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Summary 

The extension of a driving range is one of the most important challenges to an Electric Vehicle (EV). One of 

the effective approaches to extend the EV’s driving range is the Smart Regenerative Braking System (SRS). 

This paper proposes a deceleration planning algorithm and an online learning algorithm that generate a 

reference acceleration based on the driver’s characteristics which is learned in real-time. These algorithms 

are validated through simulation using experimental data as inputs. The results demonstrate that the generated 

acceleration is highly similar to the experimental data of drivers and reflects the driver’s characteristics by 

the online learning algorithm. 
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1 Introduction 

EV has numerous advantages: they have powerful driving torque, produce zero emissions, and they are 

quieter than vehicles with combustion engines. However, EV lacks the driving range due to the limited 

capacity of the battery, which is one of the main concerns of producing EV. To extend an EV’s driving range, 

extensive research regarding the improvement of efficiency of EV has been conducted[1]. SRS is one of the 

examples that extend the driving range of EV by saving the braking energy. 

In the operation of SRS, the braking energy is converted to the electric energy by the regenerative braking. 

In addition to energy saving, SRS provides ease and convenience to the driver without the driver losing the 

fun of driving which usually comes from acceleration. For the driver’s ease and fun of driving, SRS 

intervenes the longitudinal motion of the vehicle only when the vehicle needs to decelerate. As a result, a 

driver does not need to push the brake pedal when using SRS, which adds convenience. 

To implement the SRS, reference deceleration is needed. The reference deceleration should satisfy the safety 

criterion to avoid collision with a preceding vehicle. In addition to this, harmonization of the reference 

deceleration with the driver’s pedal input is essential. SRS operates when the driver steps off the accelerator 
pedal. For the driver to feel as though they are driving even in the operation of SRS, the intervention of SRS 
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should be similar to a human’s brake’ pedal input. Therefore, after the driver steps off the accelerator pedal, 

SRS needs to increase the deceleration gradually, decelerate to the safe point, and then finish the deceleration 

steadily. 

In the automated longitudinal control, a driver can feel discomfort due to the difference in the driver’s 

characteristics and the automated longitudinal control’s characteristics. One of the noticeable points where 

the driver can feel discomfort is, the distance to a preceding vehicle. Some drivers get close to a preceding 

vehicle, while other drivers prefer to keep a longer distance to a preceding vehicle. If a driver has a driving 

style to keep a long distance to a preceding vehicle, the driver feels discomfort when the automated 

longitudinal control keeps a short distance to it. Due to the discomfort by the automated longitudinal control, 

various research has been conducted to reflect the driver’s characteristics to the controller[2]. SRS can also 

cause discomfort to the driver if the deceleration by SRS is different from the driver’s deceleration pattern. 

Therefore, the personalization method is necessary. To reflect the driver’s characteristics in real-time, SRS 

should be able to learn the driver’s characteristics using the driving data whenever the deceleration by the 

driver’s brake pedal input finishes. 

Based on the two points mentioned above: harmonization with a driver’s accelerator pedal input and 

personalization, this paper suggests a deceleration planning algorithm and an online learning algorithm to 

reflect the driver’s characteristics. The deceleration planning algorithm is designed as a parametric model 

with four braking sections to simulate the human’s deceleration pattern. The deceleration planning algorithm 

including the braking sections will be described in section 2. Then, section 3 will clarify the online learning 

algorithm which updates the learning vector representing a driver’s characteristics. The simulation results of 

the deceleration planning algorithm including the online learning algorithm will be explained in section 4. 

Finally, section 5 discusses the conclusion and future works. 

2 Deceleration planning algorithm 

2.1 Split of deceleration profile 

2.1.1 Analysis of deceleration profile 

Deceleration profile was analysed in two different types of deceleration conditions: dynamic condition and 

static condition. Dynamic condition means deceleration condition caused by any dynamic object such as a 

preceding vehicle. Therefore, a car-following condition is an example of dynamic conditions. A static 

condition indicates the deceleration situation by the static object like a traffic light. Stopping in front of the 

traffic light and deceleration by the curved road are examples of static conditions. 

