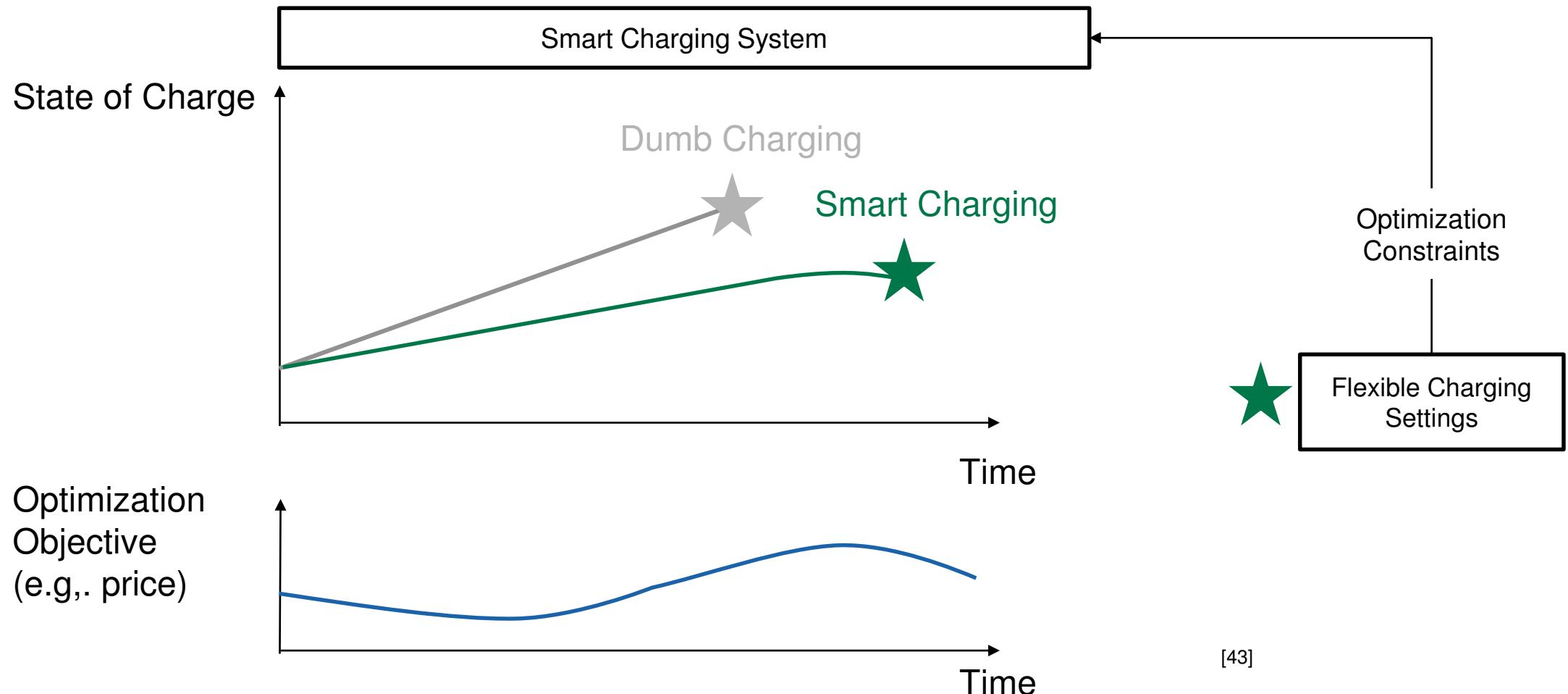


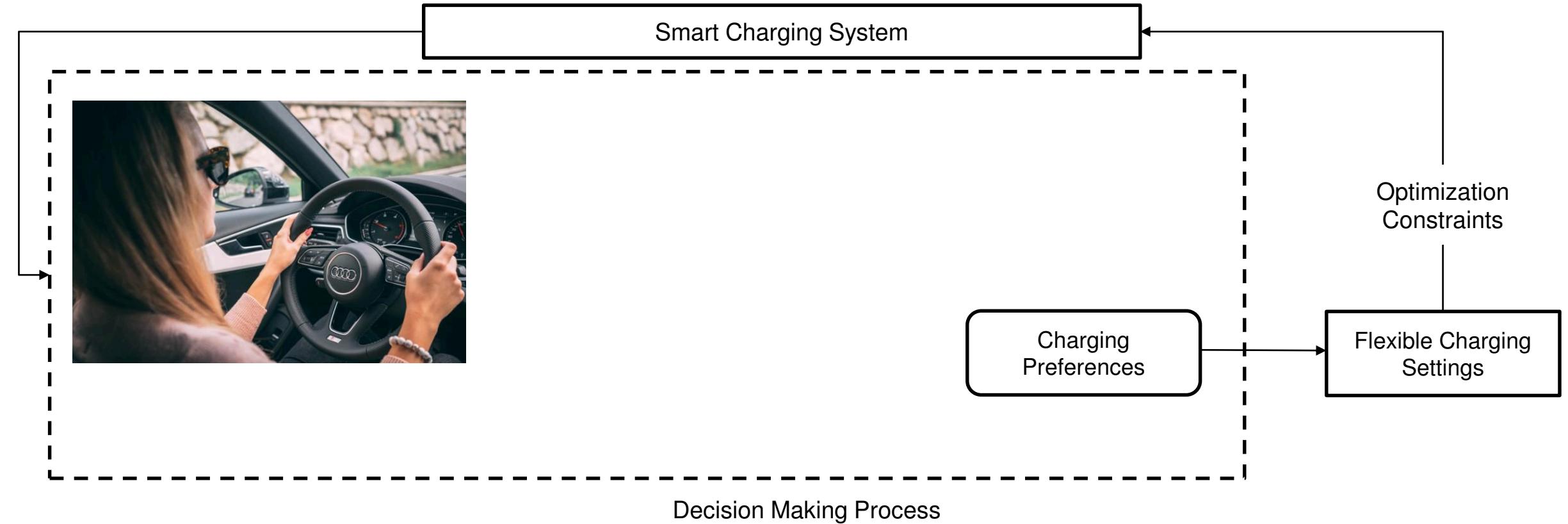
Quo vadis smart charging?

A literature review and expert survey on technical potentials
and user acceptance of smart charging systems


Julian Huber¹, Elisabeth Schaule², Dominik Jung², Christof Weinhardt²

¹FZI Forschungszentrum Informatik, Germany, julian.huber@fzi.de

²Karlsruhe Institute of Technology, Germany



INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

Motivation

German Driver

- likes driving
- is somehow concerned about the environment and charging costs

German Utility

- likes grid stability
- dislikes digging

Smart Charging

- systems use flexibility within the charging process to achieve different optimization objectives

Research Questions

RQ 1.2

- What **incentives** motivate BEV **drivers** to use smart charging systems?

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

RQ 2

- Do the most promising objectives of smart charging system operators **fit** the BEV drivers motivation to use smart charging systems?

Literature Review

- Yilmaz & Krein 2013 [11]
 - technical environment (battery charger topologies, charging power levels, and charging infrastructure)
- Garcia-Villalobos et al. 2014 [12]
 - main **objectives**, solvers and tools, software, and strategy
 - decentralized and centralized concepts
- Mwasilu et al. 2014 [13]
 - focus on renewable energy sources integration
- Benjamin, Jonn Axsen & Kempton 2017 [5]
 - Main objectives of smart charging systems:
 - financial
 - technical
 - socio-environmental

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators	Keywords	Source
Financial			
Socio-environmental			
Technical			

Table 2: Objectives for smart charging

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators Keywords	Source
Battery degradation	<i>'lifetime', 'life time', 'degradation', 'aging'</i>	[20]
Cost advantage	<i>'market', 'day ahead', 'cost'</i>	[27]
Socio-environmental		
Technical		

Table 2: Objectives for smart charging

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators Keywords	Source
Battery degradation	<i>'lifetime', 'life time', 'degradation', 'aging'</i>	[20]
Cost advantage	<i>'market', 'day ahead', 'cost'</i>	[27]
Social aspects	<i>'social', 'fairness'</i>	[28]
Integration of RES (renewable energy sources)	<i>'PV', 'pv', 'wind', 'RES'</i>	[7]
Technical		

