

INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

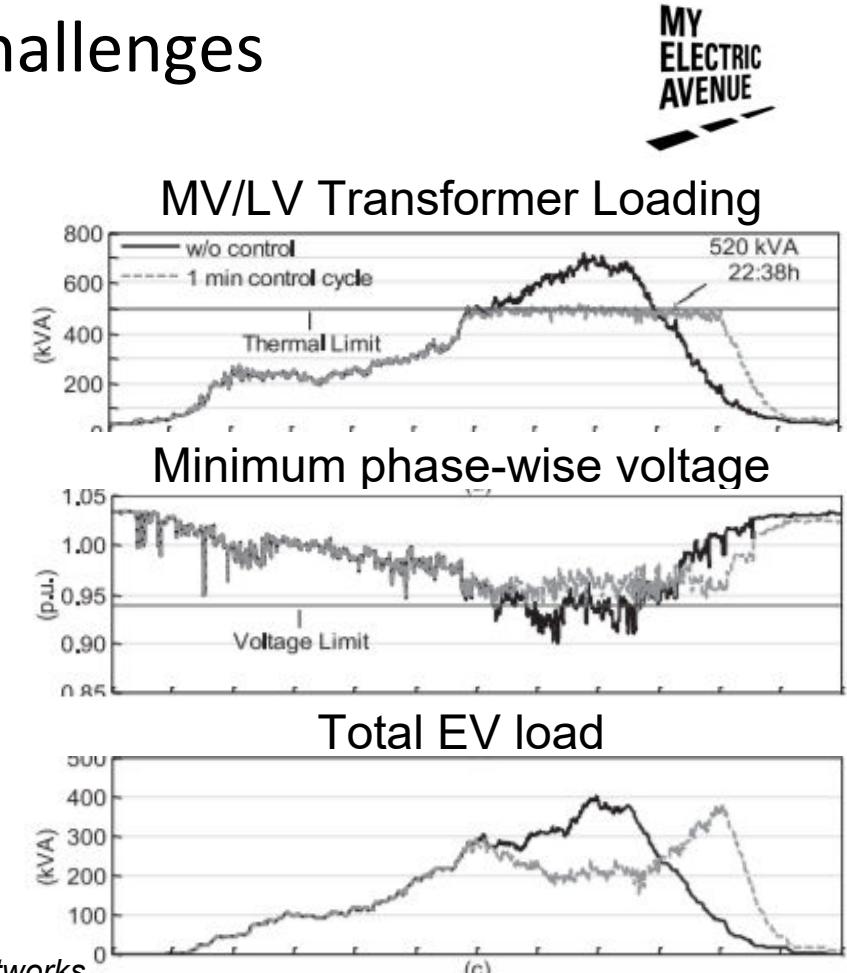
The road toward electric vehicles as flexibility providers for distribution systems. A techno-economic review.