The overall shape of the deceleration profile in both dynamic and static condition is similar as shown in 

Figure1. Based on the similarity between deceleration profiles, we split the deceleration profile into four 

braking sections: coasting, initial, adjustment, and termination section. Also, we defined four start points in 

the braking sections as shown in Figure1. Depending on these braking sections, we designed a deceleration 

planning algorithm and analysed drivers’ characteristics in each braking section and point. 

 

Figure1: Braking profiles in the dynamic and static condition 



EVS32       

3 

2.1.2 Definition of each braking section 

Based on the driver’s behavior in the deceleration condition, the braking profile can be divided into four 

sections. The first thing that drivers do is taking their foot off the accelerator pedal. This first section is 

defined as ‘costing section’. In this section, the driver does not push both the accelerator pedal and brake 

pedal, so that deceleration of the vehicle is kept at a small value.  

In the second section, a driver starts to push the brake pedal. This section is defined as ‘initial section’. As 

the driver pushes the brake pedal more and more, the deceleration increases as shown in the green-colored 

part of Figure1. A remarkable feature in this section is that the deceleration becomes greater with a nearly 

constant slope. 

Subsequently, what usually follows next, is that the driver keeps the degree of stepping on the brake pedal. 

In this section, the driver adjusts the degree of pushing the brake pedal to keep appropriate velocity and 

distance to dynamic or static object. We defined this section as ‘adjustment section’. 

In the final section, drivers step off the brake pedal gradually. As the degree of stepping the brake pedal 

decreases, the deceleration becomes smaller and finally reaches to a small value. This section is defined as 

‘termination section’. 

2.2 Definition of model parameters 

Several model parameters are defined which are used in the deceleration model. Some of them are constant 

regardless of the driving condition. Another model parameters change based on the driving condition such as 

the distance to the object and speed of the ego vehicle. The other model parameters depend on not only the 

driving condition but also drivers’ characteristics, which are defined as learning parameters. The list of model 

parameters including the learning parameters is like the below. 

Table1: List of model parameters 

Parameters 

Initial acceleration slope  𝜑𝑖 

Initial distance 𝑑𝑖 

Adjustment distance 𝑑𝑎 

Adjustment acceleration 𝑎𝑎 

Termination acceleration 𝑎𝑡 

Maximum acceleration 𝑎𝑚 

Reference acceleration 𝑎𝑟𝑒𝑓 

Coast acceleration 𝑎𝑐 

Adjustment gain 𝐾𝑎 

Termination gain 𝐾𝑡 

Time step of the planning algorithm 𝑇𝑠 

Acceleration exponent 𝜎 

2.3 Deceleration model 

Under the operation of SRS, the acceleration depends on the driver, but the deceleration is automatically 

decided by SRS. Therefore, the deceleration generated by SRS should be harmonized with the acceleration 

generated by the driver’s accelerator pedal input. To make the drivers feel like they’re driving, the 

deceleration planning algorithm is designed based on the four braking sections. As a result, the deceleration 

generated by it is like the deceleration profile measured in the vehicle experiment. 

To be harmonized with the driver’s acceleration, the deceleration model was designed as a parametric model 

which is modified depending on the braking sections. The basic form of the parametric model is an intelligent 

driver model which is suggested by M. Treiber in 2000 (1)[3]. In this equation, there are two key factors 

influencing the acceleration: effective distance and reference velocity. The deceleration planning algorithm 

generates appropriate deceleration by modifying the reference velocity and effective distance according to 

the braking section and driving condition. 
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The description of deceleration model consists of two parts. One part is descriptions of the condition for 

transitions between the braking sections, such as from the coasting section to the initial section. The other 

part is descriptions of modification of two key factors in the equation depending on the braking section. The 

results of the proposed algorithm are shown in Figure3 

2.3.1 Coasting section 

If a driver gets off the accelerator pedal, the deceleration model starts to generate a deceleration profile and 

the braking section in this time is in the coasting section. As mentioned in 2.1.1, the deceleration in the 

coasting section is kept at a nearly constant value. Therefore, the deceleration model in the coasting section 

generates deceleration which is kept at a fixed value called ‘coasting acceleration’. Coasting acceleration is 

set as the mean value of deceleration in the coasting section based on the vehicle experiment data. To keep 

coasting acceleration, deceleration model modifies the reference velocity and effective distance as shown in 

equation (2). With the modified equation, the deceleration is kept at the coasting acceleration.  

