

STRATEGIC ADVISORY | MANAGEMENT
CONSULTING | DIGITAL SOLUTIONS

DESIGN OF BUSINESS MODELS FOR THE OPERATION OF THE CHARGING INFRASTRUCTURE ACCORDING TO THE GERMAN CALIBRATION CONFORMITY - DEVELOPMENT OF A TCO-TOOL

EVS32 – Lyon 2019

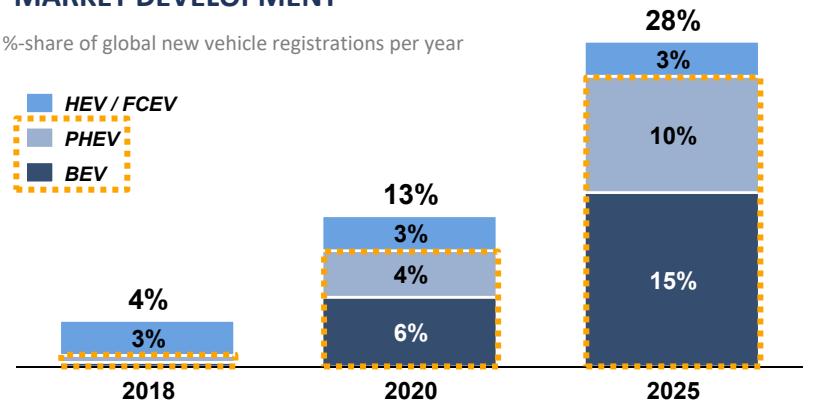
20th – 21st May 2019

Lyon, France

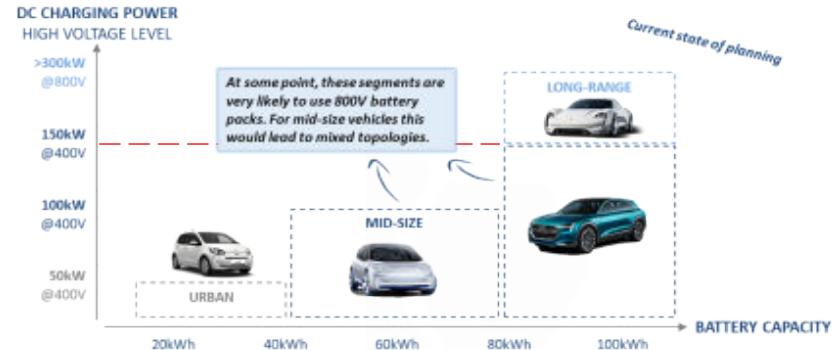
P3

Christian Gehring

Senior Consultant E-Mobility


CURRENT MARKET & TECHNOLOGY SITUATION

P3

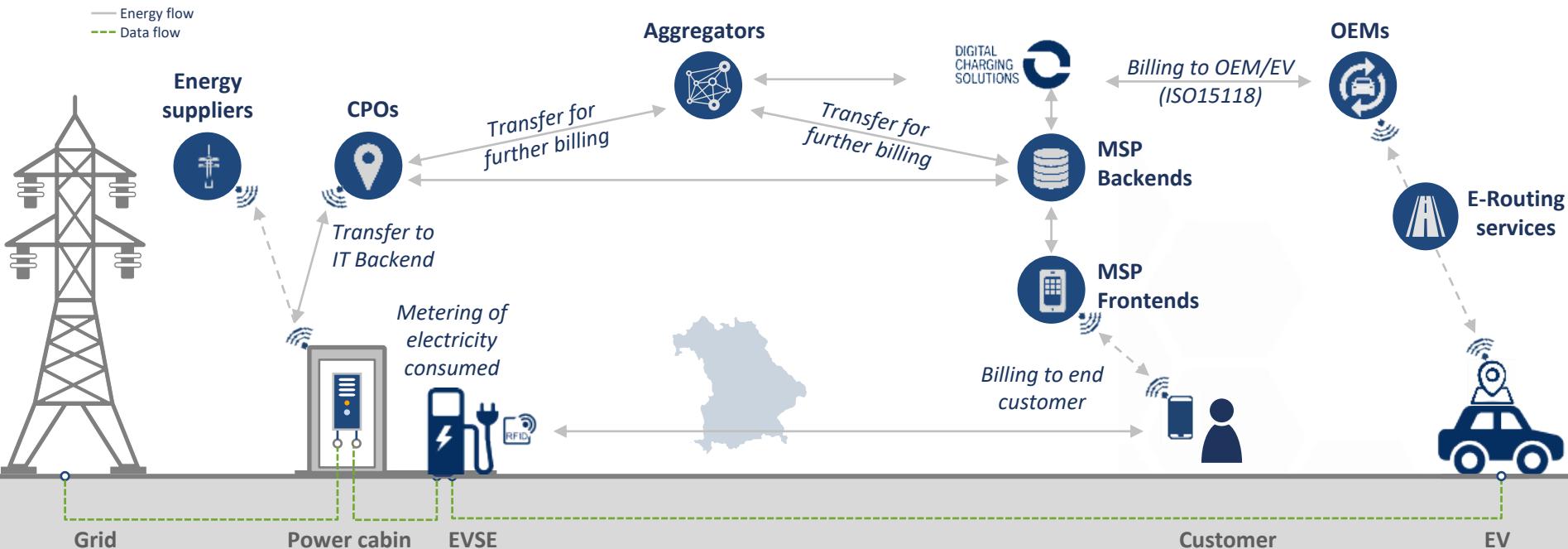

The strongly rising sales volumes of electric vehicles (incl. a steady increase of driving range and applications) lead to a higher demand for charging infrastructure and electricity.

MARKET DEVELOPMENT¹

%-share of global new vehicle registrations per year

FAST CHARGING STRATEGIES OF THE OEM

BEV ROADMAP



- Over the next few years, more and more BEVs and PHEVs will be entering the European and German markets
- The charging capacity of most vehicles will be up to 100-150kW, only a few will go beyond that (e.g. Porsche Taycan)

