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Research background (1)

* Regenerative braking system of Electric Vehicles (EV)

* Braking the vehicle using motor regenerative torque without hydraulic braking

EL MOTOR%
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Research background (1)

* Smart regenerative braking system
* Automatically applying regenerative braking in deceleration conditions

* Improvements in driving convenience and energy efficiency
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Ref: https://www.hyundai.com/worldwide/en/eco/kona-electric/highlights RN iarsetbralting
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Related works on planning algorithm

Planning with optimization method* Planning with intelligent driver model**
= Generation of a continuous deceleration profile based on = Representation of individual driver characteristics
the model predictive control algorithm based on mathematical equations and explicit model
parameters

* Deceleration profile
Deceleration profile . dx

n
minimize f= Z (el Qe, + u] Ryuy + Au” RyAu) > =% —p
=0 Time “odr "
subject to X, = AX,; + Bu,, t=0,.. N
- 4 2
- > ) U = thnin and Uy < Umar, t=0,.., N. : d]}a . 1— v_ﬂ‘ B S*(Ua.‘ﬂva)
<« Relative velocity Va= g @ vo s

o
v

Relative distance

Can respond to various deceleration Can reflect the driver characteristics and
situations with safety deceleration specific profile
X Cannot reflect the driver characteristics X Can be applied only in the modeling conditions

* “On-road Motion Planning with Roadway-based Hierarchical Searching Space” — Wonteak ** “Congested traffic states in empirical observations and microscopic simulations”, Martin
Lim, Myoungho Sunwoo, IEEE-ITS, 2017

Treiber, Physical review E, 2000



e ==\
EVS32 |NTERNATIONAL

i_ﬁﬂ"{f.,... ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION

Research objective

* Design of planning management to select an optimal deceleration profile
* Determination of a weight factor between optimization method and driver model

* Reinforcement learning algorithm: safety, driver intention, energy efficiency

[Deceleration profile Planning management
Ampc
/ : EV
> ' Aget = AQppe + (1 — 1)a;
« Relative velocity set mpe ( ) tdm
A
L ~ N
Relative distance A Aot
PID regenerative
Deceleration profile Agent — Q learning torque controller
Time' Aidm s X 7\ y'y g 9 )
w 1if Dri E )
river ner
Safety ] [ ] [ 9y

intention efficiency )

v .
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Algorithm overview

Driving data

e Three drivers

* Preceding vehicle data

Preceding
vehicle

MPC algorithm

Planning with optimization

6\ Planning management

() e

* Longitudinal dynamics

\ 4

 Battery model

 IDM algorithm

lanning with driver model

Vehicle states

Torque set

 Deep Q network

e Reward calculation

Deceleration profile

\ 4

Torque controller
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Ivi 3 _-I Planning o]
hree drivers Deep Q k
B d il d I Reward calcul
1 3\
\J Electric vehicle modsl / Decelerat file
Longitudinal dynamic
Vahicla
Battery model Torque control ller
Torg t

EV model

" |Longitudinal dynamics model
= Battery model
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Longitudinal dynamics model

4 ] N
Vehicle m = mass
. . T = torque
Drivetrain v = velocity of the vehicle
‘ Chen model } Motor model H Drive shaft H Wheel —> I = inertia
vehicle -
. A A A , w = wheel
electric power . motor torque acceleration
s = shaft
driver demand torque regen motor torque drag force m = motor
ns = drivetrain ef ficiency
[ Driver interpretation ] [ Regenerative control ] [ Drag system ] ¢, = rolling registance coeff.
N . ¢, = rolling registance coeff.
- N c, = drag coeff.

