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Summary 

Conventional Li-ion ageing models require a large amount of time and cost-intensive laboratory tests to 

provide accurate predictions in realistic operating conditions. Concurrently, industry progress into digital 

transformation, making considerable efforts in data collection. This implies the forthcoming availability of a 

significant amount of real-world battery operation data. In this context, self-adaptive ageing models, able to 

learn from in-field battery operation data and adapt lifetime estimations to the real life become an interesting 

solution to reduce laboratory labours. Based on extensive experimental tests at static and dynamic conditions, 

a self-adaptive capacity loss model is proposed under the Gaussian Process framework.  
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1. Introduction 

Lithium-ion (Li-ion) technology has gained market share until becoming the principal energy storage solution 

for many industrial applications, mainly due to its high efficiency and high specific energy and power. 

However, Li-ion batteries still expensive, and their performance declines over time and use, which threatens 

its competitiveness against more affordable solutions [1]. The development of ageing models allow to predict 

the degradation of Li-ion batteries, providing useful information to improve the sizing of battery packs, adjust 

warranty periods and assist business case definition. 

Different kinds of ageing models were proposed in the literature, involving empirical, semi-empirical and 

physics-based models [2]. Nevertheless, a main inconvenience for the development of such a conventional 

ageing models is the huge amount of laboratory tests needed to verify their accuracy at realistic operating 

conditions. Actually, all these conventional models are typically parametrised using laboratory tests carried 

out at constant ageing conditions [3]. Furthermore, extensive validation procedures involving constant ageing 

conditions, slowly varying dynamic conditions and realistic ageing profiles are recommended to surround 

accurate lifetime predictions in a context of real-world operation [4]. However, even such validation 

procedures could difficultly ensure accurate predictions for a large diversity of dynamic or realistic profiles, 

which may involve different ageing rates due to the effect of the path dependence [5]. 
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A possible solution to reduce the number of laboratory tests is to work on the development of self-adaptive 

ageing models. In this paper, a self-adaptive model is understood as a model able to update or correct itself 

to fit better the newly available data samples. Following this approach, reduced laboratory tests could be used 

to develop a preliminary ageing model. Further, once the battery pack is implemented and operating, in-field 

data could allow to update the preliminary ageing model. In this way, the ageing model would be 

continuously upgraded, improving prediction accuracy, and providing useful information for predictive 

maintenance, adaptive energy management strategies or business case redefinition. 

In a previous publication, a critical review on self-adaptive ageing models for Li-ion batteries was presented, 

in which the Gaussian Process (GP) models were identified as most promising candidates [6]. In fact, beyond 

their ability to perform probabilistic, relatively robust and computationally acceptable predictions, these 

models enjoy the very interesting advantage of being nonparametric: in other words, the complexity of these 

models depends on the amount of training data. In the context of Li-ion ageing prediction, this implies: 

- A progressive spread of the operating window of the model. Each time a new data sample related to 

previously unobserved operating conditions is included into the training set, additional knowledge 

is obtained about the influence of stress-factors on ageing. The resulting models are able to provide 

an increasingly comprehensive picture of the ageing of Li-ion batteries.  

- A higher level of specialisation of the model. The preliminary ageing model developed from the 

laboratory data could be upgraded including new training data extracted from in-field operation. In-

field data encodes the intrinsic operating profiles of each applications. This implies the possibility 

to move from a generic ageing model to specialised models tailored to specific applications. 

This paper focuses on the modelling of the cycle ageing of Li-ion batteries, considering the effect of the 

cycling temperature, Depth-of-Discharge (DOD) and Middle-State of Charge (SOC). Section 2 describes the 

experimental ageing tests carried out in order to produce the ageing data. Section 3 details the processing of 

the raw data. Section 4 introduces the theoretical background of the GP framework. In Section 5, the selection 

of the inputs and kernel functions are justified. Section 6 states the obtained results for both static and 

dynamic operating conditions. Section 7 discusses the obtained results and outlines the limitations of the 

study and further works. Finally, Section 8 closes the study depicting the main conclusions. 