¹Source: P3 vehicle-ramp up tool

EXEMPLARY ROLES AND MARKET MODEL GERMANY

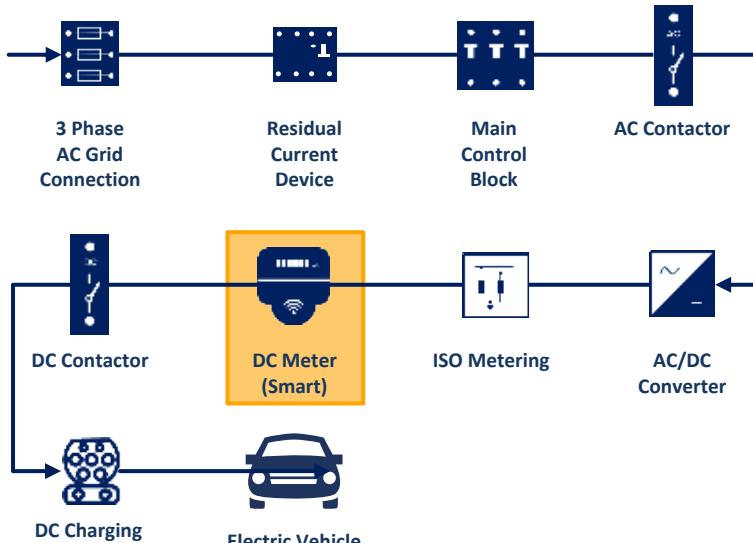
The market landscape in Germany is divided into a heterogeneous market with many different players. From the measuring instrument to the accounting, however, the measurement and calibration law must be implemented.

- The overview shows that the processing of the measured values not only takes place in the CPO backend, but can also be continued at the aggregator/ MSP or even OEM (e.g. collective invoice)
- Within the framework of the German measuring & calibration law, e.g. signed values must ensure unadulterated forwarding.
- Every change (even one settlement) requires a “calibration conform IT-Backend/ chain”

GERMAN MEASUREMENT AND CALIBRATION LAW

P3

The German measurement and calibration law defines different requirements for hardware and software. The installation of an appropriate meter alone is not everything.