Vehicle + Drivetrain

Driver input ay = (OsTnns/Tw — Fa)/my,

—»

m,=m, +mg+4l, + 01, + I

> Electric Motor .‘ O, s Vehicle acceleration
Vi T (4
Driving state F3 = (0.75¢c4v¢ + ¢ + cpvd) % .m s
F).._y
L y,

* “Electric and Hybrid Vehicles - Technologies, Modeling and Control : a Mechatronic Approach” — Amir Khajepour, Saber Fallah, Avesta Goodarzi
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Battery model

* Chen’s two-stage battery model”

Motor electric power

[
»

Auxiliary power

Chen model

SOC

v

R, R;
Ry
‘ —
Ve (SOC _|
€y C;

Voltage
Vbnttery

v

Current
.

R, (SOC) = Ry, eRovSOC + R,
Co(S0C) = Cy,elorS0C + C,,

v

Voltage [V]

Short — term dynamics

PN =

Long — term dynamics

State of charge [%]

V. = open circuit voltage
R = register
C = capacitor

10

*Chen, M., & Rincon-Mora, G. A. (2006). Accurate electrical battery model capable of predicting runtime and |V performance. IEEE transactions on energy conversion
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* Model parameter identification using vehicle driving data

Vehicle - Hyundai KONA EV

Model RMSE
pelicie 0.11 [m/s?] 0.988
acceleration
Y, 13.26 [A] 0.977
current

Torgue [Nm]

Battery current [A]

200 ~

100 ~

D_ -

=100 -

200 ~

100 +

=100 1

i —— motor torque

-~ brake torque

25 50 75 100

Time [s]
0 25 50 75 100

Time [s]

Motor torgue [Nm]

Acceleration [m/s?]

ﬂﬂﬂﬁ

1] —— maodel result

driving data
Iy
\
[I] 2I5 SID ?IS 160

Time [s]

—— without regeneration
-~ with regeneration

M [

0

25 50 15 100

Time [s]

L
=]
(=]

Shaft rotational speed [rad/s]

70.0
69.9 1
69.8 1

= 69.7 1

0 69.6 1
69.5 1
69.4 1 -

400

300 A

200

-~ driving data

} —— model result

0 25 50 75 100

Time [s]

—— without regeneration
with regeneration

e

0 25 50 75 100

Time [s]
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FProcliding Planning with optimization 3 '_.I Planning management
velfcle | s
= Three drivers '] +  MPC algerithm i + Deep Q network
Preceding vehicle da 2 \}
-"H-Janning with driver model

» IDM algorithm

Vahicle sfates

Planning algorithm

= Optimization method

= |ntelligent driver model
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Optimization method-based planning

. . R N 21 = measured acceleration
* Model pred | al h E | _—— decelertion prof
odel predictive control algorithm g, Gecclerationprfie rom WPC
< == control result
(=]
r N\ ® 01
. g . o
Model predictive control algorithm 3.
o
<
Np -2 T T T T T T T
T T T . 168 170 172 174 176 178 180
minimize  f = E (el Qel + ul Ru,) subjectto X¢yq = AXy + Bug Time [s]
]
- '
t=0 U 2 Upin and Up < Uy =40 ,\
* e Ermror (X, — X) * u,: Input (Vehicle Acc) o | ——t
= ]
E 20 ~ {
4 ~ [ —— state x1 - relative distance
X X, A B X X, A B X X, A B x X, A B desired relative distance
[20] [1 b 41 [ [20] [1 51 o] fo f4] [ v R I 0l === T
Stotot: Rotative distance | Desired rolative cIeNcs | oyqoratg vanice cynamios | Solel: Rolathe ditance | Dosirodelative detance | byycrouy vemicie cynamics | it Rt der | Detod et dce el o I —. 168 170 172 174 176 178 18O
X X, 4 B X X, 4 B X 1 i ] oo [ ] Time [s]
LI, heas? e i sy
i i ool ST i e I - R 0 ——F = -
Sl Tt v Dl B s | SO0 St DG g S DS, S22 P £,
.y —— state x2 - relative velocity
X X, A B =
State1: Relative distance e ] va o] . : : S 21 == desired relative velocity
) . . o 0 o1 [ Discrete vehicle dynamics °
Statez. Relatlve Veloclty State1: Relative distance = Desired relative distance Discrete vehicle cynamics = _3 i
State2: Relative velocity d, =TimeGap X vegy
\ / T T T T T T T
168 170 172 174 176 178 180
\ J