2. Experimental ageing data 

Experimental ageing tests were performed on NMC/graphite 20Ah pouch cells, in a temperature-controlled 

environment. Periodical check-up experiments were carried out at 25°C to evaluate the capacity of the cells 

every 100 Full-Equivalent-Cycles (FEC). Between each capacity test, a total of 95 cells from the same 

manufacturing batch were tested at the corresponding temperature, DOD and Middle-SOC levels (specified 

in Table 1). For these ageing tests, the cycling temperature, DOD and Middle-SOC level of every cell 

remained unchanged during the whole duration of the tests, which were 3750 FEC for the longest test. 

Table 1. Cycle ageing test matrix 
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As the battery cycling conditions are barely constant over time, 2 cells were cycled at dynamic temperature, 

DOD, Middle-SOC and charging and discharging C-rate levels. These cells were reserved for the validation 

of the developed model, and the obtained capacity curves and the corresponding dynamic operating profiles 

are detailed in Section 6.2. 

3. Data pre-processing 

In the context of data-driven or empirical modelling, the data used for the training and validation of the model 

must be analysed prior to any modelling task, in order to remove the data involving potential errors and 

possibly separate the components which are desired to be modelled from those which deserve to be discarded. 

For the modelling of Li-ion battery ageing, a deep electrochemical understanding provides a solid 

background to make this task easier. In this section, the raw data obtained from the experimental tests is 

analysed and processed for the further modelling stage. 

In the experimental data, a capacity rise phenomenon appears on the Beginning of Life (BOL) phase of the 

tested cells. According to the literature, the capacity rise could be induced by a slow, compensating flow of 

active lithium between the passive and the active part of the anode, where the passive part represents the 

geometric excess anode with respect to the cathode [7]. Despite a deep research in the literature, no clear 

relation was found between the initial capacity rise and any ageing mechanism, and it was assumed that the 

initial capacity rise phenomenon does not have any influence on the posterior ageing trend of the cells. 

Accordingly, the data corresponding to the capacity rise was discarded for the development of the ageing 

model. During the data pre-processing phase the maximal capacity point of each cell was designated as the 

BOL point, and assigned to the ‘zero Ah-throughput’ state. 

After a regular decline of the capacity, some cells showed a clear acceleration of the ageing rate. The post-

mortem analyses performed in all cells below 80% of the remaining capacity revealed metallic lithium 

deposed on the whole surface of the anode. Therefore, the sudden capacity drop was linked to the occurrence 

of lithium deposition. The current study presents a partial cycle ageing model, which does not take into 

account the effect of the charging and discharging currents on ageing, which are strongly related to the lithium 

deposition phenomenon. Consequently, the data samples corresponding to sudden capacity drop phenomena 

were discarded from the modelling dataset in the current study. Furthermore, some unexpected ageing 

behaviours were detected, notably some one-off lower or higher capacity data points, which were allocated 

to measurement or procedural errors during the capacity tests. These data samples were also removed from 

the modelling dataset. The remaining ageing data obtained after the pre-processing stage is visualised in 

Figure 1. 

 

Figure 1. Actual capacity normalised to maximum value (Qmax), obtained after the pre-processing phase of static 

ageing tests. Notice that, for clarity purposes, the y-axis scale is varying from a subplot to another. 
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4. Gaussian Process theory 

This section aims at giving a brief overview of Gaussian Process models. The GP is a random process, i.e. a 

random entity whose realisation is a function 𝑓(x)  instead of a single value. Rather than assuming a 

parametric form for the function to fit the data, 𝑓(x) is assumed to be a sample of a Gaussian random process 

distribution. Since the GP is a nonparametric model, even when a lot of observations have been added, the 

model should always be capable to fit the data. 

A GP is fully determined by its mean and covariance functions, which express the expected behaviour of the 

model when the prediction inputs diverge from the inputs observed in training. The covariance function, also 

called kernel, gives the information about how relevant is one target observation 𝑦 of the training dataset to 

predict the output 𝑦∗, in the basis of the similarity between their respective input values x and x∗.  

The mean and covariance functions depend on some hyperparameters 𝜃, which must be learned from the 

training dataset. From the GP point of view, the mean and covariance function selection and learning the 

corresponding hyperparameters are the main tasks which must be carried out during the training phase. 