 𝑣𝑟𝑒𝑓(𝑘) = 1/ (1 −
ac

𝑎𝑚  
)

1

𝛿
 ,  𝑑𝑒𝑓𝑓 = 0       (2) 

2.3.2 Initial section 

In both dynamic and static condition, a driver starts to push the brake pedal as the distance to the object 

becomes smaller. The distance, in the coasting point and initial point, in the experimental data has a 

correlation so that the deceleration model can decide the start point of the initial section based on the initial 

distance calculated by the coast distance. The algorithm of calculating learning parameters, such as the initial 

distance, will be explained in 3.2.  

According to the deceleration profile analysis, the deceleration in the initial section has a nearly constant 

value of the slope. Therefore, the deceleration model applies different reference velocity and effective 

distance as shown in equation (3) to keep the constant slope. 

 𝑣𝑟𝑒𝑓(𝑘) = 𝑣̂(𝑘 − 1)/𝛤𝑣𝑖(𝑘) ,  𝑑𝑒𝑓𝑓 = 0       (3) 

  𝛤𝑣𝑖(𝑘) = ((Γ𝑣𝑖(𝑘 − 1))
𝜎

−
𝜑𝑖𝑇𝑠

𝑎𝑚
)

1

𝜎
       (4) 

2.3.3 Adjustment section 

Even if the vehicle decelerates with the initial acceleration slope, the distance to the object becomes smaller. 

When the distance reaches a specific value, drivers start to keep the degree of stepping the brake pedal. The 

distance to object in this point is adjustment distance which is different by deceleration condition and drivers’ 

characteristics. The deceleration model calculates it based on the initial distance. If the distance to the object 

becomes smaller than the initial distance, the braking section changes to the adjustment section. 

Based on the analysis of the braking profile, we found that the acceleration in the adjustment section tends 

to get closer to the reference acceleration. The reference acceleration is calculated by equation (5), which is 

a so-called constant acceleration (CA) model. Therefore, the deceleration model in the adjustment section 

was designed to conduct a role of I controller to follow the reference acceleration. The modified equation of 

reference velocity and effective distance is equation (6) 

 𝑎𝑟𝑒𝑓(𝑘) =
𝑣𝑝𝑟𝑒

2 (𝑘−1)−𝑣̂(𝑘−1)

𝑑𝑟𝑒𝑙(𝑘−1)
       (5) 

𝑣𝑟𝑒𝑓(𝑘) =
𝑣̂(𝑘−1)

|
𝑎𝑎
𝑎𝑚

|

1
𝛿

,  𝑑𝑒𝑓𝑓(𝑘) = 𝑑̂𝑟𝑒𝑙(𝑘 − 1)√1 + ∫ 𝐾𝑎
𝑎̂(𝑘−1)−𝑎𝑟𝑒𝑓(𝑘)

𝑎𝑚
𝑑𝑡    (6) 
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2.3.4 Termination section 

As the acceleration gets closer to the reference acceleration in the adjustment section, the acceleration 

becomes larger than the reference acceleration. Then, the braking section moves from the adjustment section 

to the termination section. 

In the termination section, the deceleration generated by drivers’ brake pedal input has similar value with the 

reference acceleration as described above. Therefore, the deceleration model in the termination section leads 

the acceleration to follow the reference acceleration. The modified equation of reference velocity and 

effective distance is comparable to equation (7). It is similar to the adjustment section but equation (7) has a 

bigger I-control gain. 

𝑣𝑟𝑒𝑓(𝑘) =
𝑣̂(𝑘−1)

|
𝑎𝑡

𝑎𝑚
|

1
𝛿

,  𝑑𝑒𝑓𝑓(𝑘) = 𝑑̂𝑟𝑒𝑙(𝑘 − 1)√1 + ∫ 𝐾𝑡
𝑎̂(𝑘−1)−𝑎𝑟𝑒𝑓(𝑘)

𝑎𝑚
𝑑𝑡    (7) 

 

Figure2: The overall process of the deceleration planning algorithm 

 

Figure3: Deceleration profiles generated by the planning algorithm 
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3 Online learning algorithm 

3.1 Analysis of drivers’ characteristics 

As mentioned in 2.2, some of the model parameters are determined by not only the driving condition such as 

the distance to the object and velocity but also drivers’ characteristics. These model parameters are defined 

as learning parameters. The set of learning parameters is different according to the deceleration conditions. 

