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Summary

Conventional Li-ion ageing models require a large amount of time and cost-intensive laboratory tests to
provide accurate predictions in realistic operating conditions. Concurrently, industry progress into digital
transformation, making considerable efforts in data collection. This implies the forthcoming availability of a
significant amount of real-world battery operation data. In this context, self-adaptive ageing models, able to
learn from in-field battery operation data and adapt lifetime estimations to the real life become an interesting
solution to reduce laboratory labours. Based on extensive experimental tests at static and dynamic conditions,

a self-adaptive capacity loss model is proposed under the Gaussian Process framework.

Keywords: Lithium battery, Battery cycle life, Modeling, Digitalization, Fleet.

1. Introduction

Lithium-ion (Li-ion) technology has gained market share until becoming the principal energy storage solution
for many industrial applications, mainly due to its high efficiency and high specific energy and power.
However, Li-ion batteries still expensive, and their performance declines over time and use, which threatens
its competitiveness against more affordable solutions [1]. The development of ageing models allow to predict
the degradation of Li-ion batteries, providing useful information to improve the sizing of battery packs, adjust
warranty periods and assist business case definition.

Different kinds of ageing models were proposed in the literature, involving empirical, semi-empirical and
physics-based models [2]. Nevertheless, a main inconvenience for the development of such a conventional
ageing models is the huge amount of laboratory tests needed to verify their accuracy at realistic operating
conditions. Actually, all these conventional models are typically parametrised using laboratory tests carried
out at constant ageing conditions [3]. Furthermore, extensive validation procedures involving constant ageing
conditions, slowly varying dynamic conditions and realistic ageing profiles are recommended to surround
accurate lifetime predictions in a context of real-world operation [4]. However, even such validation
procedures could difficultly ensure accurate predictions for a large diversity of dynamic or realistic profiles,
which may involve different ageing rates due to the effect of the path dependence [5].
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A possible solution to reduce the number of laboratory tests is to work on the development of self-adaptive
ageing models. In this paper, a self-adaptive model is understood as a model able to update or correct itself
to fit better the newly available data samples. Following this approach, reduced laboratory tests could be used
to develop a preliminary ageing model. Further, once the battery pack is implemented and operating, in-field
data could allow to update the preliminary ageing model. In this way, the ageing model would be
continuously upgraded, improving prediction accuracy, and providing useful information for predictive
maintenance, adaptive energy management strategies or business case redefinition.

In a previous publication, a critical review on self-adaptive ageing models for Li-ion batteries was presented,
in which the Gaussian Process (GP) models were identified as most promising candidates [6]. In fact, beyond
their ability to perform probabilistic, relatively robust and computationally acceptable predictions, these
models enjoy the very interesting advantage of being nonparametric: in other words, the complexity of these
models depends on the amount of training data. In the context of Li-ion ageing prediction, this implies:

- A progressive spread of the operating window of the model. Each time a new data sample related to
previously unobserved operating conditions is included into the training set, additional knowledge
is obtained about the influence of stress-factors on ageing. The resulting models are able to provide
an increasingly comprehensive picture of the ageing of Li-ion batteries.

- A higher level of specialisation of the model. The preliminary ageing model developed from the
laboratory data could be upgraded including new training data extracted from in-field operation. In-
field data encodes the intrinsic operating profiles of each applications. This implies the possibility
to move from a generic ageing model to specialised models tailored to specific applications.

This paper focuses on the modelling of the cycle ageing of Li-ion batteries, considering the effect of the
cycling temperature, Depth-of-Discharge (DOD) and Middle-State of Charge (SOC). Section 2 describes the
experimental ageing tests carried out in order to produce the ageing data. Section 3 details the processing of
the raw data. Section 4 introduces the theoretical background of the GP framework. In Section 5, the selection
of the inputs and kernel functions are justified. Section 6 states the obtained results for both static and
dynamic operating conditions. Section 7 discusses the obtained results and outlines the limitations of the
study and further works. Finally, Section 8 closes the study depicting the main conclusions.