Time [s]
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Intelligent driver model-based planning

* Deceleration-specified intelligent driver model

* Parameter update using individual drivers’ driving data

r

Intelligent driver model

Model parameters

Parameter update
using driving data

4 M
Parametric equation
) 2
v(k) desr(k)
ak+1) = a, 1—( B e /i
Vref (k) d(k)
- J
4 Deceleration profile A
Time R
S \Brakmg start 4
*§ /
2 Jerk — 1/
< ..'.','_'_-'.:::.. H
gy
_ Adjustment pomt Termination point )

A

a: Acceleration
v:Velocity

d: Distance

N

e driving data

= driver model 1

— driver model 2
driver model 3

Acceleration [m/s?]
o —
1 Il

Time [s]

= preceding vehicle
= measured vehlocity
— driver model 1
= driver model 2
driver model 3

Time [s]

Will be presented 21/May, Section B5, Gyubin Sim
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Pracading L 3 Planning management
vehicla
+  Three drivers +  MPC algorithm + Deep Q network
* Preceding vehicle data * Reward calculation
|'-. T ]
. DM algorithm
Deceleral arofile
. L inal dyr 3
Vahicle states
B y model q Il
Torg

Planning management

" |ntroduction of reinforcement learning algorithm
= Application of Q learning algorithm
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Introduction of reinforcement learning algorithm’

* Machine learning concerned with how agent in state takes action in
environment so as to maximize cumulative reward

. w._ , Q learning — Estimation of Q value

Agent Q: Action value function
State, s Action. 4 ] Wreward ¥ - Expected cumulative reward (from state s, taking action a)

Q(S,A) =EQr|S; =54 = a)

Environment

Key Elements of RL

*RS Sutton, AG Barto. (1998). Introduction to reinforcement learning
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Application of Q learning algorithm to planning management

* Determination of weight factor as action of agent

Environment

Agent

Planning Weight factor A [ ¢ = max Q(s, a) Q value functlé)(r: .

/ a uhy ULy

Aset = Aampc + (1 = Dajgm N
l ) Q value
: State
Vehicle model >
Jl Vehicle state ﬂ Energy efficiency - Update ?
Q learning
i 2
Reward calculation Reward O = (Tt + 7y max Qe(Se+1 — @) = Q¢ (se, at))

\'4

Wtﬂ = WE - OS(IV(SIt

g

{[ Safety ][ Driver ][ Energy ]}
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Environment of Q learning algorithm

* Regenerative control according to the weight factor determined from agent
* Determination of state and reward by simulation

-

Environment Weight factor

[ Optimization method ] [ Intelligent driver model]

Aset = Aamuc + (1 - /l)aidm

v

Vehicle model

State

JlVehicle state JlEnergy efficiency 1. Safety reward : Penalty (rely;s < relgis cri)

| sefey | [ ower || Energy | 3. Energy reward: Increase in Battery SOC

Reward calculation ] Reward 2. Driver reward: Similarity with driving data

\. J
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Agent of Q learning algorithm
* Q network: Estimation of Q value, based on a sequential neural network
* Learning: Parameter update of Q network using reward from environment