Hyperparameters are typically estimated by the maximisation of the marginal likelihood logarithm [8]. The 

GP predictive equations are expressed in equations (1), (2) and (3). 

𝒇∗|𝑋,y, 𝑋∗~𝒩(𝒇̅∗,cov(𝒇∗)) (1) 

𝒇̅∗ = 𝒎(𝑋∗) + 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1(y − 𝒎(𝑋)) (2) 

cov(𝒇∗) = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝐾(𝑋, 𝑋∗) (3) 

where𝒇∗ , 𝒇̅∗ , and cov(𝒇∗)  are the GP posterior prediction, its corresponding mean and its covariance, 

respectively; 𝐾(𝑋, 𝑋) , 𝐾(𝑋∗, 𝑋∗) , and 𝐾(𝑋, 𝑋∗)  are the covariance matrices between training inputs, the 

testing inputs, and training and testing inputs, respectively; y is the training target vector, and 𝜎𝑛 is the noise 

variance.  

5. Cycle ageing model 

For an accurate prediction of Li-ion battery ageing at several static and dynamic conditions, it is of paramount 

importance to take into account the effect of the different stress factors influencing on the ageing mechanisms, 

and understand how they impact the capacity loss of Li-ion batteries. Under the GP framework, these tasks 

are traduced as a correct selection of the input and kernel functions. 

5.1. Relating ageing mechanisms, model inputs and kernel functions 

The selection of the structural form of the kernel is the most important challenge in nonparametric regression 

[8]. However, it remains a black art, as there is not any broadly accepted method to perform this task [9]. For 

most the GP ageing models presented in the literature, the selection of the kernel was based on trial and error 

methods, in which the kernel function presenting the lowest error was considered as the most suitable. 

Following this method, the suitability of the selected kernel in the general context of Li-ion battery ageing 

prediction could hardly be guaranteed, due to its high correlation to the used dataset. In order to develop GP 

models tailored to Li-ion battery ageing application, a stronger justification based on the prior knowledge on 

the expected ageing mechanisms is necessary for the appropriate selection of the kernel. 

According to the literature, relatively high charging and discharging currents stimulate the cracking of the 

electrode particles. However, at lower current rates of battery operation the Solid Electrolyte Interface (SEI) 

cracking and reforming was proposed to be the main mechanism inducing capacity loss, without affecting 

the electrode particle itself [10]. Such capacity loss was shown to be proportional to the square of the state 

of lithiation swing (which could be approximated by the DOD) of the electrode particle, during lithiation 

[10]. The ageing data analysed in this study corresponds to relatively low C-rate values (C/3 charging and 

1C discharging), which allows to assume a prior belief of a squared DOD dependence for the capacity loss. 
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Therefore, the squared-exponential kernel, which is able to handle all the projections into the space of powers 

[8], is considered to be suitable to host the DOD input dimension. 

Besides, the capacity loss seems to have a U-shape dependency to the Middle-SOC, with an optimum around 

50% SOC and stronger degradations at higher and lower cycling ranges [11]. As for the DOD input, the 

squared-exponential kernel should be an appropriate choice to capture such a squared Middle-SOC 

dependency. Furthermore, the growth of the SEI layer is a chemical reaction and then obeys to the Arrhenius 

law: the SEI formation rate increases exponentially with temperature. Such an exponential dependence, 

defined as the linear combination of an infinite number of power functions, could also be captured by the 

squared-exponential kernel. 

Finally, a last input denoted 𝛥𝐴ℎ was defined as the Ah-throughput for which the capacity loss is desired to 

be predicted. Notice that, an isotropic kernel (e.g. squared-exponential) associated to such an input would 

require a large number of training 𝛥𝐴ℎ values to allow long term prediction, drastically increasing the size 

of the training dataset, as well as the computational cost of the model1. A linear anisotropic kernel was then 

selected for this input dimension. Summarising, the model proposed in this study considered four inputs: 

- 𝛥𝐴ℎ: the Ah-throughput for which the ageing is desired to be predicted, modelled by a linear 

anisotropic kernel. 

