

Experiences from trials with battery electric buses in Norway

Inger Beate Hovi, Rebecca Thorne, Erik Figenbaum and Daniel Pinchasik
Institute of Transport Economics, Oslo, Norway

A4 - How to electrify heavy duty vehicles?
32nd Electric Vehicle Symposium (EVS32)
Lyon, May 20th 2019

Contents

- Battery electric trials in Norway
- User Experiences
- Costs of operations

Photo: Ruter

Photo: Nobina

Ruter - 60 % of bus fleet full electric in 2025

2015 Stavanger

2 x city (Ebusco/Boreal),
Kolumbus

2017 Stavanger

3 x city (Ebusco/Norgesbuss)
Kolumbus

2017 Lillestrøm/Jessheim

10 x mini (IVECO/Taxus)
Ruter

2017/2018 Oslo

2 x articulated (BYD/Nobina)
2 x city (Solaris/Norgesbuss)
2 x city (Solaris/Unibuss)
Ruter

2018 Oslo

4 x mini (IVECO/Oslo Taxibuss)

2018 Kristiansand

5 x city (Solaris/Boreal)
Kolumbus

2019 Trondheim

25 x city (Volvo 7900/Tide)
10 x city (Heuliez/Tide)
AtB

2019 Lillehammer

2 x city (Volvo 7900/Unibuss)
Opplandstrafikk

2019 Drammen

6 x city (Volvo 7900/Nettbuss)
Brakar

2019 Oslo area

42 x articulated (BYD/Nobina)
30 x articulated (VDL Citeas/Unibuss)
10 x 12m (VDL Citeas/Unibuss)
17 x city (Volvo 7900/Norgebuss)
Ruter

$$\sum = 172 ++$$

Contents

- Battery electric trials in Norway
- User Experiences
- Cost of operations

Photo: Ruter

Photo: Nobina

User experiences

- **Case study** based on semi-structured interviews of
 - Enterprises with **experience in operating battery-electric buses** in Norway
 - Sample based on the **project list of ENOVA** (the Norwegian Government Agency for the transition towards a low-emission society), and the **Norwegian Public Road Administration's vehicle registry Autosys**, as of Apr 2018
- Interviews with people **closely involved in vehicle purchase in each firm**
- **Interview questions** were related to **purchase process, technology, performance, service/maintenance, charging infrastructure, use of the existing fleet, investment and operation costs and incentives for enforced in-phasing of zero-emission vehicles**

Ruter - 60 % of bus fleet full electric in 2025

2015 Stavanger

2 x city (Ebusco/Boreal),
Kolumbus

2017 Stavanger

3 x city (Ebusco/Norgesbuss)
Kolumbus

2017 Lillestrøm/Jessheim

10 x mini (IVECO/Taxus)
Ruter

2017/2018 Oslo

2 x articulated (BYD/Nobina)
2 x city (Solaris/Norgesbuss)
2 x city (Solaris/Unibuss)
Ruter

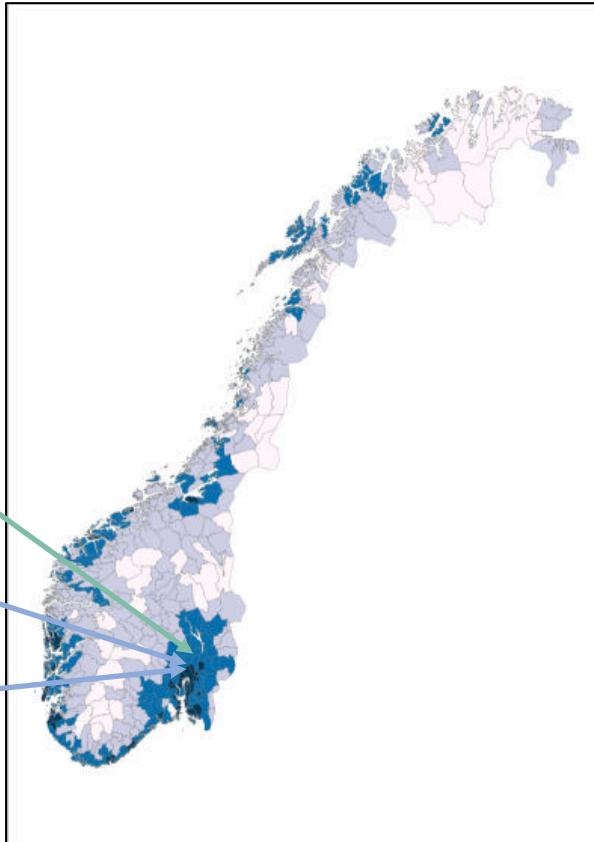
2018 Oslo

4 x mini (IVECO/Oslo Taxibuss)

