

Simulating Electric Vehicle Diffusion and Charging Activities in France and Germany

21.05.2019, EVS32, Lyon

Axel Ensslen, Christian Will, Patrick Jochem

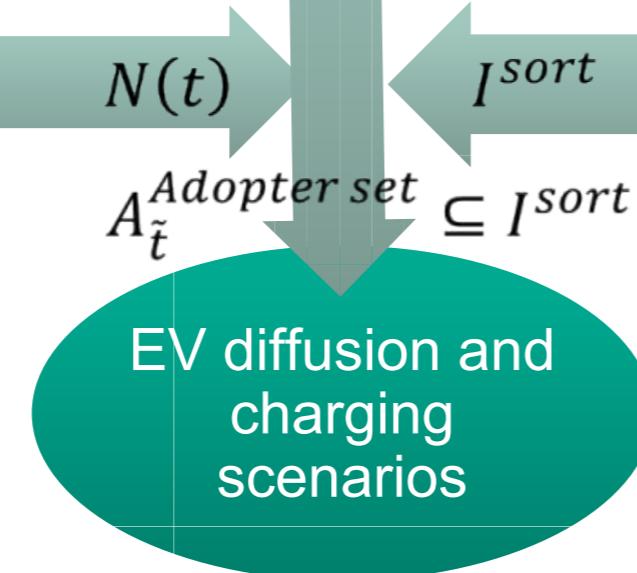
Institute of Industrial Production (IIP), French-German Institute for Environmental Research (DFIU), Chair of Energy Economics (Wolf Fichtner)

Motivation

- Greenhouse gas (GHG) emissions have an impact on the climate, with associated undesirable side effects (Stern, 2007).
- Consequence in Europe: Agreement on long-term targets to reduce GHG. → Reduction by 80% in 2050 compared to 1990 (European Commission 2019a).
- Growing share of GHG emissions in the transport sector during the last decade. → High need for emission reductions!
- Electrification of cars seems to be a promising strategy.

Source: European Commission (2019b)

Research questions


- Knowledge on EV diffusion and user behavior is important in order to analyze **potential future effects on power supply**.
- A large body of literature on electric vehicle (EV) diffusion models is available (e.g. Al-Alawi & Bradley 2013; Gnann & Plötz 2015; Jochem et al. 2018).
- **Hybrid approaches**, considering **micro** and **macro** aspects seem to be promising (Jochem et al. 2018).
- We focus on the following research questions (RQs):
 - RQ1: How could the diffusion and adoption of EV be modelled for France (FR) and Germany (GER)?
 - RQ2: With which EV charging behavior could these diffusion scenarios be associated?
 - RQ3: What are the effects of a re-sampling approach intending to reduce computational effort?

Hybrid EV diffusion modelling approach

$$N(t) = M \frac{1 - e^{-(p+q)(t-b)}}{1 + \frac{q}{p} e^{-(p+q)(t-b)}}$$

Top-down macro-econometric
Bass diffusion model

Representative mobility studies for FR and GER (MiD, ENTD)

$$I^{\text{sort}} = \{i \in I : p_1^{\text{adoption}} \stackrel{\text{EV}}{\geq} \cdots \stackrel{\text{EV}}{\geq} p_I^{\text{adoption}}\}$$

Bottom-up micro-econometric binary logistic **EV adoption model**

How are EV adopters selected?

Method 1: $A_{\tilde{t}}^{\text{Adopter set}} \subseteq I^{\text{sort}}$

Method 2: $\hat{A}_{\tilde{t}}^{\text{Adopter set}} \subseteq \hat{I}_{\tilde{t}}^{\text{sort}}$

Legend:

t : Year considered

$N(t)$: Year-specific number of EV adopters

M : Market potential

p : Innovation coefficient

q : Imitation coefficient

I : List of adopters

I^{sort} : Sorted list of EV adopters (full sample)

$\hat{I}_{\tilde{t}}^{\text{sort}}$: Sorted list of EV adopters (reduced sample)

i : Variable of adopters

$p_i^{\text{EV adoption}}$: EV adoption probability of i

$A_{\tilde{t}}^{\text{Adopter set}}$: Selection of EV adopters

Pseudocodes of two different sampling methods

Pseudocode of sampling method 1

```

1 for all  $\tilde{t}$  do
2   while  $i \in I^{sort} \wedge W \leq N(\tilde{t})$ 
3     Set  $W = W + w_i$ 
4     Add  $i$  to  $A_{\tilde{t}}^{Adopter set}$ 
5   endwhile
6 end for

```

- EV adopters with $p_i^{EV \text{ adoption}}$ sufficiently high are considered in $A_{\tilde{t}}^{Adopter set}$.