Felipe GONZALEZ VENEGAS

Marc PETIT

Yannick PEREZ

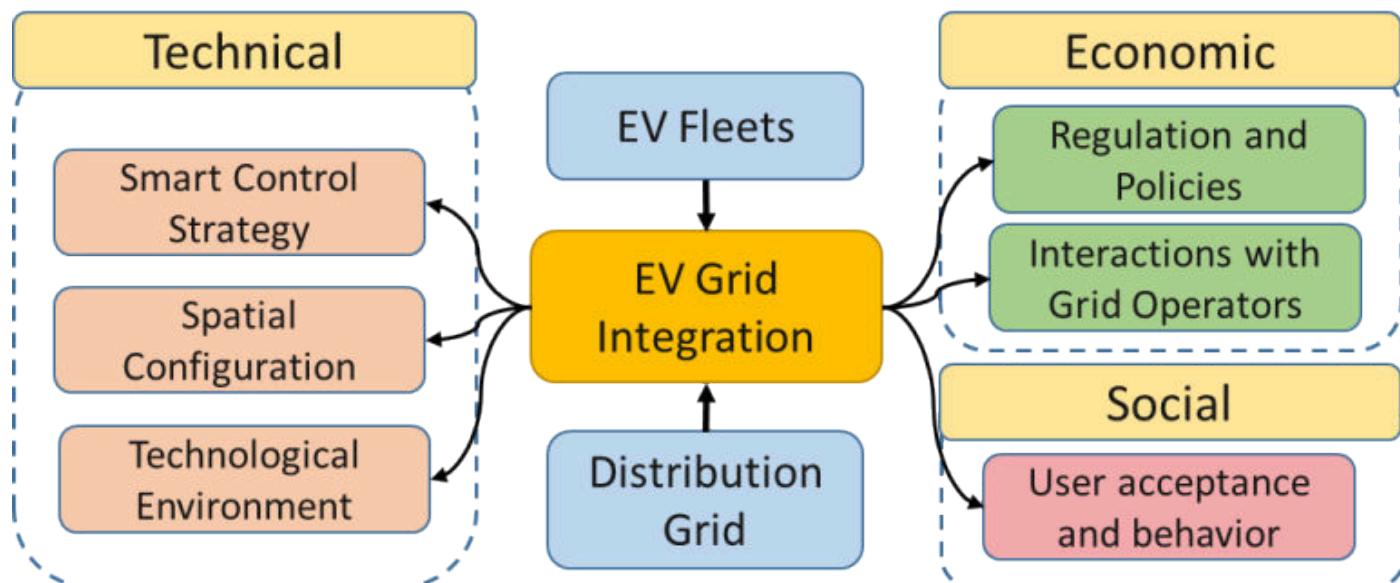
CentraleSupélec


Outline

- Motivation
- Objectives and Framework
- Technical and Economic Barriers
- Conclusions

Motivation

- Massive grid integration of EVs can pose serious challenges
 - Specially to distribution grids (local level)
- And also opportunities for optimized use of assets
 - Smart charging and V2G
 - Can defer or avoid costly reinforcements
 - Increase EV hosting capacity (+50-60%)*


[*] OFGEM, 2018, *Future Insight Series. Implications of the transition to Electric Vehicles*,

Source: Quiros-Tortos et al, 2016, *Control of EV Charging Points for Thermal and Voltage Management of LV Networks*

Objectives & framework

- **How can we exploit this flexibility?**
- Identify main technical and economic barriers for EV to provide flexibility at the distribution level

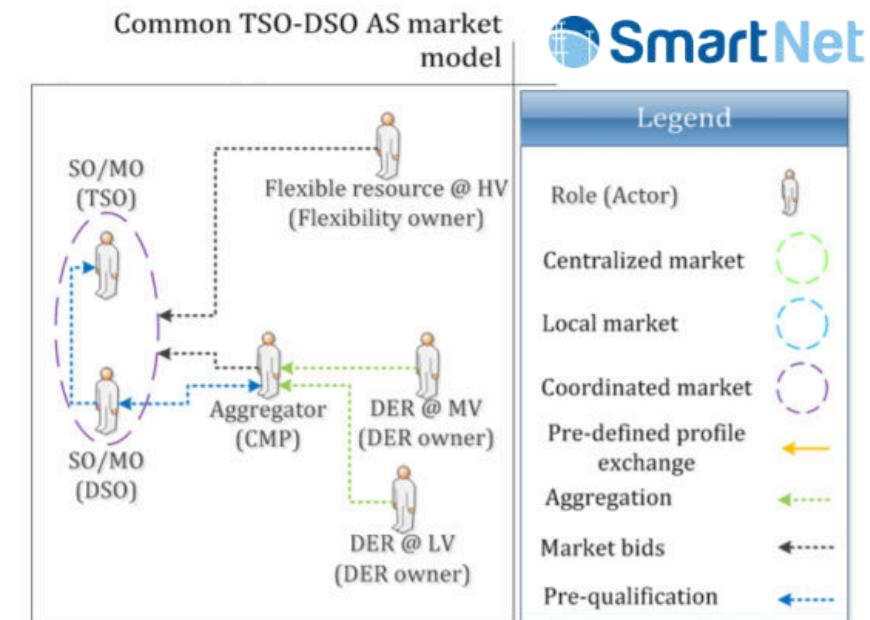
Technical Aspects

- Variety of proposed services at different levels of the grid.

Level	Customer	Service
Behind-the-meter	End-user/Building	Optimizing Electricity Bill Subscribed Power V2H/V2B/V2X
Local	DSO	Local Congestion Voltage regulation Phase-unbalances (LV) Load shaping
System-wide	TSO/BRP	Frequency Regulation Portfolio Optimization

- At distribution level, main value of flexibility lies on investment deferral

Technical flexibility, proven but needs improvements


- Technical flexibility has been proven practically
 - Frequency Regulation
 - Energy portfolio management
- Technological improvements are required, mainly for V2G-based services
 - Bidirectional chargers are not a mature technology
 - Battery degradation still an issue (though studies indicate grid services have minor effects)
 - ICTs standards are evolving (ex. ISO 15118) allowing for effective control of the charging process
 - Increased observability in distribution systems

Economic/Institutional Aspects

- Uncertain value of EV flexibility at distribution level
- Modernization of DSO's roles and responsibilities
 - From Fit-and-forget to **active management** of the network
 - To value flexibility instead of investing in infrastructure
 - Role of DSO as a market facilitator
 - Increased interaction between TSO-DSO

