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Executive Summary 
Our contemporary society needs to fully decarbonize in order to tackle the climate crisis we are facing. 

Accordingly, we are in the need of using renewables energies. Unfortunately, renewable energy is 

intermittent, so an unbalance between demand and supply exists. The issue with e-mobility is the availability 

of electricity and the grid integration of the charging infrastructure. The onboard energy storage unit of the 

electric vehicle can act as energy buffer for the electricity grid when bidirectional chargers are deployed, and 

grid services are offered. Accordingly, the battery is a key element in this scenario. In this paper the basis of 

a methodology is presented in order to estimate the battery State of Health for a longer and safer use of the 

battery. 
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1 Introduction 
Our contemporary society needs to fully decarbonize in order to tackle the climate crisis we are facing. A 
twofold transition is approaching, the decarbonization and decentralization of the electricity sector and the 
electrification of the transport sector. Both transitions come with their own barriers. The aim of this paper is 
to align both into a mutual reinforcing collaboration. One of the main hurdles of renewable energy is its 
intermittent nature, creating an unbalance between demand and supply. The issue with e-mobility is the 
availability of electricity and the grid integration of the charging infrastructure. The onboard energy storage 
unit of the electric vehicle can act as energy buffer for the electricity grid when bidirectional chargers are 
deployed, and services are offered (figure 1). In this paper an algorithm is developed that will be able to 
estimate the State of Heath of the battery and to detect the critical degradation mechanisms (1).  

 

 
Figure 1: Visual for Vehicle to Grid scenario. 

 



2 Battery Health 
Inside a Vehicle to Grid activity the used battery status is key for an optimal usage of the vehicle battery as 
mean of transport as well as the storage usage. So as to check closely the status of the battery, the estimatin 
of the State-of-Health (SoH) is needed. The SoH is the ability of a battery to store energy relative to its initial 
or ideal conditions. It is essential to estimate the SoH in order to ensure a safe and correct usage of the 
battery. The SoH is presented in percentage, showing that 100% means that the battery is new. Ageing of a 
battery comes from multiple causes, but it’s reflected by two phenomena; capacity and power fade. Capacity 
decrease is measured by capacity loss, limiting the End of Life (EoL) at 80%. On the contrary, power fade 
is delimited by the increase of the battery, showing that 200% is the EoL. When arriving to these SoH criteria, 
the battery is considered not usable and should be replaced (2) (3) (4) (5).  

Due to all causes that originate ageing in a battery, the determination of SoH is not a based on a direct 
measurement. Classical methods require to study interactions on the positive or the negative electrodes. 
Unfortunately, most of the times these processes require the destruction of the cell, disabling any further use 
of the cell. Determination of SoH in a less aggressive way can be obtained by two different approaches: 
adaptive models and experimental techniques. Adaptive models are useful when system-specific information 
is not available. The strength of this approach is diagnosis. The main problem is that they need training data 
to determine the current capacity. Classical experimental techniques take into account the physical processes 
and failure mechanisms that occur in systems, enabling prognosis of capacity. A limitation of these 
approaches is that they cannot detect intermittent failures (6). 

Accordingly, for a Vehicle-to-Grid application it is necessary to develop a new methodology in order to 
determine the SoH of the batteries which are used in an electric vehicle, in a simple, rapid and non-aggressive 
way. In order to accomplish these requirements, the Incremental Capacity curves are going to be used. These 
techniques have emerged recently and have been used by many researchers in order to reveal battery 
degradation mechanisms occurring in a battery cell. Additionally, with these techniques, the degradation 
mechanisms occurring in the cell can also be detected. Figure 2 shows the evolution of the IC curves with 
aging for the four tested cells (7). 

 

 
Figure 2: Evolution of Incremental Capacity curves in terms of ageing (7).  

3 Methodology 
In order to estimate the SoH of the battery in of an electric vehicle, the next methodology has been defined. 
The method consists on 3 main phases: a) SoH estimation based on the capacity fade, b) SoH estimation 
based on the internal resistance increase and c) Degradation mechanisms detection. 