The list of learning parameters and correlated index which influence the value of learning parameters in each 

deceleration condition is shown in Table 2.  

Table2: List of learning parameters 

Deceleration condition Parameters Correlated index 

Dynamic condition 

Initial acceleration slope  𝜑𝑖 Initial index 

Initial distance 𝑑𝑟𝑒𝑙,𝑖 Coasting distance 

Adjustment distance 𝑑𝑟𝑒𝑙,𝑎 Initial distance 

 Static condition 

Initial acceleration slope  𝜑𝑖 Initial index 

Maximum acceleration 𝑎𝑚 Coast index 

Adjustment acceleration 𝑎𝑎𝑑𝑗 Initial index 

Figure4 and 5 show the correlation between the learning parameters and the index values in each dynamic 

and static condition. As shown in both figures, the value of learning parameters changes depending on the 

index values and the driver. Three drivers have similar deceleration style individually in both the dynamic 

and static conditions. For example, the driver3 has moderate deceleration pattern generally. In the Figure4, 

the value of the initial acceleration slope of driver3 is smaller than the other drivers, which means he usually 

pushes the brake pedal gradually. In the Fugure5, the driver3 has smaller maximum acceleration than the 

other drivers. In conclusion, the driver3 decelerates moderately in both the dynamic and static conditions. 

 

 

Figure4: Correlation of learning parameters depending on drivers in the dynamic condition 

 

Figure5: Correlation of learning parameters depending on drivers in the static condition 

3.2 Algorithm of calculating learning parameters in deceleration model 

The overall process of the learning algorithm is described in Figure6. It consists of four small processes: 

parameter activation, measurement profile calculation, reference parameter calculation, and parameter vector 
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update. In the four processes, parameter activation calculates learning parameters. The detail of the 

calculating process will be described in the next paragraph. 

 

Figure6: The overall process of the online learning algorithm 

Learning parameters are calculated by the dot product of two vectors: effective probability vector and 

learning vector. Whenever the coating section or the initial section starts, the index value such as the initial 

index is determined using vehicle driving data. Then, the Gaussian distribution is determined whose mean 

value is the index value. Based on the basic index vector, the Gaussian distribution is converted to the 

effective probability vector by normalization. Figure7 shows an example of this process when the index value 

is 7.5. 

 

Figure7: The process of calculating the effective probability vector 

After calculating the effective probability vector, the learning parameters are calculated by the inner product 

of the effective probability vector and the learning vector. Learning vector is a vector, which consists of 

learning parameter values appropriate to each index value in the basic index vector. This learning vector is 

updated whenever the deceleration profile ends. 

3.3 Online learning algorithm to reflect a driver’s characteristics 

If the parameter activation and the reference parameter calculation is completed in Figure6, the value of the 

reference parameter reflects the driver’s characteristics because it is directly extracted from the driver’s 

driving data. However, the value of the learning parameter does not reflect the driver’s characteristics because 

it is calculated by the learning vector which is not updated based on the driver’s characteristics. Therefore, 

the learning parameter is different from the reference parameter. Using this difference and learning degree, 

the learning vector is updated to reflect the driver’s characteristics. The learning degree is calculated based 

on the effective probability. The higher the value of the effective probability vector, the higher the learning 

degree is and the more the learning vector is updated. 
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4 Validation 

The deceleration planning algorithm proposed in this paper was validated by software-in-the-loop simulation 

(SILs) using Simulink. For validation, vehicle experimental data is used as the input of the deceleration 

planning algorithm. Vehicle configuration used in the vehicle experiment and the experiment site will be 

described in the next part. 