~

Agent
) * Q network
Q network [ a = max Q(s, @) } ; N
State (t)
oM
/ sty | OShodhoN
a tate (1) S a7\,
value > 4& ﬁ".’“’"‘ A
\@},’,A"A‘V Y7 _ | Qvalue
State (t-2) > ‘\\'//A\\ Using time series information N
Q learning | W
2
Op = (Tt + 7 max Q¢ (St41 — @) — Qe (st a‘t)) State (t-n)
> t-3 t-2 t-1 t
Wt+t - Wt - D.5(IV§E L ’ )
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2.0 - . .
T - 715:06Hl paftaTr E0E » A deceleration profile is determined by the
1.5 ~— planning from IDM | E = proposed planning algorithm
planning from MPC | = & 70.04 4
1.0 1 w— control result § 50 A 8
= 8 . B Aset = A s (1 - ’l)aidm
u L —_—
E 0 ] T T regne:’atlue tl)r‘lll.IEI ?D-UO T T T T
g 0.0 1 0 2 4 6 0 2 4 6
= Time [s] Time [s]
$ 05
E = E —
o 10 .20 e riving data = = driving data
= ’ ‘E = preceding vehicle 2 45 4 . == control result
15 = % == control result % i
£157 %c 5 40 * Driver reward
(=} 1]
—-2.04 o E
. = 10 - ! : - :Té 35 1 ! T
"0 2 4 6 0 2 4 6 0 2 4 6
Time [s5] Time [s] Time [s]
1 =200 . g . p
i 0.0 = * Control result satisfies the safety criterion
< = E —400-
T 06 - § —a00
= [1r] .
5 0.4 - = mee driver reward e
< I- @ —1.0 1 == safety reward % “p0e variation
e | energy reward o — filted
0 T T T T _1.5 T T T T "'BUU T T T T T T
0 2 4 [ 0 2 4 6 0 1000 2000 3000 4000 5000

Time [s] Time [s] Learning iteration [-]
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Simulation results — Learning using various driving data

Test field . Expressway Urban
= driving data - T el 4
T 2] —+ planning from IDM ) O Model dependent pIannl}g
E planning from MPC E E
= ~— control results —c £ 0
= 0 = =
& 5 i c
g \ g 3
o ) — g g ~17
< -2 < <
— " 3 S ,
170 172 174 176 178 315 320 325 845 B850 855 860 865 870 appropriate
Time [s] Time [s] | Time [s] . PProp
30 ~ . 100 pIanmrF] resglffetwork
7 e driving data W 20 - . N w
E = preceding vehicle E E 7.5 (
207 — = control result > 2 5.0 | Q-network
8 %—:—’: g 10 e
£ 101 . 2 4= - N </
T T T 1] T T T - 0.0 + T T T T T "
170 172 174 176 178 315 320 335 I 845 B850 855 860 865 870 rithm=based
Time [s] »ul Time [s] P Time [s]
60 v/ B 20
E 40 -\_ E 40 T E 15 i
w | w a
E e T g 101
£ 20§ = driving data 7 £ .
(s} == control result wy . O - a g
Hy
O T T T 0 T T T D T T T T T
170 172 174 176 1?8: 315 320 325 845 850 855 860 865 870 j

Time [s] Time [s] Time [s]
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Simulation results — Driver characteristics

Control result

2.0

== driving data n 17:3 ——— preceding vehicle
1.5 1 s control result of driver 1 E 15.0 * Learned agents same start
L =t contral resuib b ariver 2| - & conditions for deceleration
control result of driver 3 9125
% 05 S
£ 10.0
S 00 ' j
8 d : ﬂm:_, [s] * ? each driver
g —0.5 & characteris )
3 E ( Q-network
U =7.0 1 [+ 1} -
< 3 0 e a
-15 2 Q-network
- D 40 ‘ofiles
-2.0 1 2
F </
—2.5 T T T 9 3[:' T T T
o
0 2 4 6 8 0 2 4 6 8
Time [s] Time [s]
L/
Planning from IDM

Acceleration [m/s?]
I\IJ o Pt
Action - A
3% F=4
—

Time [s] Time [s]
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summary

* In this paper, we proposed a regenerative control system which reflects
individual driver characteristics based on the reinforcement learning algorithm

* Electric vehicle model: Vehicle longitudinal dynamic model, Battery model
* Planning algorithm: Optimization method, Intelligent driver model

