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Key Assets
Electric and hybrid vehicles

Sustainable logistics

Battery Innovation Centre

Urban mobility
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Motivation

WHY
• Real Application

• Safety

• Lifetime

WHAT
• SoH Estimation

WHERE
• Commercial
• Battery Pack

maitane.berecibar@vub.be
M. Berecibar et al., “Critical Review of State of Health estimation methods of LiIon batteries for real applications", Renewable & Sustainable Energy Reviews

V2G



Motivation

• 100% means the battery is fresh.

• 80% the battery is considered not usable for an Electric 

Vehicle and should be removed. 

Why estimate the SoH?

• Recognize battery degradation.

• Prevent a possible failure.

State of Health is the ability of a battery to store energy relative to its initial or ideal conditions

OLDER BATTERIES LOSE POWER FASTER

NEW OLD

M. Berecibar et al., “Critical Review of State of Health estimation methods of LiIon batteries for real applications", Renewable & Sustainable Energy Reviews

maitane.berecibar@vub.be



Motivation
(+) Comp Effort 

(+) BMS
(-) Accuracy
(-) Operando

(-) Comp Effort 
(-) BMS
(+) Accuracy
(+) Operando

New Hybrid

Methodology

Needed

SoH Estimation Methods

Experimental 
Techniques

Adaptive Battery 
Models

Direct 
Measurements

Models Based on 
Measurements

M. Berecibar et al., “Critical Review of State of Health estimation methods of LiIon batteries for real applications", Renewable & Sustainable Energy Reviews
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Context; OPTIBIDS
1. Optimization of energy assets in LES based on mobility 

needs.

2. Develop intelligent smart and bi-directional charging 

strategies for integration in LEC. 

3. Development of off-board and on-board smart and bi-

directional DC chargers with integrated local storage. 

4. Integration of smart -and bidirectional chargers in the 

LES as sustainable ecosystems. 

OPTIBIDS, Project grant agreement no: HBC.2018.0519, VLAIO, FLUX50 

maitane.berecibar@vub.be



Objective

BMS
Implementation

EoL 
Detection Error <1%

Application 
always 

available

• Low 
computational 
effort

• Real application

• Alarm
• User 

Awareness

• Accurate
• Reliable
• Precise

• Costumer 
Needs

• Energy 
Efficiency

M. Berecibar et al., “Critical Review of State of Health estimation methods of LiIon batteries for real applications", Renewable & Sustainable Energy Reviews
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Battery Health Algorithm: Methodology
• SoH estimation based on the capacity fade: 

• SoH estimation based on the internal resistance increase: 

• Degradation mechanisms detection 

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32
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Battery Health Algorithm: Methodology 

Incremental Capacity Curves
• Quantify the Degree of Degradation of a cell

• Reveal Battery Degradation Mechanisms

• Loss of Lithium Inventory

• Loss of Active Material

• Internal Resistance Increment Detection

M. Berecibar et al., “Online State of Health estimation on NMC cells based on Predictive Analytics", Journal of Power Sources
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Battery Health Algorithm: Machine Learning

• Learning methods for V2G algorithms 
• Extended Kalman Filter 
• Unscented Kalman Filter 
• Genetic Algorithm 
• Particle Swarm Optimization 
• Gaussian Process Regression 

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32

maitane.berecibar@vub.be



Battery Health Algorithm: Characteristics

• Accuracy
• Training time
• Response time 
• Linearity 
• Self-learning 

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32

maitane.berecibar@vub.be

• Speed 
• Predicting numeric 
• Dimension reduction
• Simplicity
• Large data set 

performance 
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Results
• Accuracy, training time, response time, linearity and self-learning characteristics

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32
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Results
• Speed, predicting numeric, dimension reduction, simple and large data set performance characteristics

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32
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Ranking
1. Genetic Algorithm: 

Very good in accuracy, training time, linearity and speed 
2. Unscented Kalman Filter: 

Very good in accuracy, response time, self-learning and speed. 
3. Particle Swam Optimization: 

Very good in accuracy and self-learning. 
4. Extended Kalman Filter: 

Very good in response time and self-learning. 
Poor in predicting numeric. 

5. Gaussian Process Regression: 
Very good in accuracy. 
Poor in predicting numeric. 

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32
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Conclusions

M. Berecibar et al., “Battery Health Estimation in a Vehicle-to-Grid Scenario", EVS32
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BMS
Implementation

EoL 
Detection

Accuracy
Application 

always 
Available

V2G

• Incremental Capacity Curves + Genetic Algorithm
• Implemented in OPTBIDS project
• Validation in 3 different demo sites
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