4.1 Condition for data acquisition 

4.1.1 Vehicle configuration 

For the experiment, KONA Electric of Hyundai was used. It has a radar sensor which can estimate the 

distance to the dynamic object in front of the ego vehicle and relative velocity. The detail information about 

it is described in Table3. The distance to the object and relative velocity is used in the deceleration planning 

algorithm for the dynamic condition. In addition, the vehicle is equipped with RTK-GPS. In the algorithm 

for the static object, the estimation of the ego vehicle position is essential. In the experiment, the location of 

the ego vehicle is highly accurately estimated by RTK-GPS.  

Table3: Specifications of the radar sensor and RTK-GPS 

Sensor Specifications 

Radar 

Maximum range: 150m 

FOV +/- degrees over 60m, +/- degrees under 60m 

Update rate: 50ms 

RTK-GPS 
Accuracy (RMSE): 2cm 

Update rate: 20ms 

4.1.2 Vehicle experiment site 

The experiment was conducted in Yeongjongdo, Incheon in Korea. The experiment site for each dynamic 

condition and static condition is represented in Figure8. The experiment in the dynamic condition was 

conducted in the site where the road is nearly straight, and the slope is almost zero. Three test drivers drove 

the ego vehicle to acquire the data for the analysis of drivers’ characteristics. Also, to make the driving 

condition for the dynamic condition, the other test driver drove the preceding vehicle. For the static condition, 

three test drivers drove the vehicle and stopped in front of every traffic lights. 

 

Figure8: Vehicle experiment sites 
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4.2 Simulation results 

The experimental data in each condition is used for the validation of the deceleration planning algorithm. 

The deceleration profile generated by the algorithm is compared with the measured deceleration in the 

experiment. In both the dynamic condition and the static condition, not only. The generated braking profile 

such as acceleration, velocity and distance to the object is compared with the measured data 

As shown in Figure9 and Figure10, the deceleration profile generated by the algorithm is harmonized with 

the driver’s accelerator pedal input. When the driver steps on the accelerator pedal, the algorithm dost not 

generate any deceleration. Then, if the driver steps off the accelerator pedal, the deceleration profile is 

generated based on the driving situation. The generated braking profile such as acceleration, velocity, and 

relative distance is very similar to the measured data in both the dynamic and static conditions. In the case of 

static condition, the distance to the traffic light reaches zero by the deceleration of the algorithm, which means 

that the vehicle stops at the exact position. 

 

Figure9: Planning results in dynamic condition 
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Figure10: Planning results in the static condition 

The comparison of the generated braking profile and measured braking profile was conducted using the 

driving data of one driver. However, the validation of an online learning algorithm is conducted based on the 

results of three different drivers to check if the algorithm updates the learning vector appropriately. Figure11 

shows the result of the updated learning vector for the initial acceleration slope in the dynamic condition. As 

shown in Fig11, the driver3 tends to have a smaller value of initial acceleration slope in the same situation 

than the other drivers. As a result, the updated learning vector of the initial acceleration slope of driver3 has 

a small absolute value generally. The result of online learning algorithm in the static condition is shown in 

Figure 12. As shown in Figure 12, the driver2 usually drive with a larger maximum acceleration than the 

other driver. Therefore, the updated learning vector of the maximum acceleration of driver3 has large value. 

 

Figure11: Learning results of initial acceleration slope in the dynamic condition 
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Figure12: Learning result of acceleration slope in the static condition 

5 Conclusion and future works 

In this paper, the deceleration planning algorithm and the online learning algorithm was proposed. Based on 

the analysis of the braking profile, the deceleration profile is split into the four braking sections. The 

deceleration planning algorithm generates a deceleration profile by modifying the reference velocity and the 

effective distance depending on the braking sections. It has learning parameters which can reflect a driver’s 

characteristics. These parameters are updated through the online learning algorithm. The online learning 

algorithm updates the learning vectors based on the effective probability and learning degree. The 

deceleration planning algorithm and the online learning algorithm was validated in the SILs. The results of 

SILs show that the generated deceleration profile is comparable to the data measured in the experiment. 

The proposed algorithm generates a reference deceleration profile for SRS. The proposed algorithm will be 

improved to be applied in more static conditions. The next step to implement SRS in the vehicle is controlling 

regenerative braking torque. Research of a robust controller to control the regenerative braking torque in 

diverse driving conditions will be conducted. Thereafter, SRS will be implemented in the vehicle by 

integrating the deceleration planning algorithm and torque controller. 
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