- 𝑇: the ambient temperature, modelled by a squared-exponential kernel. 

- 𝐷𝑜𝐷: the DOD at which such 𝛥𝐴ℎ were cycled, modelled by a squared-exponential kernel. 

- Middle-SOC: the average SOC corresponding to such DOD, modelled by a squared-exponential 

kernel. 

The output of the model was the capacity loss 𝛥𝑄 corresponding to the cycling of 𝛥𝐴ℎ. 

5.2. Composing the whole kernel 

As pointed out in Section 5.1, the model must be able to handle different input dimensions. Consequently, 

compositional kernels’ framework seems to be a suitable solution to construct a main kernel composed of 

interpretable components, each one related to a specific input dimension [9]. In order to focus on the 

behaviour of the composed kernels, a zero-mean function was defined in this work. This is not a drastic 

limitation, since the mean of the posterior process is not confined to be zero [8]. 

In the GP framework, the kernel function is also a covariance function and then must be positive semidefinite 

[8]. Moreover, positive semidefinite compositional kernels are closed under addition and multiplication of 

basic kernels. Additive kernels assume the added stochastic processes to be independent [9]. According to 

the literature, the capacity loss corresponding to the SEI fracture results from a strong interaction between 

the temperature, DOD and Middle-SOC: the mechanical stress induced by both DOD and Middle-SOC leads 

to the SEI fracture, revealing this way a fresh anode surface to the electrolyte which give rise to the 

temperature dependent reforming of the SEI [10]. In order to account for the interactions between the 

different input dimensions, the tensor product is suggested [8,9]. The compositional kernel developed this 

way is expressed in equation (4). 

𝜅(x, x′) = 𝜎𝑓
2 ⋅ [𝑒𝑥𝑝 (−

|𝑥1 − 𝑥′1|2

2 ∙ 𝜃𝑇
2 ) ∙ 𝑒𝑥𝑝 (−

|𝑥2 − 𝑥′2|2

2 ∙ 𝜃𝐷𝑜𝐷
2 ) ∙ 𝑒𝑥𝑝 (−

|𝑥3 − 𝑥′3|2

2 ∙ 𝜃𝑀𝑖𝑑𝑑𝑙𝑒−𝑆𝑂𝐶
2)

∙ (𝑥4 ∙ 𝑥′
4 + 𝜃∆𝐴ℎ

2)] 

(4) 

where x and x′ are different input vectors structured as x = (𝑥1, 𝑥2, 𝑥3, 𝑥4), with 𝑥1 = 𝑇−1, 𝑥2 = 𝐷𝑜𝐷, 𝑥3 =
𝑀𝑖𝑑𝑑𝑙𝑒-𝑆𝑂𝐶,  𝑥4 = 𝛥𝐴ℎ.  

                                                 
1 More information about the properties of isotropic kernels in [8] 
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𝜃𝑇, 𝜃𝐷𝑜𝐷, 𝜃𝑀𝑖𝑑𝑑𝑙𝑒-𝑆𝑂𝐶 and 𝜃∆𝑡 are the hyperparameters related to the 𝑇, 𝐷𝑜𝐷, Middle-SOC and 𝛥𝐴ℎ inputs 

respectively. The additional hyperparameter 𝜎𝑓  is the signal variance, and plays the role of scaling the 

outputs. 

6. Results 

Three different metrics were used to assess the prediction performances of the ageing models. The first one 

was the root-mean-square error (RMSE) of the output of the model, which was the capacity loss 𝛥𝑄, defined 

according to equation (5) - left. The second metric was the RMSE of the predicted capacity curve, expressed 

in equation (5) - right. This second metric is useful to evaluate the accumulative error of the model. The last 

metric was the calibration score and aimed at quantifying the accuracy of uncertainty estimates. It is defined 

as the percentage of measured results in the test dataset that are within a predicted credible interval. Within 

an ±2𝜎 interval, corresponding to a 95.4% probability for a Gaussian distribution, the calibration score is 

given by equation (6). Therefore, 𝐶𝑆2𝜎 should be approximately 95.4% if the uncertainty predictions are 

accurate. Higher or lower scores indicate under- or over-confidence, respectively. 