2019 Trondheim

25 x city (Volvo 7900/Tide)
10 x city (Heuliez/Tide)
AtB

2019 Lillehammer

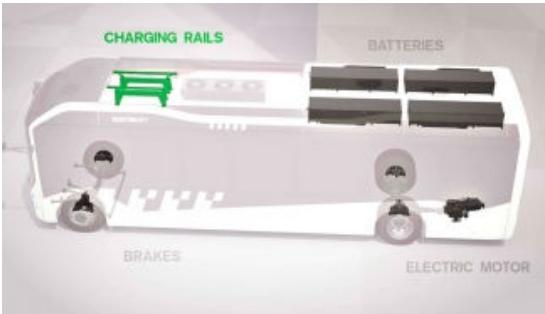

2 x city (Volvo 7900/Unibuss)
Opplandstrafik

2019 Drammen

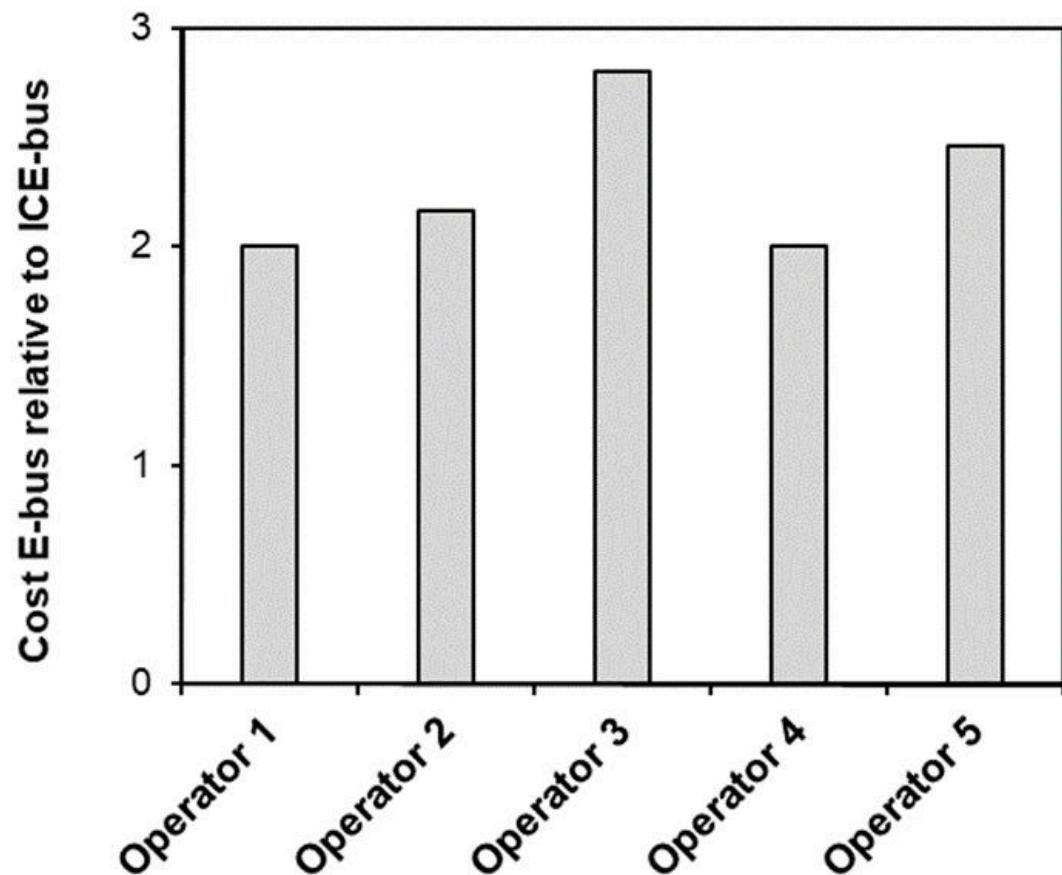
6 x city (Volvo 7900/Nettbuss)
Brakar

2019 Oslo area

42 x articulated (BYD/Nobina)
30 x articulated (VDL Citeas/Unibuss)
10 x 12m (VDL Citeas/Unibuss)
17 x city (Volvo 7900/Norgebuss)
Ruter


$$\sum = 172$$

Busses used in the Oslo region trials


Operator	Technology employed		Range (km)	Manufacturer	Depot charging	Opportunity charging	Charge time (hours)
Taxus	Mini bus	Na-NiCl2 (90 kWh)	160	Iveco	11 kW		4
Oslo Taxibus	Mini bus	Na-NiCl2 (82 kWh)	150	Iveco	22 kW (public chargers for mini buses)		2
Nobina	Articulated bus	Lithium iron phosphate (300 kWh)	180	BYD	80 kW 300 kW planned		3.5
Norges-buss	City bus	Lithium-titanate (127 kWh)	240	Solaris	80 kW 250 kW pantograph/150 kW charger planned	Fast charger at endstation (pantograph)	1/0.1
Unibuss	City bus	Lithium-titanate (75 kWh)	45-50	Solaris	80 kW	300 kW (pantograph) at endstations planned	6/0.1

Experience from operation

	Operator 1
Design (3.4.1)	Some height
Owners/drivers/passengers (3.4.2)	Low sound/
Energy use (3.4.3)	Extra energy
Range (3.4.4)	Affected by
Vehicle performance (3.4.5)	Technical p
Charging performance (3.4.6)	Some technr