• SoH estimation based on the capacity fade: 

For the capacity fade estimation, a capacity test needs to be performed. This test consists on charge and 
discharge cycles (at current-constant voltage, in Constant Current – Constant Voltage (CC-CV), and Constant 
Current (CC) modes, respectively) at nominal conditions specified by cell manufacturer (1C-rate current and 
25oC temperature). Three full charge-discharge cycles are performed in order to assess both reversible and 



irreversible capacity losses and check the repeatability of the results. The SoH is calculated from the capacity 
test according to equation (1) were Q is the capacity in Ah (1).  
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• SoH estimation based on the internal resistance increase: 

For the resistance estimation, a Hybrid Pulse Power Characterisation (HPPC) test is performed. The HPPC 
test follows the IEC62660-1 standard (8). This test profile contains both discharge and charge pulses. In this 
measurement technique, current pulses (∆𝐼) with various amplitudes (0.5 𝐼𝑡, 1 𝐼𝑡, 2 𝐼𝑡 and 2.5 𝐼𝑡) are applied 
to the battery during charging and discharging at different SoC levels (100% to 0% SoC with 5% steps). 
During the HPPC test, the applied charge/discharge current pulse (∆𝐼) result in a voltage response (∆𝑉). The 
battery internal resistance can be obtained with the following equation (2).  
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After obtaining the results from the HPPC test, the SoH in terms of power fade is calculated following 
formula (3). 
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• Degradation mechanism detection: 

The detection of the degradation mechanisms is key in order to prevent and predict a possible failure 
happening in the battery. Accordingly, the incremental capacity curves are going to be tested in this 
methodology. Incremental capacity has already been used for aging and degradation mechanism detection 
in lithium ion cells. Hence, different battery technologies have been studied by the application of the IC 
curves: LFP cells (9), LTO batteries (10), LCO (11) and NMC (12) (13) (14). SoH estimation has also been 
studied by applying this technique in different battery technologies, like in NMC cells (7),LFP (15) and also 
composites NMC+LMO (16) cells. The next formula can be used for obtaining of the incremental capacity 
curves (4) (7). 
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As a summary, it can be said that the main objective of the algorithm is to be able to test the batteries of an 
electric vehicle in an online, quick and easy way. The algorithm to develop will be based on partial charging 
or discharging at a fast rate. Cell full charge/discharge test are developed for developing the algorithm. Prior 
to the discharge, the cells are fully charged in CC-CV mode at 1C. The charge and discharge are performed 
at a C/5 rate. This Crate has been chosen as it was the fastest one that enabled observing the voltage plateaus 
in view of implementation in real application where low rate cycling is impractical. In addition, galvanostatic 
voltage profiles will be used for examining electrode phase changes and understanding degradation 
phenomena.  

4 Algorithm development for Vehicle to Grid applications 
There are many different approaches, algorithm types, methodologies and models to develop the status 
estimation of a battery. Nevertheless, due to the complexity of the objective estimation and the wide range 
of possibilities, a comparison between different learning methods for V2G applications has been done. Like 
this, the most fitting machine learning, or artificial intelligence technology should be used in order to develop 
the most suitable techniques for state estimation inside V2G applications.  

4.1 Learning methods for V2G algorithms 

• Extended Kalman Filter 

 A basic Kalman filter uses a series of measurements observed over time and selects the output variables that 
seem to be the more precise. It is a very accurate approach, nevertheless this filter can only operate with 



linear system. Due to this limitation, several variations and extensions have been developed inside the basic 
kalman filter approach. One of these non-linear approaches is the extended Kalman filter. In addition, this 
filter is quite known inside battery modelling. As an example, (17) uses tis filter to estimate the State-of-
Charge (SoC) of a battery. In (18) not only the SoC, but also the OCV is estimated. In (19) the filter is used 
for  SoH estimation by calculating the capacity and internal resistance of a cell.  

The extended Kalman filter is a very nice solution for non-linear systems. The accuracy they get is quite 
high and the computational effort required is feasible for a bacis microcontroller. Nevertheless, there are 
already hybrid solutions in literature. The author of (20) proposes an enhanced closed loop estimator based 
on extended kalman filter. In order to estimate SoC. In addition, in (21) a combination of EIS internal 
impedance method and an extended kalman filter is proposed for SoH estimation. 

• Unscented Kalman Filter 

The unscented kalman filter is another possibility for non-linear systems. This filter estimates the result from 
different unknown variables to be more precise than those based on a single measurement. It has also been 
used to estimate SoC, SoH and even internal resistance (22). Due to the different evolution of the capacity 
decrease and the resistance growth in terms of time, both parameters are calculated separately. Accordingly, 
the parameters can be estimated separately, which means a less time-consuming exercise and a less 
computing effort.  

• Genetic Algorithm 

This methodology, Genetic algorithm, is frequently used in order to generate highly accurate responses on 
very diverse problems. This algorithm is inspired on biology and human interactions which can be relying 
on mutation and selection procedures. In 1960 John Holland introduced this new concept and afterwards in 
1989 his student, David E. Goldberg, continued developing this algorithm.  