𝑅𝑀𝑆𝐸∆𝑄(𝑦̂𝑖 , 𝑦𝑖) = √
1

𝑁𝑇
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑁𝑇

𝑖=1

 𝑅𝑀𝑆𝐸𝑄(𝑄̂𝑖 , 𝑄𝑖) = √
1

𝑁𝑇
∑(𝑄̂𝑖 − 𝑄𝑖)

2

𝑁𝑇

𝑖=1

 (5) 

𝐶𝑆2𝜎 =
1

𝑁𝑇
∑[|𝑦̂𝑖 − 𝑦𝑖| < 2𝜎] ∙ 100

𝑁𝑇

𝑖=1

 (6) 

where 𝑦̂𝑖 is the predicted output, 𝑦𝑖 is the measured output, 𝑁𝑇 is the number of points to be evaluated, 𝑄̂𝑖 is 

the predicted capacity calculated by accumulation of the output and 𝑄𝑖 is the measured capacity.  

6.1. Learning from static conditions 

In order to assess the performances of the model seven cases were studied, each one involving a different 

quantity of training data. From the CASE 1 to CASE 7, the ratio of the training data with respect to the whole 

dataset increases, and the range of different cycling temperature, DOD and Middle-SOC conditions observed 

during the training phase is broadened. The operating conditions involved in each cases were specifically 

selected to clearly illustrate the ability of the GP model to learn the influence of new stress-factor levels on 

the capacity loss. A 3% error threshold in terms of 𝑅𝑀𝑆𝐸𝑄 was established as accuracy criterion. 

CASE 1 only comprised two different temperatures, a single DOD and Middle-SOC level. CASE 2 

completed the temperature dimension with the observation of a third level. CASE 3 and 4 corresponded to 

the learning of the influence of DOD on the capacity loss, involving respectively two and three different 

DOD cycling levels. CASE 5 and 6 completed the model presenting an increasing number of Middle-SOC 

values, and CASE 7 included in the training dataset all the operating conditions available from the 

experimental ageing tests. The characteristics of each case are indicated in Table 2, specifying the different 

cells and the related operating conditions involved during the training process, as well as the corresponding 

ratio of the training data with respect to the whole available data. In each case, the GP model introduced in 

Section 5 was trained with the corresponding training cells, and the ageing was predicted for all the cells, in 

order to validate the generalisation capabilities of the obtained models. The maxima and average 𝑅𝑀𝑆𝐸 and 

𝐶𝑆2𝜎 values of all the tested cells are also indicated. The evolution of the metrics for each cell is represented 

in Figure 2.
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Table 2. Summary of the different case studies and average and maxima metrics values obtained with the GP developed in Section 5, calculated from the predictions of all the cells. 

Best results are indicated in bold. 

 

CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 

Cell 

number 

Cycling 

conditions Cell 

number 

Cycling 

conditions Cell 

number 

Cycling 

conditions Cell 

number 

Cycling 

conditions Cell 

number 

Cycling 

conditions Cell 

number 

Cycling 

conditions Cell 

number 

Cycling 

conditions 

T DoD MidSOC T DoD MidSOC T DoD MidSOC T DoD MidSOC T DoD MidSOC T DoD MidSOC T DoD MidSOC 

Training cells 

CELL001-

003 
25 100 50 

CELL001-

003 
25 100 50 

CELL001-

003 
25 100 50 

CELL001-

003 
25 100 50 

CELL001-

003 
25 100 50 

CELL001-

003 

25 100 50 

all all 

CELL100-

102 
45 100 50 

CELL100-

102 
45 100 50 

CELL100-

102 
45 100 50 

CELL100-

102 
45 100 50 

CELL100-

102 
45 100 50 

CELL100-

102 

45 100 50 

 

CELL030-

032 
35 100 50 

CELL030-

032 
35 100 50 

CELL030-

032 
35 100 50 

CELL030-

032 
35 100 50 

CELL030-

032 

35 100 50 

 