Technical requirements

Hardware	Software
<ul style="list-style-type: none">Calibration-compliant meter (with high accuracy)Signature device / encryption of CDR¹Storage of measurement data for >90 days	<ul style="list-style-type: none"><i>Additional equipment may be legally relevant for calibration if measurement data is processed in the backend (e.g. billing)</i><i>Public key infrastructure for verifiability of CDR</i><i>Transparency software (customer can proof CDR)</i>

Key elements

Measurement signing	Conformity assessed measurements	Consistency required
Local measurement display	Detached display and validation software	Permanent and authentic storage

Typical setup of a DC charging station

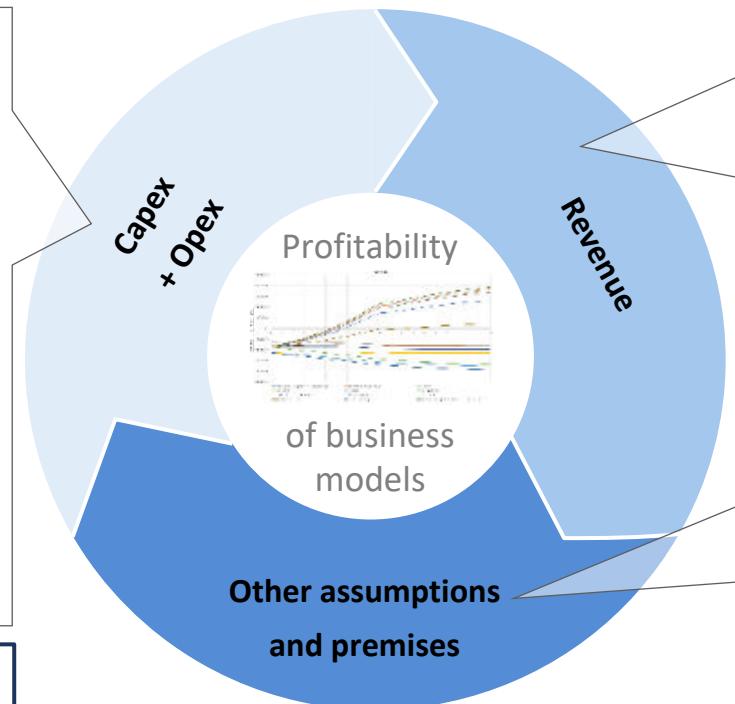
»

- Conversion of most charging systems is possible
- The first conform DC meters conforming are available
- Costs of a conversion approx. 1.000€ per station

PARAMETERS TAKEN INTO ACCOUNT: HPC150 AS AN EXAMPLE

The tool was designed in such a way that all variables for the operation of the infrastructure are defined as input parameters and can be adapted at any time.

The tool maps a variety of costs that an operator of charging systems must take into account:


Investment costs:

- Hardware costs (incl. meters)
- Grid connection costs
- Approval, planning, location search
- Assembly, signage and other construction costs

Annual operating costs:

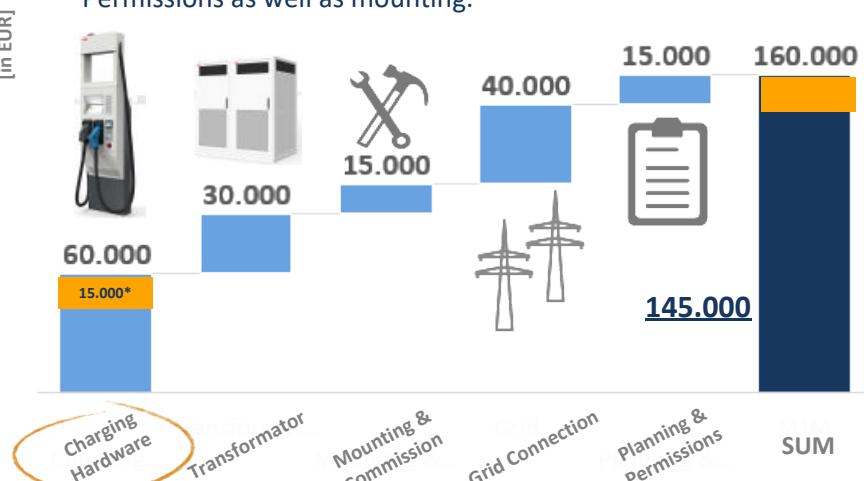
- Maintenance (service, hotline etc.)
- Communication costs
- IT/ backend system
- Contract management/ billing
- Parking rental fees

The tool forms the basis for further consideration, e.g. from an MSP perspective.