The genetic algorithm is more and more used in battery state estimations. Current and voltage of the batteries 
can be directly measured, but the state estimations can be determined by means of a genetic algorithm. More 
concretely, SoH of the batteries and degradation mechanisms can be estimated. However, the genetic 
algorithm is difficult to implement online because of the high computational power required. Although using 
any other method it is difficult to implement it in an actual BMS (23).  

• Particle Swarm Optimization 

The Particle Swarm Optimization searches for a global optimization based on a memory computational 
algorithm able to play with different random solutions, accordingly, it is a random potential solution. This 
optimization moves through a multidimensional space consisting in the problem itself in a specific velocity 
(23). The particles are key because they can interact one to the other and adjust their moving velocity 
following movement patterns. This random movement of the particles help the search of the solution (local 
minima). In addition, inside this approach, each particle keeps track of their position in space (24). This 
algorithm has also been applied in battery state estimation, like in (25) where they estimate the SoC in real 
time by using particle swarm optimization. Additionally, it has also been used for battery sizing in a scenario 
including PV (26). 

• Gaussian Process Regression 

A gaussian process is a stochastic process, meaning a collection of random variables classified in time and 
space, in which any collection of those random variables will form a multivariate normal distribution, and 
can accordingly be normally distributed as a finite linear combination. One step further, from the continuous 
interference of values with a Gaussian process becomes the gaussian process regression. This form of 
algorithm has also been used in battery state estimation. In (27), a gaussian process regression is used for in 
situ capacity estimation of lithium ion batteries obtaining a 2-3% root mean squared error. Additionally, in 
(28) a random forest regression algorithm is used to evaluate the capacity of the battery with a comparison 
to the gaussian process approach, in order to compare the computational effort of both approaches. 

 

4.2 Comparison of the different algorithms 

The main objective of the algorithm is to generalize from the experience. This is what machine learning 
algorithms needs to do in order to perform accurately on new data basing their response in the obtained 
experience. The training usually comes from unknown probability distribution, in order to develop a generic 



model capable to produce accurate predictions for all new coming cases. Because of this core characteristics 
but considering that all described approaches differ from each other a comparison has been built. The 
algorithms are compared in different terms; accuracy, training time response time self-learning and linearity. 
 

• Accuracy: Accuracy, precision and reliability are highly desired and quite complex to acquire. 
Nevertheless, getting the most accurate answer possible isn't always necessary. Moreover, through 
the use of linearly factored approximations to represent the value functions can be made arbitrarily 
close to the optimal. Nevertheless, the closer they are, the higher the final computational cost of the 
algorithm.  

• Training time: Machine learning algorithms require the study and construction of algorithms that 
can learn from and make predictions based on their previous experience. The algorithm to develop 
aims to maximize its sample efficiency; this means that it requires fewer interactions with the 
environment in order to learn how to act. The training time still depends on the size and complexity 
of the environment. 

• Response time: The response time is the total amount of time it takes to respond to a request for 
service. Once a policy has been learned, the algorithm requires applying Variable Elimination at 
each decision time-step to determine the optimal action to take. The complexity of this step depends 
on the graph made by the dependencies between the various agents and is generally exponential in 
the induced width of the graph. 

• Linearity: Linear classification algorithms assume that classes can be separated by a straight line. 
These include logistic regression and support vector machines Linear regression algorithms assume 
that data trends follow a straight line. These assumptions aren't bad for some problems, but on others 
they bring accuracy down.  

• Self-learning: is the ability of an algorithm to get more precise results in terms of time. The process 
of learning begins with observations or data, such as examples, direct experience, or instruction, in 
order to look for patterns in data and make better decisions in the future based on the examples that 
we provide. The primary aim is to allow the computers learn automatically without human 
intervention or assistance and adjust actions accordingly. 

 

 
Figure 3: Accuracy, training time, response time, linearity and self-learning of the tested algorithms (29) (30) (31) (32) 

(33).  

In figure 3, a comparison of the 5 algorithms can be seen. The graph shows that the lower score the less 
feasible and the higher score the most feasible and suitable it is for this algorithm to act best regarding the 
selected characteristics. The scores have been indicated for a V2G scenario, accordingly, for other possible 
applications these results may vary. Due to this, can be said that for this studied characteristic Gaussian 
Process Regression is the less suitable algorithm for a V2G scenario. On the contrary, Genetic Algorithm 
suits the best for all characteristics expect for response time, not scoring very high. 

In addition to these characteristics, speed, predicting numeric capability, dimension reduction, simplicity and 
large data set performance will be studied in the chosen algorithms. In the same way as before, in order to 
understand the meaning of each parameter, a small introduction has been added. 