2. Experimental ageing data

Experimental ageing tests were performed on NMC/graphite 20Ah pouch cells, in a temperature-controlled
environment. Periodical check-up experiments were carried out at 25°C to evaluate the capacity of the cells
every 100 Full-Equivalent-Cycles (FEC). Between each capacity test, a total of 95 cells from the same
manufacturing batch were tested at the corresponding temperature, DOD and Middle-SOC levels (specified
in Table 1). For these ageing tests, the cycling temperature, DOD and Middle-SOC level of every cell
remained unchanged during the whole duration of the tests, which were 3750 FEC for the longest test.

Table 1. Cycle ageing test matrix

Temperature [°C]| DoD [%] 100 80 65 50 35 20 10
MidSOC [%]| 50 50 50 65 50 35 50 80 65 50 35 20 80 65
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As the battery cycling conditions are barely constant over time, 2 cells were cycled at dynamic temperature,
DOD, Middle-SOC and charging and discharging C-rate levels. These cells were reserved for the validation
of the developed model, and the obtained capacity curves and the corresponding dynamic operating profiles
are detailed in Section 6.2.

3. Data pre-processing

In the context of data-driven or empirical modelling, the data used for the training and validation of the model
must be analysed prior to any modelling task, in order to remove the data involving potential errors and
possibly separate the components which are desired to be modelled from those which deserve to be discarded.
For the modelling of Li-ion battery ageing, a deep electrochemical understanding provides a solid
background to make this task easier. In this section, the raw data obtained from the experimental tests is
analysed and processed for the further modelling stage.

In the experimental data, a capacity rise phenomenon appears on the Beginning of Life (BOL) phase of the
tested cells. According to the literature, the capacity rise could be induced by a slow, compensating flow of
active lithium between the passive and the active part of the anode, where the passive part represents the
geometric excess anode with respect to the cathode [7]. Despite a deep research in the literature, no clear
relation was found between the initial capacity rise and any ageing mechanism, and it was assumed that the
initial capacity rise phenomenon does not have any influence on the posterior ageing trend of the cells.
Accordingly, the data corresponding to the capacity rise was discarded for the development of the ageing
model. During the data pre-processing phase the maximal capacity point of each cell was designated as the
BOL point, and assigned to the ‘zero Ah-throughput’ state.

After a regular decline of the capacity, some cells showed a clear acceleration of the ageing rate. The post-
mortem analyses performed in all cells below 80% of the remaining capacity revealed metallic lithium
deposed on the whole surface of the anode. Therefore, the sudden capacity drop was linked to the occurrence
of lithium deposition. The current study presents a partial cycle ageing model, which does not take into
account the effect of the charging and discharging currents on ageing, which are strongly related to the lithium
deposition phenomenon. Consequently, the data samples corresponding to sudden capacity drop phenomena
were discarded from the modelling dataset in the current study. Furthermore, some unexpected ageing
behaviours were detected, notably some one-off lower or higher capacity data points, which were allocated
to measurement or procedural errors during the capacity tests. These data samples were also removed from
the modelling dataset. The remaining ageing data obtained after the pre-processing stage is visualised in
Figure 1.
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Figure 1. Actual capacity normalised to maximum value (Qmax), Obtained after the pre-processing phase of static
ageing tests. Notice that, for clarity purposes, the y-axis scale is varying from a subplot to another.

EVS32 3



4. Gaussian Process theory

This section aims at giving a brief overview of Gaussian Process models. The GP is a random process, i.e. a
random entity whose realisation is a function f(x) instead of a single value. Rather than assuming a
parametric form for the function to fit the data, f(x) is assumed to be a sample of a Gaussian random process
distribution. Since the GP is a nonparametric model, even when a lot of observations have been added, the
model should always be capable to fit the data.

A GP is fully determined by its mean and covariance functions, which express the expected behaviour of the
model when the prediction inputs diverge from the inputs observed in training. The covariance function, also
called kernel, gives the information about how relevant is one target observation y of the training dataset to
predict the output y*, in the basis of the similarity between their respective input values x and x*.

The mean and covariance functions depend on some hyperparameters 8, which must be learned from the
training dataset. From the GP point of view, the mean and covariance function selection and learning the
corresponding hyperparameters are the main tasks which must be carried out during the training phase.
Hyperparameters are typically estimated by the maximisation of the marginal likelihood logarithm [8]. The
GP predictive equations are expressed in equations (1), (2) and (3).

f*lX'y' X*~N(f*'C0V(_f*)) (1)
f.=mX.) + KX, X)[KX,X) + o2 (y— m(X)) )
cov(f.) =KX, X.)— KX, X)[K(X X)+ a2l 'K(X,X.) 3)

wheref,, f., and cov(f,) are the GP posterior prediction, its corresponding mean and its covariance,
respectively; K(X,X), K(X.,X.), and K(X, X,) are the covariance matrices between training inputs, the
testing inputs, and training and testing inputs, respectively; yis the training target vector, and g, is the noise
variance.

