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Facts&Figures§ EU Targets 2020/21 
CO2 emission   
25% reduction 
compared to 2015

48V Benefits§ 15-20% CO2 
reduction

§ 30% (HV)-FHEV 
costs

35K FCE (~300 Wh)

48V Gen1 (11 kW)
„Cost optimized“ 

~300 Wh

48V Gen3 (25 kW)
„inner city driving“

~1 – 3 kWh

48V Gen2 (15 kW)
„CO2 optimized“ 

>300 Wh

Supercaps 
(SC)

High Power
 (HP) LIB

High Energy 
(HE) LIB



4

Agenda

2 Fundamentals of passive hybrid energy storage systems

3 Model introduction 

4 Experimental setup and results

5 Virtual concept study: 48V MHEV

6 Model-based results

7 Conclusion

1 Motivation



1. Voltage match 2. Load profile 3. Cell and system dynamics
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LCO LFP

Li-Ion Capacitors (LIC)

 

I. Cell Model§ Cell properties§ Cell dynamics

II. System Model§ Cell-2-System transformation (XsYp)§ Module-to-Module-interaction

§ Updating time depending cell properties

§ 1 Model / 4 Technologies§ Equal parameter campaign with slightly changes§ Model error: INRMSE ~7% (16 errors) – UNRMSE ~3% ( 22 errors)
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Energy density eHESS

Power
enhancement pHESS

D is the fraction of τ in which 
the current pulse is active

Stop if ILIB> C-Rate max in CHG direction

Cell 2 Cell (C2C) System 2 System (S2S)



Highlights§ V-Match influences 
mainly energy 
density at same 
topology

§ System design / 
dynamics influence 
energy and power 
density (C2CS2S)

§ Short pulse profiles 
enhance power 
density
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Generation 3 (25 kW) – pure electric inner city drivingGeneration 1 (11 kW) – cost optimized

§ USABC§ Protocol for 48 V 
MHEV§ March 2017

§ Power oriented

§ WLTP§ Emulating “real” 
driving behavior§ September 2017§ Simple EMS for 
emulating ESS 
load§ Energy oriented

Study 1 HE-Hybrid vs. HP ESS HESS same dimension as ESS Gen1

Study 2 HE-Hybrid vs. HP ESS Minimize HESS dimension Gen1

Study 3 HE-Hybrid vs. HE ESS Minimize HESS dimension Gen3

Study 4 HP-Hybrid vs. HP ESS Minimize HESS dimension Gen3

Target(s)§ Improvement of ESS due to HESS add on§ HE-Hybrid competitive to HP-ESS§ Cross-generational solution

*HE/HP technology: LFP; SC technology: LICPHC
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P/E Gen1: ~37 – USABC
P/E Gen3: ~25 – 1 kWh
P/E Gen3: ~  8 – 3 kWh

Study 1: Reduction of single cell stress (IRMS,cell 80%; QTP,cell 58%) at approx. same dimensions
Study 1 – 2: HE-HESS module compatitive to HP-ESS module
Study 3 – 4: Improvements of ESS due to (H)ESS add-on module 
Study 1 – 4: Cross-generational reduction of dimensions compared to ESS (20 – 30%) by an 
increasement of battery stress up to 14%
Study 1 – 4: Enhanced P/E Ratio up to a factor of 2-3
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Conclusion
§ HESS are a highly adaptable approach for ESS solutions within high dynamic applications

§ Characteristics are depending on V-match, system design and load profile

§ For 48V MHEV applications, passive HESS are a cross-generational solution to design high 
performable ESS solutions

§ Ageing and thermal properties should be considered for further lifetime and efficiency 
estimation

Outlook
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