Volvo 7900 Electric Volvo.se

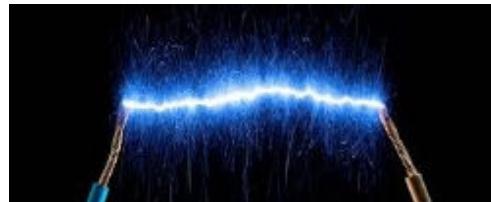
Contents

- Battery electric trials in Norway
- User Experiences
- Costs of operations

Photo: Ruter

Photo: Nobina

Total cost of ownership


Costs normalised (per functional unit)

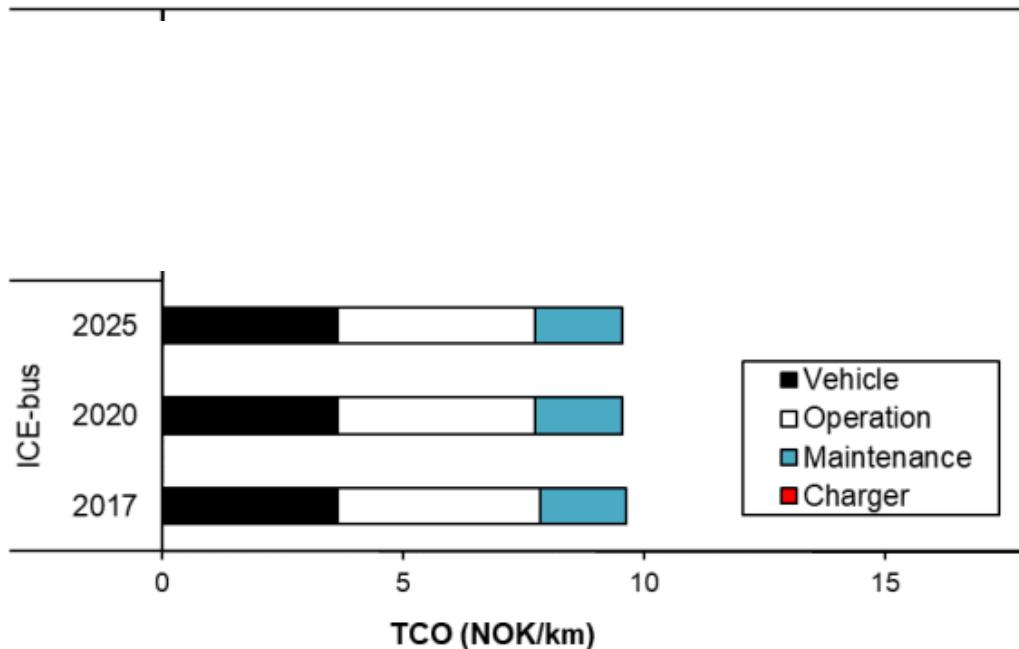
Vehicle investment

Operation

Charging infrastructure investment

Maintenance and repair

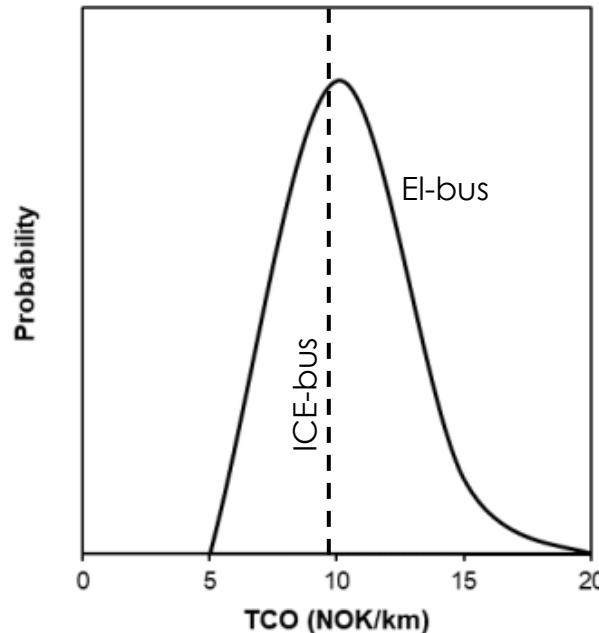
Model assumptions


+

+

Interviews

Total cost of ownership City bus (12 meter)


Current ICE-bus TCO compares well with other studies (8-10 NOK/km)

By 2025 E-bus TCO is comparable

Other studies find E-bus TCO favourable to ICE-buses by 2025, or is already favourable

High TCO uncertainty

- Vehicle investment 2.5-3.5 MNOK.
- Max 10 % extra vehicle requirements
- Charger cost 0.4-1.25 MNOK, shared between 5 buses
- Maintenance 1.2 – 2.0 NOK/km
- Electricity costs 1.8-2.3 NOK/km

Summary

- Market almost in place: Electric buses expected to be mass produced by 2020
- Generally good practical experience, where working correctly
 - Main issues related to engine power, charging and batteries
- Expected to be cost competitive by 2025.
 - Importance of accounting for uncertainties
- Future work
 - Refine cost model and assumptions, streamline with LCA

Thanks for your attention!

ibh@toi.no

Photo: Øystein Dahl Johansen/Ruter

Photo: Odd Richard Valmot