on NEDC based CSPSO
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Figure 13: The optimal power splitting between FC, SC
and Battery running on NEDC based CSPSO

6 Conclusion

This paper gives an evaluated study of
different fuel cell hybrid electric vehicle
powertrains from the point of view of the fuel
economy, cost, mass and volume. In this paper,
three powertrains are considered and investigated
over different driving cycles including the
efficiency of each component. These powertrains
are Fuel Cell/Supercapacitor (FC/SC) HEV, Fuel
Cell/Battery (FC/B) HEV, and FC/B/SC HEV. In
addition, two control strategies (i.e. CSPSO and
CSEM) have been used to minimize the fuel
consumption.

By evaluating and comparing the results, the
FC/SC HEV has slightly higher fuel economy than
the FC/B HEV and FC/B/SC HEV powertrains.
This is due to the use of the efficient
supercapacitors for the majority of the transient-
power requirements (the SC can be charged or
discharged at a high current, in which the battery
cannot function at this current). The fuel economy
is higher despite the fact that the vehicle is heavier
and more expensive. It is important to point out
that FC/B/SC HEV may provide a good solution
for FCHEVs from the point of view of battery
lifespan, component sizing and transient periods.
Finally, it is shown that the selection of the
appropriate  FCHEV configuration and control
strategy are very important for the development of
the FCHEV powertrains. It is necessary to
evaluate the advantages and drawbacks of the
different powertrains, particularly for future
vehicle generations.

Appendix A
Table Al: PEMFC Model Parameters [7], [8], [9]

Activation voltage constant (B) 0.04777(A'I)
Activation voltage constant (C) 0.0136 [V]
Faraday’s constant (F) 96484600 [C/kmol]
FC internal resistance (Rjq) 0.00303 ()

No load voltage (Eo) 0.95V
Nominal voltage 0.81V
Nominal power per cell 34W

FC absolute temperature (T) 343 [K]
Utilization factor (U) 0.85
Universal gas constant (R) 8314.47 [J/ kmol K]
Volume (V1) 0.0142
Cost (C1) (€) per cell 1

Weight (M1) 16.28 g

Table A2: The cell battery parameters [8], [9]
Li-lon battery
Nominal cell
Voltage [V] 3.3 || Mass (kg) [M2] 0.365

Energy (Wh/kg) 80.2 || Volume (L) [V2] 0.220

Power (W/kg) 383.3 || Cost (€) [C2] per cell ~ 9.22
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Table A3: The used parameters of the SC [7], [8], [9]

Capacitance (C) 2500 F
Internal resistance (Rs) 0.65mQ
The parallel resistance (R,) 2kQ
Max_ Cell voltage [Vmaxceill 25V
Initial State of Charge (SoCSCO0) 80%
Rated current 625 A
Weight (M2) 7259
Volume (V2) 0.6L
Cost (C2) (€) per cell 14.38

Table A4: PSO Parameters and Bounds [6]

Parameter Value Parameter Value
P_opulatlon 20 1l [0.,1]
size
Max.
iteration 100 r2 [0.1]
cl 0.5  Lower Bound [Ksoc] 0
c2 0.5 Upper Bound [Kq] 10
Max. weight 1.2 Lower Bound [K¢] 0

Min. weight 0.1

Upper Bound [Kg]
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