5. Cycle ageing model

For an accurate prediction of Li-ion battery ageing at several static and dynamic conditions, it is of paramount
importance to take into account the effect of the different stress factors influencing on the ageing mechanisms,
and understand how they impact the capacity loss of Li-ion batteries. Under the GP framework, these tasks
are traduced as a correct selection of the input and kernel functions.

5.1. Relating ageing mechanisms, model inputs and kernel functions

The selection of the structural form of the kernel is the most important challenge in nonparametric regression
[8]. However, it remains a black art, as there is not any broadly accepted method to perform this task [9]. For
most the GP ageing models presented in the literature, the selection of the kernel was based on trial and error
methods, in which the kernel function presenting the lowest error was considered as the most suitable.
Following this method, the suitability of the selected kernel in the general context of Li-ion battery ageing
prediction could hardly be guaranteed, due to its high correlation to the used dataset. In order to develop GP
models tailored to Li-ion battery ageing application, a stronger justification based on the prior knowledge on
the expected ageing mechanisms is necessary for the appropriate selection of the kernel.

According to the literature, relatively high charging and discharging currents stimulate the cracking of the
electrode particles. However, at lower current rates of battery operation the Solid Electrolyte Interface (SEI)
cracking and reforming was proposed to be the main mechanism inducing capacity loss, without affecting
the electrode particle itself [10]. Such capacity loss was shown to be proportional to the square of the state
of lithiation swing (which could be approximated by the DOD) of the electrode particle, during lithiation
[10]. The ageing data analysed in this study corresponds to relatively low C-rate values (C/3 charging and
1C discharging), which allows to assume a prior belief of a squared DOD dependence for the capacity loss.
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Therefore, the squared-exponential kernel, which is able to handle all the projections into the space of powers
[8], is considered to be suitable to host the DOD input dimension.

Besides, the capacity loss seems to have a U-shape dependency to the Middle-SOC, with an optimum around
50% SOC and stronger degradations at higher and lower cycling ranges [11]. As for the DOD input, the
squared-exponential kernel should be an appropriate choice to capture such a squared Middle-SOC
dependency. Furthermore, the growth of the SEI layer is a chemical reaction and then obeys to the Arrhenius
law: the SEI formation rate increases exponentially with temperature. Such an exponential dependence,
defined as the linear combination of an infinite number of power functions, could also be captured by the
squared-exponential kernel.

Finally, a last input denoted 4Ah was defined as the Ah-throughput for which the capacity loss is desired to
be predicted. Notice that, an isotropic kernel (e.g. squared-exponential) associated to such an input would
require a large number of training AAh values to allow long term prediction, drastically increasing the size
of the training dataset, as well as the computational cost of the model®. A linear anisotropic kernel was then
selected for this input dimension. Summarising, the model proposed in this study considered four inputs:

- AAh: the Ah-throughput for which the ageing is desired to be predicted, modelled by a linear
anisotropic kernel.

- T:the ambient temperature, modelled by a squared-exponential kernel.
- DoD: the DOD at which such AAh were cycled, modelled by a squared-exponential kernel.

- Middle-SOC: the average SOC corresponding to such DOD, modelled by a squared-exponential
kernel.

The output of the model was the capacity loss AQ corresponding to the cycling of AAh.

5.2. Composing the whole kernel

As pointed out in Section 5.1, the model must be able to handle different input dimensions. Consequently,
compositional kernels’ framework seems to be a suitable solution to construct a main kernel composed of
interpretable components, each one related to a specific input dimension [9]. In order to focus on the
behaviour of the composed kernels, a zero-mean function was defined in this work. This is not a drastic
limitation, since the mean of the posterior process is not confined to be zero [8].