* Planning management: Determination of weight factor with Q learning algorithm

* The validation results show that the generated deceleration profile maximizes
the reward while representing driver characteristics under various deceleration
conditions
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Thank you for your attention!!
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Extra slide
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Vehicle dynamics

r \ A
Vehicle configuration Dynamic equations Total longitudinal motion equation
" ________________________________ \
N\ I Al f e e e e e, e, e e, e e e e e e e - —— -
Faero | Aerodynamic resistance force | B I
I F | E 1 C. A2 ! mx = = Foero = Ry =Ry — Fgraa |
~Fgrad [ = —pCqaAsv | !
R Yl ' aero a i P /8 [y
¢ — | ‘ i
— \\ S N |
R‘"_' — : X Rolling resistance force !
______ LT . | R, = fmg |
: . J !
| |
\_ J/ 1 . . A
! Gradient resistance force 1
. 1 —
e \ : F_grad = mgSlnB | m__ ms . I I .
| Gearbox I t\ J g = gravitational acceleration
. [— - 1 S e meeeo . ! v = velocity of the vehicle
1 I 1 x = moving distance of the vehicle
I I ! ——— : 6 = the road slope angle
: : I : Longitudinal tire traction force f = rolling resistance coef ficient
1 1 — B = gear ratio
1 : T = bnt
1 Electric Motor I Tw 1 wafel ﬁ motor n = ef ficiency of whole powertrain
| 1 | : * = Twheel /Twheel Pa = air density
: L . Cy = drag coef ficient
I B, Wheel /| \_ ) Ay = vehicle front projection area

Reference : “Electric and Hybrid Vehicles - Technologies, Modeling and Control : a Mechatronic Approach” - Amir Khajepour, Saber Fallah, Avesta Goodarzi
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Electric vehicle model
o I ™

( \ ( \
! Construction ! ' Parameter identification !
1 |
: : : = lsqcurvefit(fun,x8,xdata,ydata) :
1 |
! tmotor * EV Model # ! I '
a I . - , . !
i Vvenicle vehicle ; Find coefficients x to best fit the nonlinear |
l ! l function f(x, xdata) to the data ydata ;
| I
I * Assumptions : No wind, no slope " I :
N e e e e o o o e e e e e e e e e e e e e - ——— N e e e e e e e e e e e e e e e e e e e e e e e e e e e e o e = =
————————————————————————————————— f(x,xdata) : EV model e N
Model ydata : vehicle test data in Midan city

Wehicle acceleration RMSE | 0.0011 0.9599

Model acceleration > i
< [mszooonn| 0.0011

Valid Model

620 (Vlaue of R? is near 1,
Value of RMSE is near 0)

o o —
—— o e e e o e e e e e o e
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Model parameter identification

* Using vehicle experiment data

Description Value [unit] Description Value [unit]
Vehicle acceleration [m/s?] Inertia of wheel 0.14 [khm?]
Vehicle velocity [m/s] Inertia of motor 0.028 [khm?]
Motor torque [Nm] Inertia of shaft 0.75 [khm?]
Drag force [N] Air drag coefficient 0.171 [Ns?/m?]
Wheel radius 0.318 [m] Rolling coefficient 143 [N]
Gear ratio of shaft 7.98 [-] Rolling coefficient 0.389 [Ns?/m?]
Efficiency of shaft 0.99 [-] Additional mass 100 [kg]
Empty vehicle mass 1685 [kq]
Description Value [unit] Description Value [unit]
Series register [Ohm] Short capacitor param a -649
Short register param a 76.52 Short capacitor param b -64.3
Short register param b -7.95 Short capacitor param ¢ 12692
Short register param ¢ 23.83 Long capacitor param a -78409
Long register param a 5.21 Long capacitor param b -0.013
Long register param b -35.23 Long capacitor param c 30802
Long register param ¢ 124.9 Open circuit voltage 356 [V]
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Aerodynamic drag force

* Equation of Aerodynamic drag force

1
Faero = EPCdAF(Vx + Vwind)2

- p :mass density of air

- C4 : aerodynamic drag coefficient
- Ar : frontal area of the vehicle

- Viyina - Wind velocity
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Rolling resistance force