CELL021-

022 
25 20 50 

CELL021-

022 
25 20 50 

CELL021-

022 
25 20 50 

CELL021-

022 

25 20 50 

CELL120-

122 
45 20 50 

CELL120-

122 
45 20 50 

CELL120-

122 
45 20 50 

CELL120-

122 

45 20 50 

CELL067-

069 
35 20 50 

CELL067-

069 
35 20 50 

CELL067-

069 
35 20 50 

CELL067-

069 

35 20 50 

 

CELL015-

017 
25 50 50 

CELL015-

017 
25 50 50 

CELL015-

017 

25 50 50 

CELL114-

116 
45 50 50 

CELL114-

116 
45 50 50 

CELL114-

116 

45 50 50 

CELL047-

054 
35 50 50 

CELL047-

054 
35 50 50 

CELL047-

054 

35 50 50 

 

CELL073-

075 
35 20 20 

CELL073-

075 
35 20 20 

CELL082-

84 
35 10 20 

CELL082-

84 
35 10 20 

 

CELL061-

063 

35 20 80 

CELL076-

078 

35 10 80 
  

Training/Validation ratio [%] 9.38 12.51 19.49 39.45 43.15 51.58 100 

 

Performance 

metrics 

Maximum 𝑹𝑴𝑺𝑬∆𝑸 [%] 2.86 2.36 2.38 2.38 2.38 2.38 2.38 

Average 𝑹𝑴𝑺𝑬∆𝑸 [%] 1.12 0.95 0.82 0.72 0.70 0.68 0.70 

Maximum 𝑹𝑴𝑺𝑬𝑸 [%] 8.46 5.85 3.90 2.83 2.83 2.83 3.46 

Average 𝑹𝑴𝑺𝑬𝑸 [%] 2.82 2.22 1.75 1.15 1.09 1.05 1.11 

Maximum 𝑪𝑺𝟐𝝈 [%] 100 100 100 100 100 100 100 

Minimum 𝑪𝑺𝟐𝝈 [%] 19.35 32.43 10.71 0 0 0 0 

Average 𝑪𝑺𝟐𝝈 [%] 83.42 93.63 65.93 77.51 74.12 71.95 72.77 
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Figure 2. Evolution of the metrics over the different case studies with the model developed in Section 5, for all the 

cells tested at static cycling conditions. 

The GP model trained in CASE 1 demonstrated poor prediction performances for most operating conditions 

involving a DOD level unobserved in training (see Figure 2.a-b). As expected, a clear improvement was 

observed in CASE 2 for all the cells cycling at 35°C, but the prediction errors at several DODs remained 

superior to the defined 3% threshold. With the introduction of a second DOD level in CASE 3, the model 

could perform a first fitting in the DOD dimension, and the extension to 50% DOD in CASE 4 allowed to 

achieve the 3% 𝑅𝑀𝑆𝐸𝑄 accuracy criterion for all the cells. In CASE 5 and 6, the data corresponding to low 

and high Middle-SOC cycling was incorporated in the training set, respectively. The improvement of 

prediction performances were in such cases limited (see cells 044-046, 061-063, 076-078 in Figure 2.b), due 

to the reduced impact of the Middle-SOC stress-factor compared to the cycling temperature and DOD. 

Finally, all the available data was included in the training set in CASE 7. Unexpectedly, the average 𝑅𝑀𝑆𝐸∆𝑄 

and 𝑅𝑀𝑆𝐸𝑄  metrics which revealed reducing values from CASE1 to CASE 6, increased for the training 

CASE 7. This observation could possibly be explained by the coupled effect of i) a higher number of 

mismatches in the data, partially due to small deviations induced by procedural and measurement errors 

during the experimental testing, ii) the limited capability of the developed GP model to explain the data, due 

to the slight nonlinearities of the capacity curves in the Ah-throughput dimension, and iii) the saturation of 

the learning capabilities of the GP model, which limits the scope for reduction of the error metrics as most 

of the possible operating conditions were already observed. 