• Speed: The number of minutes, seconds or milliseconds necessary to train a model varies a great 
deal between algorithms. The algorithm's complexity depends on the complexity of the problem 
and on how much time is allowed for batch updates between interactions with the environments. 
The algorithms can process tens/hundreds of timesteps per second, in environments with hundreds 
of agents. 

• Predicting numeric: So far, we have considered mainly discrete representations for data and 
hypotheses in machine learning however, often find tasks where the most natural representation is 
that of prediction of numeric values  

• Dimension reduction: The process of reducing the number of random variables in question, and the 
possibility if can be divided into function selection and function extraction. 

• Simplicity: The balance between transparency and performance can be described as the relationship 
between research and real-world applications.  There are many practical advantages to simplicity in 
machine learning models that can’t be easily overlooked until you are confronted with a real world 
scenario. 

• Large data set performance: The algorithm has several steps that can be parallelized, but the current 
implementation is single-threaded. The algorithm can either directly interact with the environment 
or work with replay buffers as well. In addition, different methods, react differently depending on 
the size of the data sets. 

 

 
Figure 4: Speed, predicting numeric, dimension reduction, simple and large data set performance of the tested 

algorithms (29) (30) (31) (32) (33).  

In figure 4, a comparison of the 5 algorithms can be seen. In the same way as before, the graph shows that 
the lower score the less feasible and the higher score the most feasible and suitable it is for this algorithm to 
act best regarding the selected characteristics. The scores have been indicated for a V2G scenario, 
accordingly, for other possible applications these results may vary. Due to this, can be said that for this 
studied characteristics Gaussian Process Regression and Extended Kalman Filter, in overall, are the less 
suitable algorithms for a V2G scenario. On the contrary, Genetic Algorithms and Unscented Kalman Filter 
suit the best for all characteristics making a notorious difference in speed. 

 

4.3 Ranking 

Overall, and covering all studied characteristics, a ranking of the algorithms has been developed. 
Nevertheless, it needs to be highlight once again that the scoring has been based in considering V2G as an 
application scenario, for other kind of applications this result may vary.  

1- Genetic Algorithm: Very good in accuracy, training time, linearity and speed 

2- Unscented Kalman Filter: Very good in accuracy, response time, self-learning and speed. 

3- Particle Swam Optimization: Very good in accuracy and self-learning. 



4- Extended Kalman Filter: Very good in response time and self-learning. Poor in predicting 
numeric.  

5- Gaussian Process Regression: Very good in accuracy. Poor in predicting numeric. 

 

5 Conclusions 
Our contemporary society needs to fully decarbonize in order to tackle the climate crisis we are facing. 
Accordingly, we are in the need of using renewables energies. Unfortunately, renewable energy is 
intermittent, so an unbalance between demand and supply exists. The issue with e-mobility is the availability 
of electricity and the grid integration of the charging infrastructure. The onboard energy storage unit of the 
electric vehicle can act as energy buffer for the electricity grid when bidirectional chargers are deployed, and 
grid services are offered. Unfortunately, there are no real options to implement these possibilities at the 
moment. 

In this regard, this paper presents a methodology so to develop a novel algorithm able to estimate the SoH 
online, accurately and non-aggressively. In addition, and in order to develop a smart and highly efficient 
algorithm a study on the most suitable algorithms for V2G application has been done. Inside the studied 
algorithms it can be found; extended Kalman filter, unscented Kalman filter, genetic algorithm, particle 
swarm optimization and gaussian process regression. As a result, genetic algorithm showcased the most 
suitable algorithm to be implemented in aV2G scenario. Accordingly, in order to develop a valuable, novel 
and key smart SoH estimation inside a V2G scenario both aspects need to be considered; the different 
concerns sated inside the methodology by using the most suitable algorithm, which seems to be in this case, 
the genetic algorithm. The methodology will be key in order to prolong a safe use of the battery inside a 
vehicle to grid application. 

6 Future Work 
This paper shows the first step of developing a smart, efficient and novel algorithm for SoH estimation inside 
V2G applications. As further steps, all the cited constrains will be taken into consideration so as to develop 
the real algorithm. This resulting algorithm will be tested and validated in the demo sites within different 
projects in which VUB is working now, such as OPTIBIDS. This project aims to develop intelligent smart 
and bi-directional charging strategies. In the project self-learning algorithms to predict short- and long-term 
power needs in accordance with the availability of electric vehicles in the local energy system will be 
developed. In addition, mobility patterns, charge preferences, vehicles state that enable LES operators to 
optimize their operational management will be considered. Accordingly, the resulting algorithm will be 
tested and validated in the demo sites within the project. 
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