There are many different revenue models on the market, the tool can map them all (not only in Germany)

- Basic charge and amount of energy charged [per kWh]
- Parking fees and charging time [per min]
- Volume packages [per kWh/min]
- Credit note [per kWh]
- Packages [€/charge]
- Combined tariffs [per kWh/min]
- and much more

Further assumptions and premises guarantee the validity of the results:


- Utilization of a charging station
- Average charging capacity per charging system and charging losses
- Funding quotas and calibration conformity
- and more than 50 other parameters

TOTAL COST STRUCTURE: HPC150 AS AN EXAMPLE

Offering charging infrastructure is a complex business with several issues – from grid connection to efficient operation.

CAPEX

- Fix costs for installation and **set-up of HPC 150 kW with 2 charging points**
- Cost savings can be achieved by optimizing the **handling of load peaks** to reduce the **performance price impact**.
- **Economies of scale** are achievable in the area of Planning & Permissions as well as mounting.

OPEX

- The **operating costs** are comparably high with ~10% of the initial invest – most important cost drivers are **maintenance & repair** and **site rental**
- For the backend connection a high cost depression can be expected

PARAMETERS TAKEN INTO ACCOUNT: HPC150 AS AN EXAMPLE

An extract of the corresponding parameters for calculation is shown here. Well over 100 other parameters are taken into account in the tool.

General assumptions for 2018

- **Perspective:**
CPO
- **Considered points in time:**
2018 & 2025 & 2030
- **Period of depreciation:**
10 years
- **Billing:**
Every possibility known so far in Germany and other EU markets (see analysis)
- **Average charging power per event:**
35 kW (80kW in 2025)
- **Average consumption per charging event:**
40kWh (50kWh in 2025)
- **Charging station utilization:**
5% (10% in 2025)
- **Electricity price:**
Use of industrial tariff for HPC

Pricing model for calculations:

- **Basic charge + amount of electricity charged [per kWh]:**
 $4,95\text{€} + 0,30\text{€}/\text{kWh}$ AC or $0,50\text{€}/\text{kWh}$ DC
- **Parking fees + charging time [per min]**
 $0,033\text{€} + 0,04-0,30\text{€}/\text{min}$ (based on kW)
- **Volume packages [per kWh/min]**
60min AC charging 5€ or DC for 30€
- **Sessions fees [€/charge]**
6€ AC session or 8€ DC session
- **Combined tariffs [per kWh and min]**
 $0,0144-0,1642\text{€}/\text{kWh} + 0,20-0,2\text{€}/\text{min}$
- **and much more**