Table 2: Objectives for smart charging

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators Keywords	Source
Battery degradation	<i>'lifetime', 'life time', 'degradation', 'aging'</i>	[20]
Cost advantage	<i>'market', 'day ahead', 'cost'</i>	[27]
Social aspects	<i>'social', 'fairness'</i>	[28]
Integration of RES (renewable energy sources)	<i>'PV', 'pv', 'wind', 'RES'</i>	[7]
Congestion management	<i>'load curve', 'flattening', 'peak', 'congestion'</i>	[7]
Ancillary services	<i>'frequency', 'voltage', 'power quality', 'losses'</i>	[7]

Table 2: Objectives for smart charging

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators Keywords	Source
Battery degradation	<i>'lifetime', 'life time', 'degradation', 'aging'</i>	[20]
Cost advantage	<i>'market', 'day ahead', 'cost'</i>	[27]
Social aspects	<i>'social', 'fairness'</i>	[28]
Integration of RES (renewable energy sources)	<i>'PV', 'pv', 'wind', 'RES'</i>	[7]
Congestion management	<i>'load curve', 'flattening', 'peak', 'congestion'</i>	[7]
Ancillary services	<i>'frequency', 'voltage', 'power quality', 'losses'</i>	[7]

Table 2: Objectives for smart charging

≡ Google Scholar

'Smart Charging'

Artikel

Ungefähr 848.000 Ergebnisse (0,03 Sek.)

Richard H Schallenberg. Prospects for the electric vehicle: a historical perspective. IEEE Transactions on Education, 23(3):137–143, 1980.

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators Keywords	Source
Battery degradation	<i>'lifetime', 'life time', 'degradation', 'aging'</i>	[20]
Cost advantage	<i>'market', 'day ahead', 'cost'</i>	[27]
Social aspects	<i>'social', 'fairness'</i>	[28]
Integration of RES (renewable energy sources)	<i>'PV', 'pv', 'wind', 'RES'</i>	[7]
Congestion management	<i>'load curve', 'flattening', 'peak', 'congestion'</i>	[7]
Ancillary services	<i>'frequency', 'voltage', 'power quality', 'losses'</i>	[7]

Table 2: Objectives for smart charging

≡ Google Scholar

'Smart Charging'

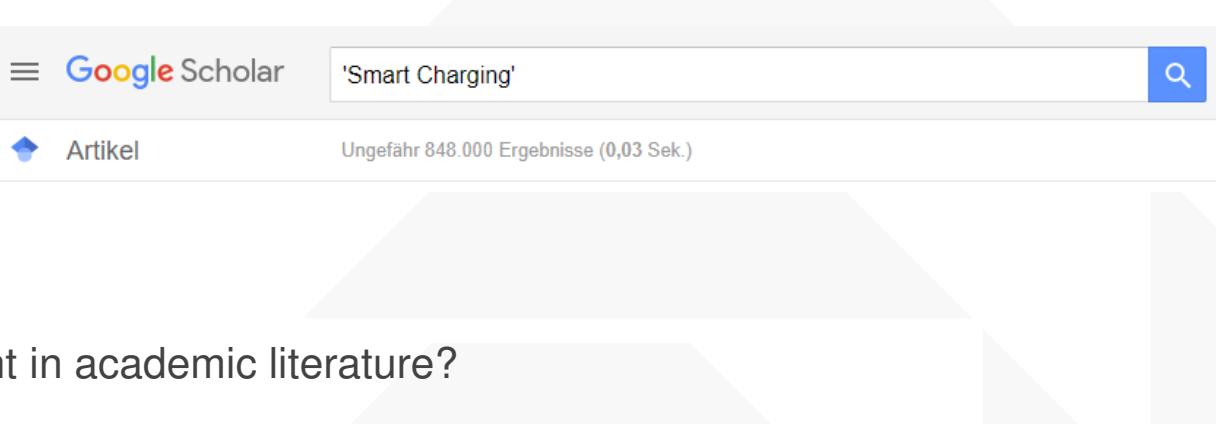
🔍

Artikel

Ungefähr 848.000 Ergebnisse (0,03 Sek.)