Legend:

\tilde{t} : Year considered

w_i, \hat{w}_i : Weight of adopter i, \hat{i}

W : Cumulated weights

$\hat{I}_{\tilde{t}}^{sort}$: Sorted list of adopters (reduced sample)

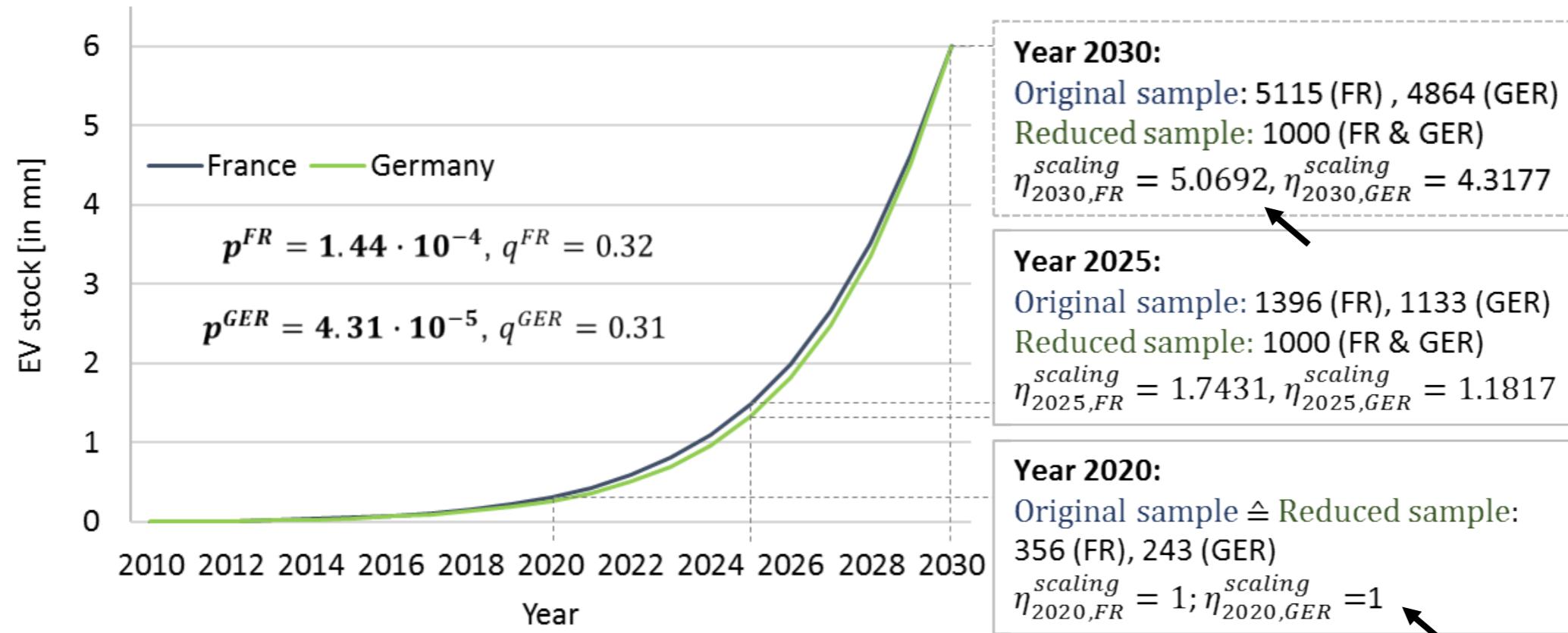
k^{limit} : Sample size

$\hat{Q}^{\hat{A}_{\tilde{t}}^{Adopter set}}$: Cumulated energy consumption (reduced sample before scaling)