* Force from energy loss of tire material

Rxf + Ry =f (sz + ;)

- R, : rolling resistance force
- f :rolling resistance coefficient
- E, : distribution normal load

: Force
distribution

i éR =FZ(M)

X
Ax Tstat
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Reference data : Real driving data, GA: Genetic algorithm, V,. : open — curcuit voltage

I\/l O d e | p a ra M ete r O ptl m | Za t | O N Powery,,, : Auxiliary electric power consumption, LUT : Look — up table

* Pareto optimal solution EE
o |V|u|ti_objective optimization J1 = RMSE of SOC, J> = RMSE of voltage, J3 = RMSE of current
Optimal problem : Minimize J,J2, /3
R, R, R
- 2 Input : Ry, Ry, R, ..., C2,, Poweryce, Voo, Voo vs SOC LUT (29 params)
U, (SOC) Ey H | I__l— e
€y C; I Vbattery Optimizer : Multi objcective GA
. ]
5
RO 0.0012 : .
R1 a 1 604 Pareto optimal solution
R1_b 0.3
R1_c 2.4
C;_C s Optimal solution J1
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Deceleration condition

i 4 I
4 Driving data N Planning (" Vehicle model A

* \Vehicle acceleration

: Driver model Sidm " _ I
Vehlcle. speed | i L ) Planning e egenerative contro
Preceding vehicle speed | B

management Aset
Relative distance N -
Motor torque, speed

1 1
1 1
1
1
1
. . : I
e e e e e e o o o o e o e o o o o o o o o o T o o o o o o T o o T o o 2 o o o o o T o P o o T o o e o T o o o o T o o o o S P o T o o T o o e o e e e e e e e e e e 4
—————————————————————————————————————————————————————————————————————————————————————
N\,
- - 7 \
i i
! 1
! 1

K j Acceleration condition

Optimization .
N\ Y, mpc - J

v Vehicle model

Deceleration condition
recognition

Driving data operation

_____________________________________________________________________________________
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Driving data of divergence environment
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omay
\ 8w

: : o 10 ~ 20 o 15 o 15
configuration = == e
o : 4 o 1~8 o : 4
Q 0.1 Q2 0.1 Q. 0.02~05
o 0.1 & 0.1 o 0.02~0.5
Q. 0.1 Q. 0.1 @ 0.02~0.5
Np E"_" 29 === Measured acceleration F 2o == Measured acceleration E"_" 29 === Measured acceleration
_ z : T AT T i — Np: 10 & — 011 i — Q2: 0.02
minimize f - (et Qet + U Rut) E 11 o< np:1s E 19 -= o1:a E 11 == 0201
‘=0 2 o] — Np:20 S o] — ous g o] — o205
= © = v
@ W ] .
T -1 T -1 T -1 \
) 2 g 2 ’
* Et. E”Gr(xr _X) { _2 T T T T T T T { _2 T T T T T T T { _2 T T T T T T T
_ . 168 170 172 174 176 178 180 168 170 172 174 176 178 180 168 170 172 174 176 178 180
* u,: Input (Vehicle Acc) Time [s] Time [s] Time [s]
6_
— | —np0 — | = qu1 —
] _ Ead __ wn £ o E 27
subjectto  Xiv1 = AX; + Buy I~ Np: 15 = 4 QL: 4 =
5 Np: 20 ] - QL8 5
@ > @ [+F) 0 * R
Up = Upin and Us < Uppay p PES f- o — 0Q2:0.02
o m oy :""\ = — 02 0.1 . ———
70 " S P v “ NN %-21— Qros "~ _
168 170 172 174 176 178 180 168 170 172 174 176 178 180 168 170 172 174 176 178 180
Time [s] Time [s] Time [s]
T 0 — o e —— w =
IQl 0 ] N E E E
Q= 5 5 5
0 Q2 p E 5] = &
4 — N 10 2] 4
@ - . @ @ - .
g MNp: 15 g g Q2: 0.1
Ro—a == Np: 20 & in == Q2:05
168 170 172 174 176 178 180 168 170 172 174 176 178 180 168 170 172 174 176 178 180