Regarding the 𝐶𝑆2𝜎 metric (see Figure 2.c), a non-monotonic evolution was observable for the cells 030-54 

and 100-122. This is also explainable by the linear character of the model´s predictions in the Ah-throughput 

dimension. Actually, such a cells present slightly nonlinear capacity curves, with a lower capacity loss in the 

beginning of life, then a faster linear trend, sometimes followed by a slowdown (see Figure 1). Besides, 

according to the equation (3), the predicted confidence boundaries reduce as the GP model is observing a 

larger number of operating conditions, indicating that the GP is becoming more confident. Therefore, more 

data samples remain out of the confidence boundaries, depending on the nonlinearities in the Ah-throughput 

dimension. This induces large variations in the evolution of the 𝐶𝑆2𝜎 metric, which clearly remained under 

the desired 95.4% value for all these cells, implying a strongly over-confident behaviour of the model. 

Oppositely, a clear convergence into 100% 𝐶𝑆2𝜎  was observable for the cells 001-023 and 055-084, 

indicating under-confident predictions for those cells. This is explainable by the particularly straight capacity 

curves observable for those cells, which, combined with the relatively high noise hyperparameter imposed 

by the cells presenting nonlinear capacity curves, leads to relatively large confidence boundaries that 

encompass all the data samples. 

For many covariance functions, the observation of the hyperparameters allows to interpret how the GP model 

understand the data. As explained in [8], for the squared-exponential kernel, the hyperparameters play “the 
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rôle of characteristic length-scale. Such a covariance function implements automatic relevance 
determination (ARD), since the inverse of the length-scale determines how relevant an input is: if the length-

scale has a very large value, the covariance will become almost independent of that input, effectively 

removing it from the inference”. Figure 3 displays, for each case study, the inverse of the hyperparameters 

corresponding to each input dimension, relatively normalised to each other.  

 

Figure 3. Inverse of the hyperparameters corresponding to each input dimension, relatively normalised to each other. 

Notice that the interpretability of the hyperparameter of the 𝛥𝐴ℎ input is debatable, due to the anisotropic 

character of the corresponding kernel. However, the relative values of the inverse of Temperature, DOD and 

Middle-SOC inputs’ hyperparameters indicate how relevant each stress-factor is with respect to the capacity 

loss. It is important to highlight that, although such comparison could clarify how the GP model understand 

the data, it does not imply causality. For CASE 1 and 2, the GP model considered the temperature input 

considerably more relevant than the DOD and Middle-SOC. However, at this stage, the training data only 

involved single DOD and Middle-SOC levels, hindering the inference in these dimensions, and the 

corresponding rates displayed in Figure 3 were “floating” values resulting from the optimisation. As CASE 

3 and 4 involved different DOD values, the model allocated an increased importance to such input variations. 

In CASE 5, the inclusion of the data corresponding to 20% Middle-SOC removed the influence such stress 

factor from the GP model predictions: in fact, the capacity loss at low and medium Middle-SOC was similar 

in the experimental data, which led the model to deem this stress-factor completely unrelated with the 

capacity loss. Such estimation was corrected in CASE 6 and 7, to finally classify the relevance of the different 

stress-factors with respect to the capacity loss prediction in this order: 1/ temperature, 2/ DOD and 3/ Middle-

SOC (the relation between the hyperparameter value and the “relevance” being debatable for 𝛥𝐴ℎ input). 

The predictions of the developed GP model are illustrated for the cells cycled at 25°C, 80% DOD and 50% 

Middle-SOC, for the different cases.  

 

Figure 4. Predictions for the cells cycled at 25°C, 80% DOD and 50% Middle-SOC, for the different cases. 

The model performed inaccurate and uncertain predictions for CASE 1 and 2, due to the single DOD value 

in the training data. The involvement of the 20% DOD and 50% DOD levels, respectively in CASE 3 and 4, 

allowed to improve the accuracy and uncertainty quantification of the model reaching an average of 1.21 

𝑅𝑀𝑆𝐸𝑄 and 95.31% 𝐶𝑆2𝜎 for these cells in CASE 4, which traduce a suitable understanding of the effect of 

the DOD on capacity loss. As expected, the observation of new Middle-SOC values in CASE 5 and 6 did not 

affect the results. In CASE 7, the data corresponding to the operating conditions under study were included 
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in the training set. However, the model prediction did not change significantly, suggesting a correct 

generalisation capability in the DOD dimension, for the model trained in CASE 4. 