$\eta_{\tilde{t}}^{scaling}$: Scaling factor

\hat{w}_i : Scaled weight of adopter \hat{i}

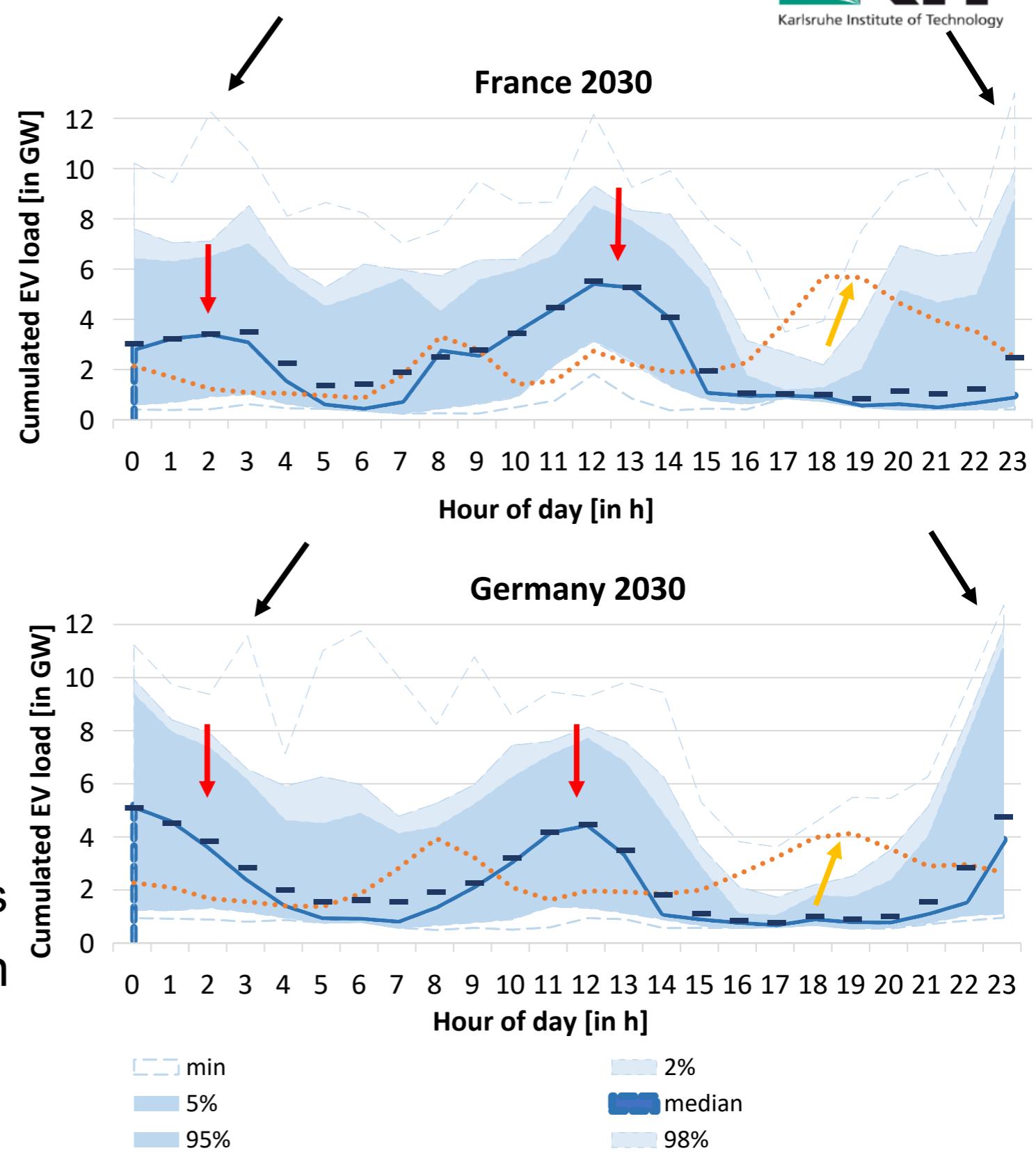
Pseudocode of sampling method 2

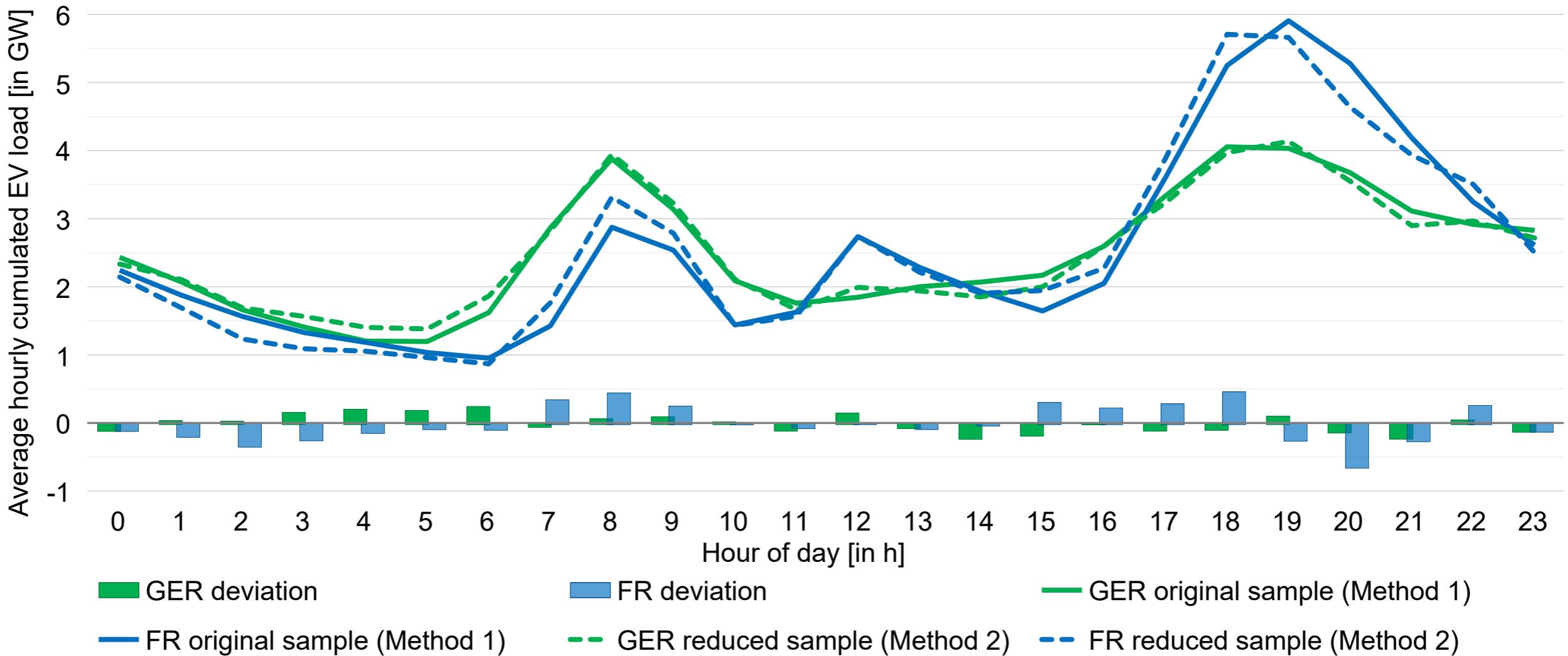

```

1 for all  $\tilde{t}$  do
2   Set  $\hat{I}_{\tilde{t}}^{sort} = \{I^{sort} \mid i \bmod z_{\tilde{t}} = 0\}$  with  $z_{\tilde{t}} = \text{nint}(\frac{W^{A_{\tilde{t}}^{Adopter set}}}{k^{limit}})$ 
3   while  $\hat{i} \in \hat{I}_{\tilde{t}}^{sort} \wedge \hat{i} \leq k^{limit}$ 
4     Set  $\hat{Q}^{\hat{A}_{\tilde{t}}^{Adopter set}} = \hat{Q}^{\hat{A}_{\tilde{t}}^{Adopter set}} + q_{\hat{i}}$ 
5     Add  $\hat{i}$  to  $\hat{A}_{\tilde{t}}^{Adopter set}$ 
6   endwhile
7   while  $\hat{i} \in \hat{A}_{\tilde{t}}^{Adopter set}$ 
8     Set  $\hat{w}_{\hat{i}} = w_{\hat{i}} \cdot \eta_{\tilde{t}}^{scaling}$  with  $\eta_{\tilde{t}}^{scaling} = \frac{Q^{A_{\tilde{t}}^{Adopter set}}}{\hat{Q}^{\hat{A}_{\tilde{t}}^{Adopter set}}}$ 
9   endwhile
10 endfor