Search Term		
vehicle	charging	
objective	incentive	acceptance
ACM Digital Library	17	6
IEEE Explore	422	75
ScienceDirect	319	120

Table 1: Matches for the search term in different data bases


Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

Objectives	Concept Indicators Keywords	Source
Battery degradation	<i>'lifetime', 'life time', 'degradation', 'aging'</i>	[20]
Cost advantage	<i>'market', 'day ahead', 'cost'</i>	[27]
Social aspects	<i>'social', 'fairness'</i>	[28]
Integration of RES (renewable energy sources)	<i>'PV', 'pv', 'wind', 'RES'</i>	[7]
Congestion management	<i>'load curve', 'flattening', 'peak', 'congestion'</i>	[7]
Ancillary services	<i>'frequency', 'voltage', 'power quality', 'losses'</i>	[7]

Table 2: Objectives for smart charging

	Perspective		Objective						
Source	System Operator	Aggregator	End User	Battery	Cost	Social	RES	Congestion	Ancillary
[22]					●				●
[29]									●
[30]	●		●					●	
...									
Sum	112	76	89	125	634	74	293	225	309

Table 3: Results of the literature review

Literature Review

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?
- Cost reduction
- Most papers consider a integrated charging station operator that ...

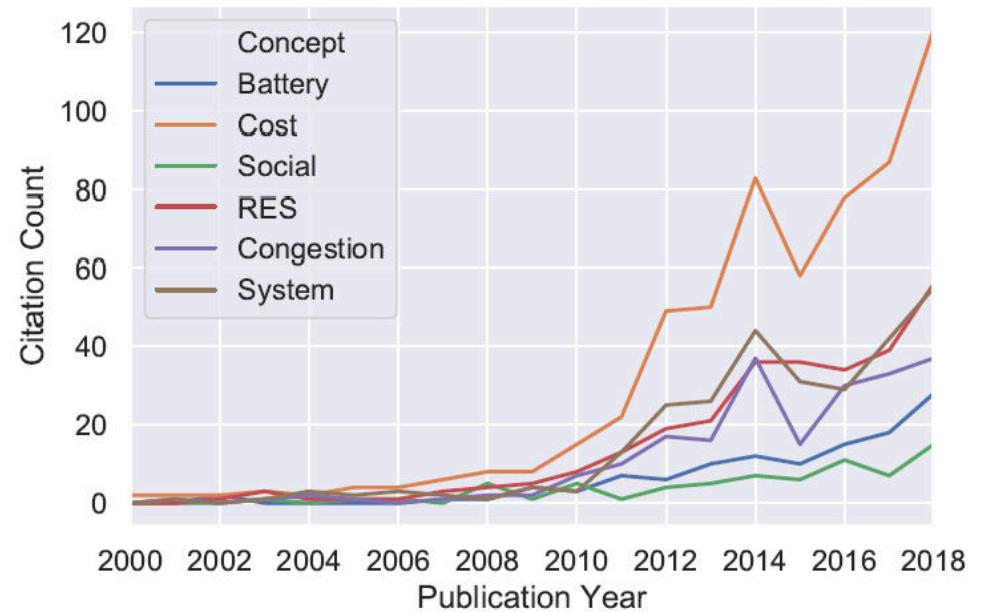


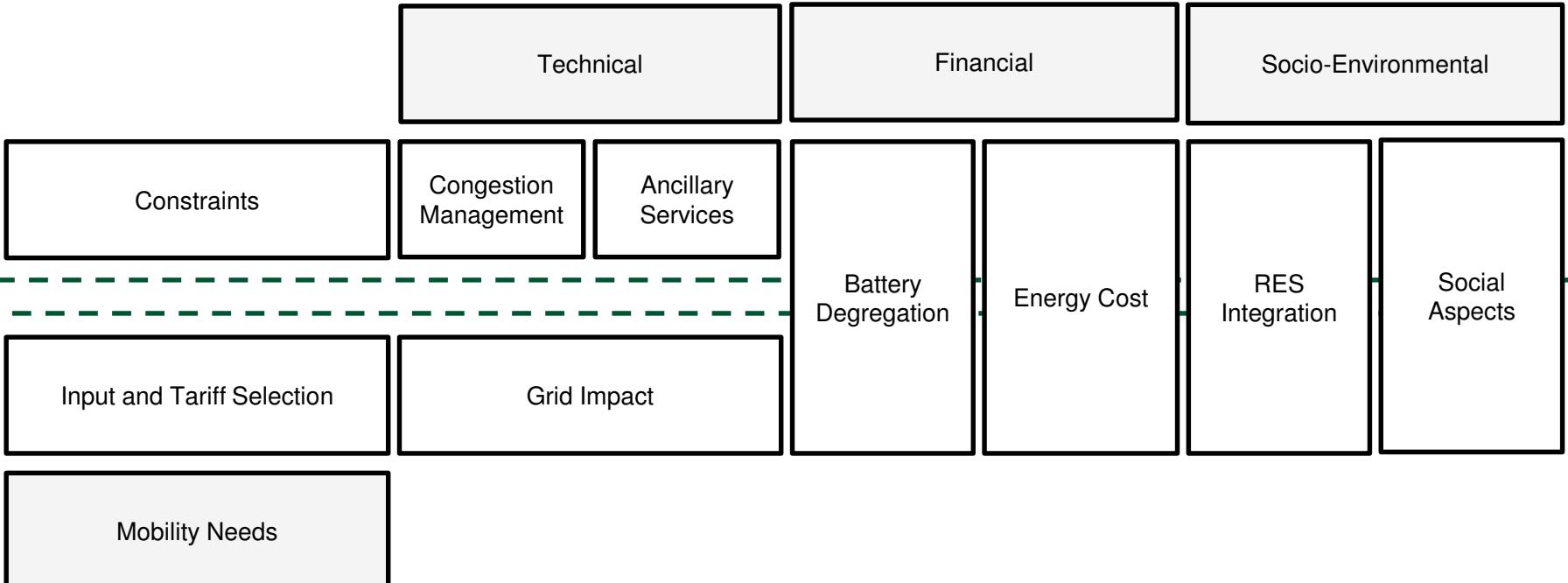
Figure 2: Occurrence of keywords in literature over time

Literature Review

RQ 1.2

- What **incentives** motivate BEV **drivers** to use smart charging systems?
- Cost reduction
- Renewable Integration

Objective	Incentive	Source
Battery degradation	Battery degradation	[20, 31]
Cost advantage	Cost advantage	[27, 31, 39]
Social aspects	Social aspects	[28]
Integration of RES	Integration of RES Environmental protection Health impact Climate impact	[7] [28] [38] [40, 3]
Congestion management and ancillary services	Grid impact	[7]


Table 4: Mapping of smart charging objectives with possible incentives

INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

Smart Charging System Operators Primary Objectives

BEV Drivers' Primary Objective

Results

What framings can convince BEV drivers to use smart charging?

- **Statements on smart charging**

Incentive	Example Statement
Battery degradation	<i>Flexible charging can help protect the battery.</i>
Cost advantage	<i>Flexible charging allows the user to benefit from lower electricity prices.</i>
Social aspects	<i>The power grid is shared with other users and benefits from the fact that they are flexible when charging BEVs.</i>
Integration of RES	<i>If users provide charging flexibility, the BEV can be charged with more solar and wind power.</i>

- **Expert Survey**

- 16 domain experts
- Scale 1: Technical accuracy [1-5]
- Scale 2: Persuasiveness [1-5]