6.2. Learning from dynamic conditions 

The operating conditions of Li-ion batteries are barely constant in real-world operation, and therefore the 

predictive capabilities of the ageing models need to be validated at dynamic operating conditions. In order to 

ensure the validity of the developed model to perform accurate predictions at dynamic operating conditions, 

and illustrate the ability to complete the model training from the observation of such dynamic profiles, 2 

additional cells were submitted to dynamic temperature, DOD, Middle-SOC and C-rate profiles. The 

obtained capacity data and model’s predictions, as well as the corresponding DOD, Middle-SOC, 

Temperature and C-rates profiles are displayed in Figure 5, for one of those cells. 

 

Figure 5. (a) Mean prediction and confidence intervals of the initial GP model (black line and grey area), and the 

updated model’s predictions (red line and red area). (b) Dynamic DOD and Middle-SOC profiles. (c) Dynamic 

temperature and charging and discharging C-rates. 

The GP model trained with the data corresponding to CASE 6 was selected for the dynamic validation. 

Actually, such model already observed different values for all the input dimensions, and it is expected to be 

able to correctly predict the capacity loss. In Figure 5.a, the initial model (black line and grey area) performed 

a clearly pessimistic prediction, mainly explained by i) the inability of the model to handle the slower capacity 

loss often observable in the BOL, and ii) the reduced capacity loss observed at 100% DoD (between 50000-

90000 Ah-throughput range) compared with the static training data at the same static conditions. 

At approximately 90000 Ah-throughput (≈ 50% of the data available for this cell), the observed data samples 

were included in the training dataset of the model, and a second prediction was performed from this point 

(red line and red area in Figure 5.a). The operating conditions between 10700-43960 Ah-throughput, which 

were included in the training phase, were repeated between 126000-167600 Ah-throughput. Such operating 

conditions were not observed in the initial training (CASE 6), and this allows to assess the learning 

capabilities of the model. Neglecting the shift corresponding to the initial point correction, the updated model 

provided a slightly smaller degradation compared to the initial prediction, in accordance the newly included 

training data. Furthermore, the confidence boundaries were reduced for such operating conditions, indicating 

a more confident behaviour of the updated model. 

7. Discussion, limitations of the study and further works 

In this study, the selection of the inputs and the corresponding kernel functions, as well as the composition 

of the whole kernel were based on the assumption that the SEI cracking and the subsequent SEI reformation 

were the main causes of the capacity loss, due to the relatively low charging and discharging C-rates used 

for the experimental data presented in Figure 1. However, real-world operation may involve higher C-rate 

values for both charging and discharging, and the ageing model presented in this study should be extended 

to take into consideration the different ageing mechanisms as the particle fracture and the lithium plating, 

which are stimulated by high C-rate levels. The sudden capacity drop phenomenon, sometimes related to the 

irreversible lithium plating mechanism, and the effect of the charging and discharging C-rates are also 
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planned to be considered in a further publication. Besides, the accuracy of the model presented in this study 

revealed to be limited by the inability of the model to fit nonlinearities in the Ah-throughput dimension, as 

explained in Section 6. This could be solved by the inclusion of an additional input e.g. the capacity value 

from which the prediction is performed. Finally, the ability of the model to learn from dynamic operating 

conditions deserves to be further investigated, in order to i) quantify better the number of experimental tests 

required at static ageing conditions and ii) identify the learning limitations from the dynamic operating 

profiles, induced by the path-dependence. 

8. Conclusions 

In this study, a self-adaptive capacity loss model was developed based on the Gaussian Process framework. 

The model was able to perform accurate predictions for a broad panel of temperature, DOD and Middle-SOC 

cycling conditions, reaching an average value of 1.15% 𝑅𝑀𝑆𝐸𝑄 , with a reduced number of laboratory 

training tests (9 different conditions). The ability of the self-adaptive model to learn from the new data 

samples was demonstrated at both static and dynamic conditions. 
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