```

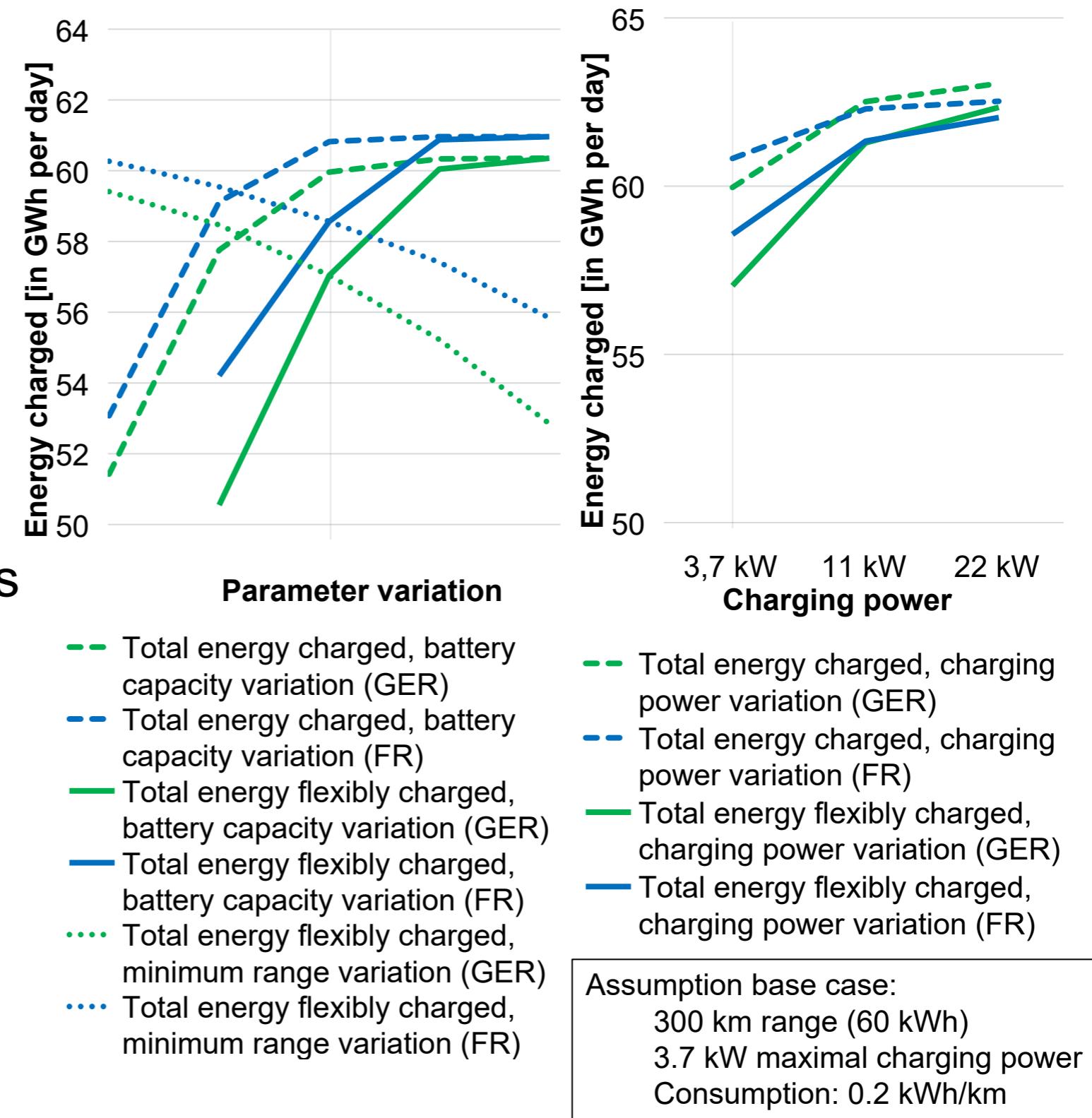
- k^{limit} is set prior to simulation.
- Selection of EV adopters ($\hat{A}_{\tilde{t}}^{Adopter set}$).
- Adopter specific weighting factors $\hat{w}_{\hat{i}}$ are scaled with $\eta_{\tilde{t}}^{scaling}$ to adequately


Results (RQ1)