In the GP framework, the kernel function is also a covariance function and then must be positive semidefinite
[8]. Moreover, positive semidefinite compositional kernels are closed under addition and multiplication of
basic kernels. Additive kernels assume the added stochastic processes to be independent [9]. According to
the literature, the capacity loss corresponding to the SEI fracture results from a strong interaction between
the temperature, DOD and Middle-SOC: the mechanical stress induced by both DOD and Middle-SOC leads
to the SEI fracture, revealing this way a fresh anode surface to the electrolyte which give rise to the
temperature dependent reforming of the SEI [10]. In order to account for the interactions between the
different input dimensions, the tensor product is suggested [8,9]. The compositional kernel developed this
way is expressed in equation (4).

, 2 [x4 —X’1|2 |2, —x'2|2 | x5 _X’3|2
k(x,x") =0 lexp| ————— | exp| —— |exp| ~——————
2-0r 2+ 0pop 2 - Omiadie-soc 4)
. (x4 x'y t 9AAh2)

where x and x’ are different input vectors structured as x = (xy, X5, X3, %,), With x; = T™%, x, = DoD, x3 =
Middle-SOC, x, = AAh.

1 More information about the properties of isotropic kernels in [8]
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01, Opops Omiddie-soc and 8, are the hyperparameters related to the T, DoD, Middle-SOC and 4Ah inputs
respectively. The additional hyperparameter o is the signal variance, and plays the role of scaling the
outputs.

6. Results

Three different metrics were used to assess the prediction performances of the ageing models. The first one
was the root-mean-square error (RMSE) of the output of the model, which was the capacity loss 4Q, defined
according to equation (5) - left. The second metric was the RMSE of the predicted capacity curve, expressed
in equation (5) - right. This second metric is useful to evaluate the accumulative error of the model. The last
metric was the calibration score and aimed at quantifying the accuracy of uncertainty estimates. It is defined
as the percentage of measured results in the test dataset that are within a predicted credible interval. Within
an t+20 interval, corresponding to a 95.4% probability for a Gaussian distribution, the calibration score is
given by equation (6). Therefore, CS,, should be approximately 95.4% if the uncertainty predictions are
accurate. Higher or lower scores indicate under- or over-confidence, respectively.

Nt Nt
1 ~ 1 ~ 2
5. v.) = [— 5. — . 0. = |— — 0. 5)
RMSEAQ(yUyl) NTZ(yl yl)z RMSEQ(QU Ql) NTZ(QL Ql) (
i=1 i=1
1<
€S,y = N—Znyi — ] < 20] - 100 (6)
=

where 9; is the predicted output, y; is the measured output, Ny is the number of points to be evaluated, Q; is
the predicted capacity calculated by accumulation of the output and Q; is the measured capacity.

6.1. Learning from static conditions

In order to assess the performances of the model seven cases were studied, each one involving a different
quantity of training data. From the CASE 1 to CASE 7, the ratio of the training data with respect to the whole
dataset increases, and the range of different cycling temperature, DOD and Middle-SOC conditions observed
during the training phase is broadened. The operating conditions involved in each cases were specifically
selected to clearly illustrate the ability of the GP model to learn the influence of new stress-factor levels on
the capacity loss. A 3% error threshold in terms of RMSE, was established as accuracy criterion.

CASE 1 only comprised two different temperatures, a single DOD and Middle-SOC level. CASE 2
completed the temperature dimension with the observation of a third level. CASE 3 and 4 corresponded to
the learning of the influence of DOD on the capacity loss, involving respectively two and three different
DOD cycling levels. CASE 5 and 6 completed the model presenting an increasing number of Middle-SOC
values, and CASE 7 included in the training dataset all the operating conditions available from the
experimental ageing tests. The characteristics of each case are indicated in Table 2, specifying the different
cells and the related operating conditions involved during the training process, as well as the corresponding
ratio of the training data with respect to the whole available data. In each case, the GP model introduced in
Section 5 was trained with the corresponding training cells, and the ageing was predicted for all the cells, in
order to validate the generalisation capabilities of the obtained models. The maxima and average RMSE and
CS,, values of all the tested cells are also indicated. The evolution of the metrics for each cell is represented
in Figure 2.
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Table 2. Summary of the different case studies and average and maxima metrics values obtained with the GP developed in Section 5, calculated from the predictions of all the cells.
Best results are indicated in bold.

CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7
Cycling Cycling Cycling Cycling Cycling Cycling Cycling
Ceg conditions CeLI conditions CeLI conditions CeLI conditions CeLI conditions CeLI conditions Ce:)' conditions
nUMBEr '+ Toob [Midsoc | ™™™ |1 [oob [Midsoc| ™™*" | 1 [pob [midsoc| "™ " [T [pob [midsoc| ™™*" | T [oob [midsoc] ™™P¢" [ T ] Dob [Midsoc| ™M €' [T T pop [Midsoc
CELLOO01- CELLO01- CELLOO01- CELLOO01- CELLOO01- CELLO01-| 25 | 100 50
003 25| 100 50 003 25| 100 50 003 25| 100 50 003 25| 100 50 003 25| 100 50 003
CELL100- CELL100- CELL100- CELL100- CELL100- CELL100-| 45 | 100 50
102 45| 100 50 102 45 | 100 50 102 451 100 50 102 45| 100 50 102 45| 100 50 102
CELLO030- CELLO030- CELLO030- CELLO030- CELLO030-| 35 | 100 50
032 35| 100 50 032 35| 100 50 032 35| 100 50 032 35| 100 50 032
CELLO21- CELLO21- CELLO021- CELLO21-{ 25| 20 50
022 25| 20 50 022 25| 20 50 022 25| 20 50 022
CELL120- CELL120- CELL120- CELL120-| 45| 20 50
122 451 20 50 122 451 20 50 122 45| 20 50 122
CELLO67- CELLO067- CELLO067- CELLO67-| 35| 20 50
069 35| 20 50 069 35| 20 50 069 35| 20 50 069 al il
Training cells CE'BEHS' 25| 50 50 CE'BEHS' 25| 50 50 CE'(#HS' 25| 50 50
CELL114- CELL114- CELL114-{ 45| 50 50
116 45| 50 50 116 45| 50 50 116
CELLO047- CELLO047- CELLO47-| 35| 50 50
054 35| 50 50 054 35| 50 50 054
CELLO73- CELLO73-
075 35| 20 20 075 35| 20 20
CELLO082- CELLO082-
84 35| 10 20 84 35| 10 20
CELLO61-| 35| 20 80
063
CELLO76-| 35| 10 80
078
Training/Validation ratio [%6] 9.38 12.51 19.49 39.45 43.15 51.58 100
Maximum RMSE »q [%] 2.86 2.36 2.38 2.38 2.38 2.38 2.38
Average RMSE o [%] 112 0.95 0.82 0.72 0.70 0.68 0.70
Maximum RMSE, [%0] 8.46 5.85 3.90 2.83 2.83 2.83 3.46
Performance Average RMSE g [%] 2.82 2.22 1.75 1.15 1.09 1.05 111
metrics Maximum €Sz, [%] 100 100 100 100 100 100 100
Minimum CS,, [%] 19.35 32.43 1071 0 0 0 0
Average CS,, [%] 83.42 93.63 65.93 7751 74.12 71.95 72.77
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Figure 2. Evolution of the metrics over the different case studies with the model developed in Section 5, for all the
cells tested at static cycling conditions.

The GP model trained in CASE 1 demonstrated poor prediction performances for most operating conditions
involving a DOD level unobserved in training (see Figure 2.a-b). As expected, a clear improvement was
observed in CASE 2 for all the cells cycling at 35°C, but the prediction errors at several DODs remained
superior to the defined 3% threshold. With the introduction of a second DOD level in CASE 3, the model
could perform a first fitting in the DOD dimension, and the extension to 50% DOD in CASE 4 allowed to
achieve the 3% RMSE|, accuracy criterion for all the cells. In CASE 5 and 6, the data corresponding to low
and high Middle-SOC cycling was incorporated in the training set, respectively. The improvement of
prediction performances were in such cases limited (see cells 044-046, 061-063, 076-078 in Figure 2.b), due
to the reduced impact of the Middle-SOC stress-factor compared to the cycling temperature and DOD.
Finally, all the available data was included in the training set in CASE 7. Unexpectedly, the average RMSE)
and RMSE, metrics which revealed reducing values from CASEI to CASE 6, increased for the training
CASE 7. This observation could possibly be explained by the coupled effect of i) a higher number of
mismatches in the data, partially due to small deviations induced by procedural and measurement errors
during the experimental testing, ii) the limited capability of the developed GP model to explain the data, due
to the slight nonlinearities of the capacity curves in the Ah-throughput dimension, and iii) the saturation of
the learning capabilities of the GP model, which limits the scope for reduction of the error metrics as most
of the possible operating conditions were already observed.