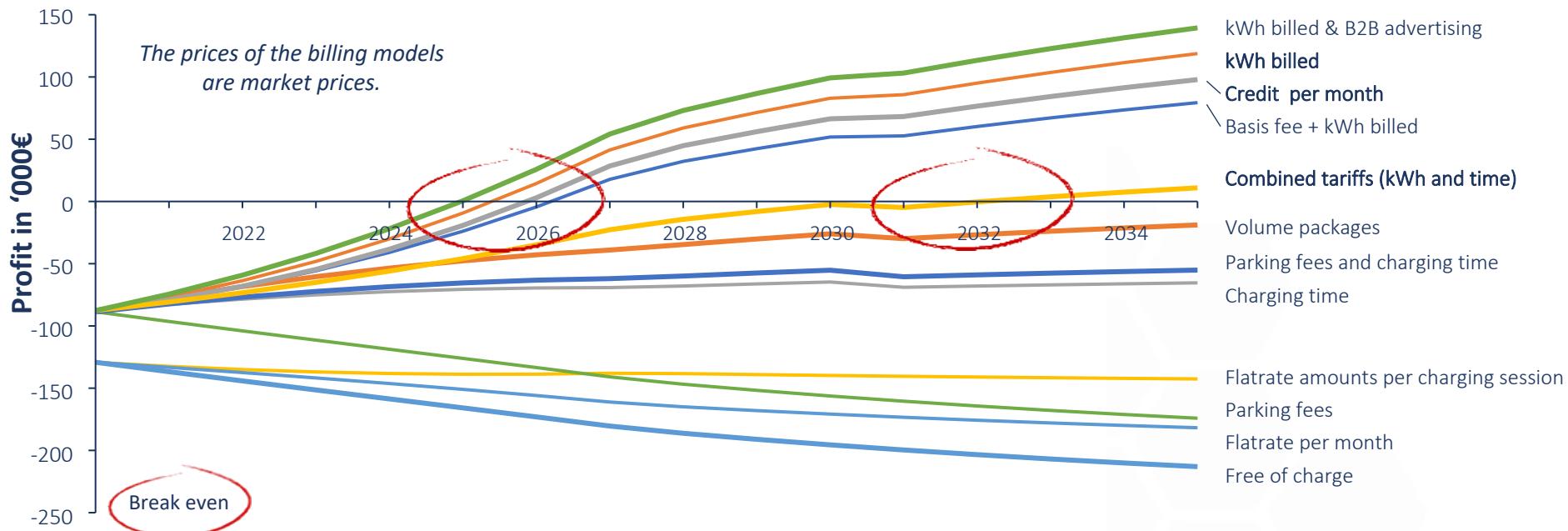
Adaptions in 2025

Technology improvements

Technological developments and economy of scale effects in power electronics shrink costs of the charging equipment.

Charging capabilities

EVs in 2025 are capable of **charging with higher power** raising the average charging power per event.


BEV sales

In 2025 the share of new BEV registrations per year is about 34% eventually leading to a **higher charging station utilization**.

TOTAL COSTS OF OWNERSHIP: HPC150 AS AN EXAMPLE

According to current pricing, the billing models permitted in Germany on the basis of kWh are profitable even after 7-8 years with an increasing utilization of the infrastructure due to the vehicle ramp-up.

- A kWh-based billing system can best take into account and bill the average charging capacity
- Uncertainties with minute billing or session fees lead to significantly lower revenues with higher charging capacities
- Flat rates or no billing at all lead to a highly unprofitable business model, unless revenue can be generated through side business models

CONCLUSIONS

Key take-aways from today's presentation:

1

The EV market is growing consistently **within the next decade**. In 2025 about **25%** of European new vehicle registrations will be **Battery Electric Vehicles (BEVs)** and **Plug-in Hybrid Electric Vehicles (PHEV)**.

2

The **German calibration law** does **not only** include a compliant design of the **meter**, but also the **IT backend must be implemented in conformity** with the calibration if necessary.

3

In order to be **able to bill charging infrastructure in Germany** in accordance with the law, billing must be **based on kilowatt hours**. **Parking time** can also be **billed per minute**.

4

With today's prices, **kilowatt-hour-based billing is already the most profitable business model for HPC150+**. A comparable profit with a session fee can only be achieved from **27€ upwards per charging session**.

Christian Gehring

SENIOR CONSULTANT | E-MOBILITY

Phone: +49 151 195 38 356

Email: christian.gehring@p3-group.com**P3 Automotive GmbH**

Heilbronner Straße 86

70191 Stuttgart

Germany

www.p3-group.com

This document and all information contained herein are the sole property of P3. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of P3. This document and its content shall not be used for any purpose other than that for which it is supplied.

AMERICAS

USA

GREENVILLE
1 North Main Street
4th Floor
Greenville, SC 29601

PORTLAND
tba

MEXICO

MEXICO CITY
Circuito Poetas No. 65,
Ciudad Satelite,
C.P. 53140
Naucalpan de Juarez

QUERÉTARO
Molino del Rey 24,
Colinas del Parque
C.P. 76140
Querétaro

SAN LUIS POTOSÍ
Sierra del Cobre 136
C.P. 78216
Lomas 4ta Sección

EUROPE

GERMANY

STUTTGART
Heilbronner Str. 86
70191 Stuttgart

WOLFSBURG
Schlosserstraße 8
38440 Wolfsburg

MUNICH
Wilhelm-Wagenfeld-Straße 30
80807 Munich

BERLIN
Berliner Straße 53
10713 Berlin

INGOLSTADT
Marie-Curie-Str. 22
85055 Ingolstadt

FRANCE

PARIS
6 Chemin des Montquartiers
92130 Issy-les-Moulineaux

ROMANIA

CLUJ-NAPOCA
Str Buftea nr 1
400606 Cluj-Napoca

SERBIA

BELGRADE
Bulevar Zorana Djindjica 2a
11070 Belgrade

ASIA

CHINA

BEIJING
Unit 5109, 5F, Door 5, Tower C,
Pacific Century Centre, 2 North
Worker Stadium Road, Chaoyang
District, 100027 Beijing

SHANGHAI
Unit 2590 Central Plaza,
381 Huai Hai Middle Road,
Huang Pu District
200020 Shanghai

SHENZHEN
Unit 8555,
Pingan Financial Center,
Fu Tian District,
518000 Shenzhen,