- Assuming 6 million EV in 2030 (Bourbon, 2018; Bundesregierung 2011), diffusion curves look similar.
- However, Bass diffusion model parameters (i.e. innovation coefficients p^{FR} and p^{GER}) indicate higher diffusion dynamics in France than in Germany.
- In early years \tilde{t} all EV adopters in the sample are considered when using method 2 (i.e. $A_{\tilde{t}}^{Adopter\ set} = \hat{A}_{\tilde{t}}^{Adopter\ set}$). Limiting the number of adopters to

Results (RQ2)

- Cumulated specific load curve of direct EV charging and distributions when flexibly charging.
- Distributions of charging profiles in France and German look similar.
 - Load peaks of ~12 GW.
 - EV specific loads are on average shifted into nighttime and noon hours due to lower day-ahead market prices in these hours
- However, evening peaks when directly charging seem to be about 50% higher in France.


Results (RQ3)

- Slight differences of energy consumption distributions between the two sampling methods are observable.
- Weighting approach assures that total energy needed remains constant.
- Reducing sample sizes (method 2) results in computing time savings of about 85 % in 2030.

Sensitivity analyses

- Similar for FR & GER.
- Full electric mileage increases with increasing battery capacities. A certain level of saturation seems to be reached at 300 km.
- Total energy flexibly charged increases with increasing battery capacities and decreases with increasing minimum range requirements.
- Total energy charged and flexibly charged increase with increasing charging power.

Conclusion and outlook

- Hybrid EV diffusion modelling approach combines
 - Top-down **Bass diffusion model**
 - Bottom-up **binary logistic EV adoption model**
 - Sampling approach identifies potential EV adopters in representative mobility studies.
- **Flexible charging demand distributions are similar** for FR & GER.
- When direct EV charging is simulated, according to our results ...
 - ... higher evening peaks can be observed in France.
 - ... charging seems to be distributed more evenly over the course of a day in Germany.
- Re-sampling approach results in **significant reductions of computing time**.
- This opens **new possibilities of considering EV on a disaggregated level in energy system modelling**.

Sources

- B. M. Al-Alawi and T. H. Bradley, “Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies,” *Renewable and Sustainable Energy Reviews*, vol. 21, pp. 190–203, 2013.
- J.-C. Bourbon, *Le développement des voitures électriques met le réseau sous tension*. [Online] Available: <https://www.la-croix.com/Economie/France/Le-developpement-voitures-electriques-reseau-sous-tension-2017-02-03-1200822315>. Accessed on: Feb. 23 2018.
- Die Bundesregierung, *Regierungsprogramm Elektromobilität*, 2011. Accessed on: Jan. 25 2018.
- ENTD, *Enquête nationale transports et déplacements*. [Online] Available: <http://www.statistiques.developpement-durable.gouv.fr/transport/s/transport-voyageurs-deplacements.html>. Accessed on: May 10 2016.
- European Commission, 2050 long-term strategy. [Online] Available: https://ec.europa.eu/clima/policies/strategies/2050_en. Accessed on: Feb. 26 2019a.
- European Commission, *Greenhouse gas emission statistics - emission inventories*. [Online] Available: <https://ec.europa.eu/eurostat/statistics-explained/pdfscache/1180.pdf>. Accessed on: Feb. 26 2019b.
- T. Gnann, P. Plötz, “A review of combined models for market diffusion of alternative fuel vehicles and their refueling infrastructure,” *Renewable and Sustainable Energy Reviews*, vol. 47, pp. 783–793, 2015.
- P. Jochem, J. J. Gómez Vilchez, A. Ensslen, J. Schäuble, and W. Fichtner, “Methods for forecasting the market penetration of electric drivetrains in the passenger car market,” *Transport Reviews*, vol. 38, no. 3, pp. 322–348, 2018.
- MiD, *Mobilität in Deutschland 2008*. [Online] Available: <http://www.mobilitaet-in-deutschland.de/mid2008-publikationen.html>. Accessed on: May 10 2016.
- N. Stern, *The Economics of Climate Change*. Cambridge: Cambridge University Press, 2007.

Simulating Electric Vehicle Diffusion and Charging Activities in France and Germany

21.05.2019, EVS32, Lyon

Axel Ensslen, Christian Will, Patrick Jochem

Thanks for your attention.
E-mail: axel.ensslen@kit.edu

Institute of Industrial Production (IIP), French-German Institute for Environmental Research (DFIU), Chair of Energy Economics (Wolf Fichtner)