Regarding the CS,, metric (see Figure 2.c), a non-monotonic evolution was observable for the cells 030-54
and 100-122. This is also explainable by the linear character of the model’s predictions in the Ah-throughput
dimension. Actually, such a cells present slightly nonlinear capacity curves, with a lower capacity loss in the
beginning of life, then a faster linear trend, sometimes followed by a slowdown (see Figure 1). Besides,
according to the equation (3), the predicted confidence boundaries reduce as the GP model is observing a
larger number of operating conditions, indicating that the GP is becoming more confident. Therefore, more
data samples remain out of the confidence boundaries, depending on the nonlinearities in the Ah-throughput
dimension. This induces large variations in the evolution of the CS,, metric, which clearly remained under
the desired 95.4% value for all these cells, implying a strongly over-confident behaviour of the model.
Oppositely, a clear convergence into 100% CS,, was observable for the cells 001-023 and 055-084,
indicating under-confident predictions for those cells. This is explainable by the particularly straight capacity
curves observable for those cells, which, combined with the relatively high noise hyperparameter imposed
by the cells presenting nonlinear capacity curves, leads to relatively large confidence boundaries that
encompass all the data samples.

For many covariance functions, the observation of the hyperparameters allows to interpret how the GP model
understand the data. As explained in [8], for the squared-exponential kernel, the hyperparameters play “the
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réle of characteristic length-scale. Such a covariance function implements automatic relevance
determination (ARD), since the inverse of the length-scale determines how relevant an input is: if the length-
scale has a very large value, the covariance will become almost independent of that input, effectively
removing it from the inference”. Figure 3 displays, for each case study, the inverse of the hyperparameters
corresponding to each input dimension, relatively normalised to each other.
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Figure 3. Inverse of the hyperparameters corresponding to each input dimension, relatively normalised to each other.

Notice that the interpretability of the hyperparameter of the AAh input is debatable, due to the anisotropic
character of the corresponding kernel. However, the relative values of the inverse of Temperature, DOD and
Middle-SOC inputs’ hyperparameters indicate how relevant each stress-factor is with respect to the capacity
loss. It is important to highlight that, although such comparison could clarify how the GP model understand
the data, it does not imply causality. For CASE 1 and 2, the GP model considered the temperature input
considerably more relevant than the DOD and Middle-SOC. However, at this stage, the training data only
involved single DOD and Middle-SOC levels, hindering the inference in these dimensions, and the
corresponding rates displayed in Figure 3 were “floating” values resulting from the optimisation. As CASE
3 and 4 involved different DOD values, the model allocated an increased importance to such input variations.
In CASE 5, the inclusion of the data corresponding to 20% Middle-SOC removed the influence such stress
factor from the GP model predictions: in fact, the capacity loss at low and medium Middle-SOC was similar
in the experimental data, which led the model to deem this stress-factor completely unrelated with the
capacity loss. Such estimation was corrected in CASE 6 and 7, to finally classify the relevance of the different
stress-factors with respect to the capacity loss prediction in this order: 1/ temperature, 2/ DOD and 3/ Middle-
SOC (the relation between the hyperparameter value and the “relevance” being debatable for AAh input).

The predictions of the developed GP model are illustrated for the cells cycled at 25°C, 80% DOD and 50%
Middle-SOC, for the different cases.
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Figure 4. Predictions for the cells cycled at 25°C, 80% DOD and 50% Middle-SOC, for the different cases.

The model performed inaccurate and uncertain predictions for CASE 1 and 2, due to the single DOD value
in the training data. The involvement of the 20% DOD and 50% DOD levels, respectively in CASE 3 and 4,
allowed to improve the accuracy and uncertainty quantification of the model reaching an average of 1.21
RMSE, and 95.31% (S, for these cells in CASE 4, which traduce a suitable understanding of the effect of
the DOD on capacity loss. As expected, the observation of new Middle-SOC values in CASE 5 and 6 did not
affect the results. In CASE 7, the data corresponding to the operating conditions under study were included
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in the training set. However, the model prediction did not change significantly, suggesting a correct
generalisation capability in the DOD dimension, for the model trained in CASE 4.