Economic Aspects

- Lack of DSO frameworks to procure flexibility (EU perspective)

Framework	Valorization	Example	Benefits	Risks
Rules-based	No value	<i>Reactive Power Provision</i>	Useful when no market solution	Technology bias Inefficiency
Network tariffs	Indirect	<i>Time-of-Use/CPP</i> <i>Dynamic Pricing</i> <i>Distribution Congestion Pricing</i>	Incentive for all users	Don't solve local issues Equalization principle Tariffs not set by DSO
Smart Connection Arrangements		<i>Variable Capacity Connection</i> 	Fast connection process Low connection costs	May preclude access to flex markets
Market based	Direct	<i>Bilateral Contracts</i> <i>Local flexibility market platforms</i> <i>Local Energy Markets (P2P)</i>	Preferred by regulators Competitive and transparent Foster innovation	Reduced size of local markets (competition, transaction costs)

... and advances

- Increasing interest by regulators for DSOs to use flexibility instead of costly reinforcements
 - European Commission Clean Energy Act 2016
- DSO active approach
 - UK: UKPN (London Area DNO)
 - Flexibility Tenders for investment deferral
 - Netherlands: Several DSO-led projects studying local flexibilities by EVs (ElaadNL)
 - And others initiatives (demo projects, testing local market solutions)
 - NODES (Norway, Germany), GOPACS (NL), Enera (Germany)

INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

Conclusions

Conclusions

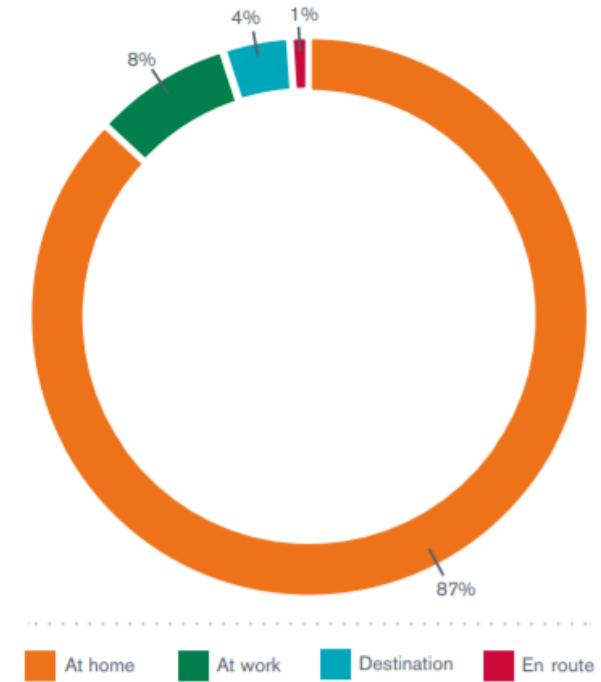
- EVs grid integration present risks but also opportunities (active grid management)
- Technically, EVs should capable of providing DSO services
- Main barriers for DSO services are economic/institutional, not technical
 - Uncertain value of DSO services
 - DSO's role towards active management of the grid
 - Lack of frameworks to value flexibility (though they are emerging)

The road ahead

- Multiple solutions for flexibility coexisting
 - Smart network tariffs to incentivize EV demand response
 - Smart connection agreements to reduce and expedite investments
 - Local flexibility markets for investment deferral (aggregators)
- One solution does not solve all problems !
 - Each framework has pros and cons
 - Diversity of problems, grids and users

INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

Thanks !
Questions?


Open questions – Future work

- Will EVs be able to participate in new DSO services (ex. Flex tenders)?
- What value for DSO services? And of V2G?
- TSO-DSO coordination. Stacking of DSO-TSO services ?
- How to use flexibility at low voltage grids? Markets might not be suited for it.
- How to achieve end-user acceptability?

Social aspects

- Flexibility strongly dependend user driving and charging behavior
 - Dependent on several factors
 - EVSE availability, workplace charging
 - Rural or urban
 - Private / company fleets
 - How will these behaviors evolve ?
- Demonstrator projects are a great source for understanding user behavior
 - SwitchEV, My Electric Avenue (UK).
- Consumer acceptance and engagement:
 - How to achieve it ?

Where EV users currently charge (UK) ?
Source: OFGEM, 2018 (from Regen)

Use cases

- Several use cases where EV flexibility can provide value for distribution grids
 - Investment deferral
 - Maintenance
 - Curtailment reduction / RES coupling
 - Unplanned