Time [s] Time [s] Time [s]
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Proposed model - Modified intelligent driver model for SRB
* Deceleration profile prediction based on parametric equations

* Deceleration condition recognition when release timing of acceleration pedal
* Activation of model parameters according to deceleration condition and driver

* Deceleration prediction using different parametric equations depending on braking section

~

-
p
Proposed model Deceleration profile prediction
: o ' 's ) 2
Deceleration condition Model parameter - variable a=a, 1 ( v ) (de”)
Static Dynamic P v ref d
Deceleration characteristics )
— = ) )y » Vo5 f(model parameters)
= “ 7 d.pp: f(model parameters)
Braking section - period ‘_ t; : Braking starttiming Timey.
Driver 77 T I > Time @ Initial jerk
c : ! :
S 21 |
= = : ; >
S & & 5 [ A
dah & ™ 3 | ! 5
<) 1| Do
------------------------------- <v @nax: Maximum deceleratio
- _/
y
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Model parameters about deceleration

* Representation of individual driver characteristics

* Transition timings of braking sections
* Acceleration and jerk
* Relative distance to objective | | | ti, taay, > Transition timings

Time

* Termination condition

a.: Coasting acceleration -. @ !
| i
_-i;: Initial jerk ' Termination condition

t. :ﬁﬂnal :ﬁm(kf)

: Coasting section
: Initial section
: Adjustment section

I

I

|

I

] |
@ !
I

I

I

I : Termination section

®Eeee

' Acceleration

a, : Adjustment
acceleration

@may - Maximum acceleration value --~~



INTERNATIONAL @

ELECTRIC VEHICLE SYMPOSIUM & EXHIBITION  %G®

Driver characteristics analysis

* Analysis of the driver characteristics based on model parameters

Time Initial jerk (¢;) Maximum deceleration (a,,,.)
> 0 T T
| | | |
-1 __ Acceleration I I I |
Index — ' : : :
c " o I I I
o = u'%
© £ o : s :
) = 1 a | 1
[] [ = D&"J
8 _3 2 - -4 : | : :
< v  FreEaaaaw | | | |
| | | |
i, .s, Reference I I I I
acceleration 6 Looe : ' i
0 1 2 3 4
» Indicate the initial deceleration situation Acceleration index [m J;S2]
Measured profiles Prediction result
0 &-.' T T T s 0 — T T T _rf ~
— . i i 1 I
Sl @; , Initial jerk Tt g ! |
E Amax » Maximum £ L ] /
=2y deceleration -2 L y
= [ = = ——
-
g3 O - g3 )
o m— river 1 i o ey g
E]j: -4 gn:ver; E]j: -4 gn:veri
e riyer === Uner
_5 1 1 1 _5 1 1 1
0 2 4 G B 140 0 2 4 G B 140

Time [=] Time [=]
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Details for reward calculation

Yarpy = Cp * I(adrv - actl)l + Cp * I(UE{dru o UEICII)I + Cz * I(disdrv o disct!’)l

c, =1, cz = 0.5, c3 =0.5
Teng = C soc c. = 10
p
c, dis <dis.,;
rsaf =4C¢ dis <0 Cg = 10, Co = 100, discri =3m
0 else
.