6.2. Learning from dynamic conditions

The operating conditions of Li-ion batteries are barely constant in real-world operation, and therefore the
predictive capabilities of the ageing models need to be validated at dynamic operating conditions. In order to
ensure the validity of the developed model to perform accurate predictions at dynamic operating conditions,
and illustrate the ability to complete the model training from the observation of such dynamic profiles, 2
additional cells were submitted to dynamic temperature, DOD, Middle-SOC and C-rate profiles. The
obtained capacity data and model’s predictions, as well as the corresponding DOD, Middle-SOC,
Temperature and C-rates profiles are displayed in Figure 5, for one of those cells.

2 T T -& Experimental data

o 100! 2 > . . . —NMean prediction
= % - Confidence interval (+ 20)
g . @ Updating point
—Updated mean prediction
Updated confidence interval (+ 20)
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—Charging C-rate
- -Discharging C-rate

Temperature [°C]

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16
Ah-throughput [Ah] <10%

Figure 5. (a) Mean prediction and confidence intervals of the initial GP model (black line and grey area), and the
updated model’s predictions (red line and red area). (b) Dynamic DOD and Middle-SOC profiles. (c) Dynamic
temperature and charging and discharging C-rates.

The GP model trained with the data corresponding to CASE 6 was selected for the dynamic validation.
Actually, such model already observed different values for all the input dimensions, and it is expected to be
able to correctly predict the capacity loss. In Figure 5.a, the initial model (black line and grey area) performed
a clearly pessimistic prediction, mainly explained by i) the inability of the model to handle the slower capacity
loss often observable in the BOL, and ii) the reduced capacity loss observed at 100% DoD (between 50000-
90000 Ah-throughput range) compared with the static training data at the same static conditions.

At approximately 90000 Ah-throughput (= 50% of the data available for this cell), the observed data samples
were included in the training dataset of the model, and a second prediction was performed from this point
(red line and red area in Figure 5.a). The operating conditions between 10700-43960 Ah-throughput, which
were included in the training phase, were repeated between 126000-167600 Ah-throughput. Such operating
conditions were not observed in the initial training (CASE 6), and this allows to assess the learning
capabilities of the model. Neglecting the shift corresponding to the initial point correction, the updated model
provided a slightly smaller degradation compared to the initial prediction, in accordance the newly included
training data. Furthermore, the confidence boundaries were reduced for such operating conditions, indicating
a more confident behaviour of the updated model.

7. Discussion, limitations of the study and further works

In this study, the selection of the inputs and the corresponding kernel functions, as well as the composition
of the whole kernel were based on the assumption that the SEI cracking and the subsequent SEI reformation
were the main causes of the capacity loss, due to the relatively low charging and discharging C-rates used
for the experimental data presented in Figure 1. However, real-world operation may involve higher C-rate
values for both charging and discharging, and the ageing model presented in this study should be extended
to take into consideration the different ageing mechanisms as the particle fracture and the lithium plating,
which are stimulated by high C-rate levels. The sudden capacity drop phenomenon, sometimes related to the
irreversible lithium plating mechanism, and the effect of the charging and discharging C-rates are also

EVS32 10



planned to be considered in a further publication. Besides, the accuracy of the model presented in this study
revealed to be limited by the inability of the model to fit nonlinearities in the Ah-throughput dimension, as
explained in Section 6. This could be solved by the inclusion of an additional input e.g. the capacity value
from which the prediction is performed. Finally, the ability of the model to learn from dynamic operating
conditions deserves to be further investigated, in order to i) quantify better the number of experimental tests
required at static ageing conditions and ii) identify the learning limitations from the dynamic operating
profiles, induced by the path-dependence.

8. Conclusions

In this study, a self-adaptive capacity loss model was developed based on the Gaussian Process framework.
The model was able to perform accurate predictions for a broad panel of temperature, DOD and Middle-SOC
cycling conditions, reaching an average value of 1.15% RMSEj,, with a reduced number of laboratory
training tests (9 different conditions). The ability of the self-adaptive model to learn from the new data
samples was demonstrated at both static and dynamic conditions.
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