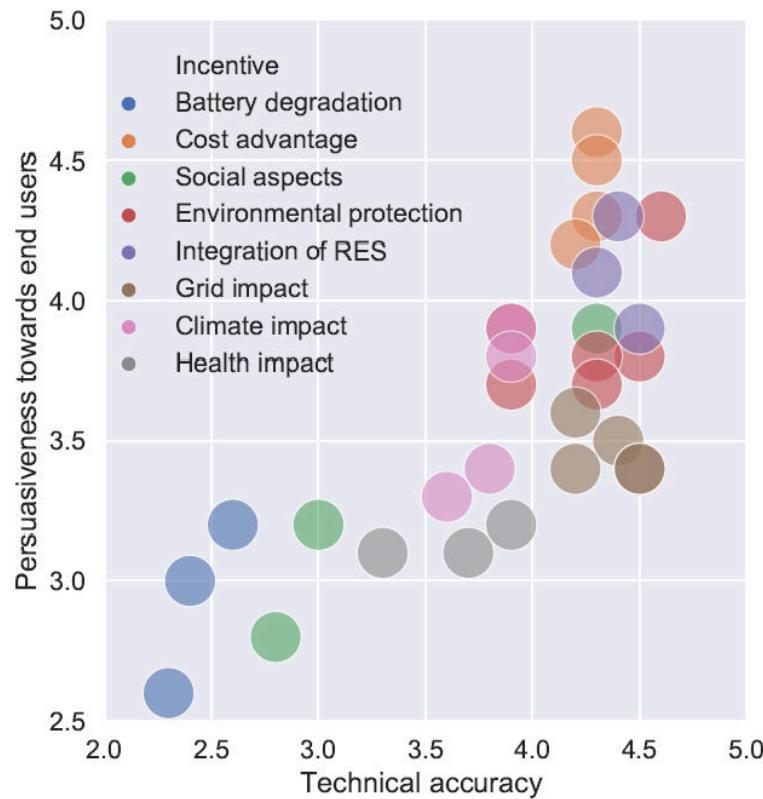


Figure 3: Statements evaluated on their technical accuracy (x-axis) and persuasiveness towards end users (y-axis)
EVS32 20.5.2019

Conclusion and Outlook

RQ 1.2

- What **incentives** motivate BEV **drivers** to use smart charging systems?

RQ 1.1

- What are **objectives** of charging system **operators** present in academic literature?

RQ 2

- Do the most promising objectives of smart charging system operators **fit** the BEV drivers motivation to use smart charging systems?

Conclusion and Outlook

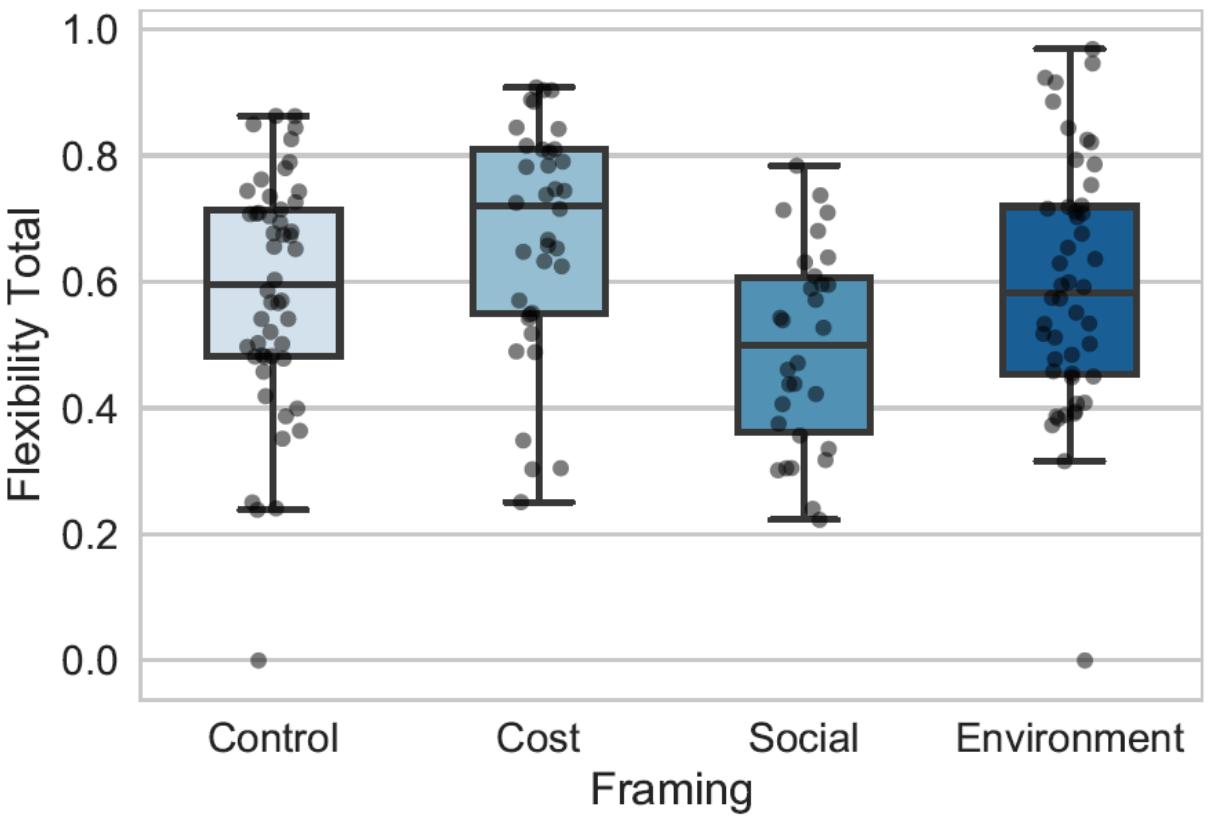
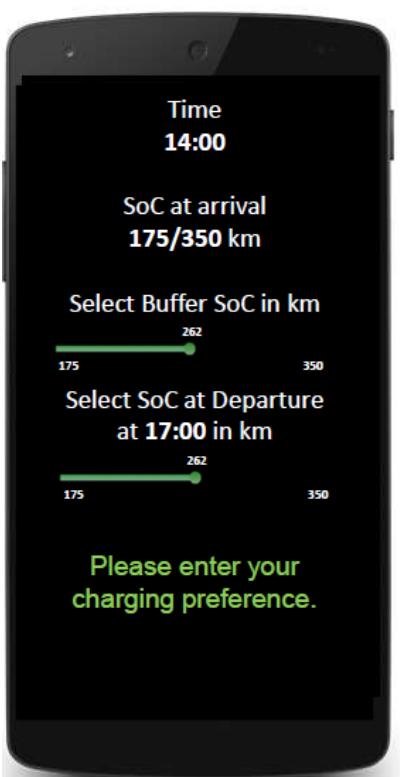
BEV Drivers