Ysum = Tdrv T Teng + Vsaf

Acceleration [mfs™2]

e driving data

= planning from IDM
planning from MPC

s control result

Time [s]

| m—— battery soc

0 2 4 B
Time [s]

Welocity [m/s]

10+

Relative distance [m]

20 4

15 4

F-%
(¥, ]
1

=
a
L

ad
(5]
"

= e driving data
= preceding vehicle
® — = control result
0 2 4 [
Time [s]

e driving data
== control result

i i

W] 2 4 6
Tirme [s]
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Details of Q network model

Input sequence #

Model summary AN
a A\
Layer (type) Output Shape Param # E‘_\ E‘_\
— e o EEE
Istm_1 (LSTM) (None, 265) 290440 { i LSTM b LsTM N bl LSTM
dense_1 (Dense) (None, 6) 1596 Node # &
Total params: 292,036 Dense

Trainable params: 292,036 \ ]

Non-trainable params: O
Output #

Two layers
(Sequential + output)

Layer
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Long short term memory networks (1)

* The core idea behind LSTM (Long Short Term Memory network)

* To relieve the vanishing gradient problem, LSTM uses cell state and gate(sigmoid function)
* Cell state is a conveyor belt carrying information.

* Gates(sigmoid function) determine to remove or add information to the cell state

Output of sigmoid function is from 0 to 1. It is used as gate (0: let nothing through, 1: let everything through)

+
> | 1
0 1

®
®

LSTM

Cell state Sigmoid function (o)
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Deep Q - learning’

* Experience replay

- "Deep Q-learning from Demonstrations" , arXiv (Open access, Cornell University
Library), November, 2017, Google DeepMind Team (Todd Hester, etc)

Saving experiences (states, action, reward, next states) in a replay memory

* Training neural network with randomly selected experiences from the replay memory

Overwriting the oldest self-generated experiences if over capacity

Reward

Experiences
v

Replay
memory

Agent
—_ //
Learning \\ ’(' —

ando Data ~, W4/ /

}k-up/v . '
Moo=t - ~twork
Makes mini-batches /
to update neural networks !!

Environment |«

States

Action
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Q-learning

* Policy evaluation

e Value function is updated by the current value (t), reward (t+1), and expected value (t+1) with the policy

Example) Updated value
qﬂ'(st’ at) & qn(st; at) + (I(yt - qff(stl at)) TRI+1
SI+1
(Rt+1+m6}X qn(St+1, a’)) n-:f}an'(sﬁl;a)
“ e & @0
Trajectory 4 (Sper @) = 0
q‘u'(St+1: ud) =0 max q,,(SH.p ur) =5
2 SNID Gn(5021,a}) = 0 w
1 gasea) =5 | |
Value update in Q-learning

0 0

0\ 5S¢ > q,(s1,a,) <3+ (0.2)((r, +5) — 3)
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Deep Q - network (DQN)’ Lo rton

* Network update mx __

descent

* Cloning the Q network (Design with same network structure and update same parameters) i

* Approximating target values / updating parameters at every episode (Q network updates at every step)

€ Learning policy

Learning rate Discount factor Old value
Q(S:,Ar) < Q(St, AP fRes 1 HPMax Q(S1,a") — Q(S;
Updated  Old value Reward 2
value Estimation of future value
Y
. v Learned value
€ Loss function
Inn(0) = (answer — vrediction Network parameter
R et = (Regs + ¥ max Qi1 @) - GSs S )
- "Deep Q-learning from Demonstrations" , arXiv (Open access, Cornell University Answer Predlctlon

Library), November, 2017, Google DeepMind Team (Todd Hester, etc) (Target network) (Q network)
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Result — driver 1 (all driving cases)

Acceleration [m/fs™2] Acceleration [m/s™2]

Acceleration [m/s™2]

2 T i
0 1 - . :
driving data o ; Il
I U ’ V
model acc set i A . '
=21 cruise acc set ' ¥--1
—— control results
E} lli'lﬂ' 260 360 AIIJCI 560 560
Time [s]
2 =
u -
_2 <
8] 200 400 600 800 1000 1200
Time [s]
2 -
u - —_—
(L]
—74
1] 250 500 750 1000 1250 1500 1750

Time [s]

Acceleration [m/s~ 2]

Acceleration [m/s™2]

L ® T Sl T L S e e
= ,
S |
850 855 860 B65 870
Time [s]

o 200

600 800

Time [s]

400