- can be motivated by cost savings and renewable integration

Photos by [Andraz Lazic](#) and [Jamar Pennyon](#) [Unsplash](#)

Successful Smart Charging Systems

- consider both sides
- price discounts & renewable integration



Digital Nudging in Smart Charging Systems

- use interface design to make BEV users more flexible
- framing messages can nudge users towards higher flexibility [8, 43]

Outlook

Online Experiment with BEV drivers

- Scenario based online experiment
- Hypothetical charging situations
- Different framing messages
- No incentives

VIelen
DANK

Contact

FZI Forschungszentrum Informatik

Julian Huber

Research Scientist

Haid-und-Neu-Str. 10-14
76131 Karlsruhe

Tel: +49 721 9654 - 817
E-Mail: julian.huber@fzi.de
Web: www.fzi.de

References

- [3] Julian Huber and C. Weinhardt. Waiting for the sun - can temporal flexibility in bev charging avoid carbon emissions? *Energy Informatics*, 1(1):49, Oct 2018.
- [5] Benjamin K Sovacool, Jonn Axsen, and Willett Kempton. The future promise of vehicle-to-grid (v2g) integration: a sociotechnical review and research agenda. *Annual Review of Environment and Resources*, 42:377–406, 2017.
- [8] Julian Huber, E. Schaule, and Dominik Jung. How to increase charging flexibility? developing and testing framing nudges for bev drivers. In 31st Conference on Environmental Informatics (EnviroInfo 2018), Garching, 5.-7. September 2018. LRZ, Garching, 2018.
- [11] Murat Yilmaz and Philip T Krein. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. *IEEE Transactions on Power Electronics*, 28(5):2151–2169, 2013.
- [12] J García-Villalobos, I Zamora, JI San Martín, FJ Asensio, and V Aperribay. Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches. *Renewable and Sustainable Energy Reviews*, 38:717–731, 2014.
- [13] Francis Mwasilu, Jackson John Justo, Eun-Kyung Kim, Ton Duc Do, and Jin-Woo Jung. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. *Renewable and sustainable energy reviews*, 34:501–516, 2014.
- [43] Julian Huber, E. Schaule, D. Jung, C. Weinhardt. Goal Framing in Smart Charging-Increasing BEV users' charging flexibility with Digital Nudges. In *Proceedings of European Conference on Information Systems (ECIS) (2019)*