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Summary

The extension of a driving range is one of the most important challenges to an Electric Vehicle (EV). One of
the effective approaches to extend the EV’s driving range is the Smart Regenerative Braking System (SRS).
This paper proposes a deceleration planning algorithm and an online learning algorithm that generate a
reference acceleration based on the driver’s characteristics which is learned in real-time. These algorithms
are validated through simulation using experimental data as inputs. The results demonstrate that the generated
acceleration is highly similar to the experimental data of drivers and reflects the driver’s characteristics by

the online learning algorithm.

Keywords: Smart regenerative braking system, Deceleration planning, online learning algorithm,

personalization, driver s characteristics

1 Introduction

EV has numerous advantages: they have powerful driving torque, produce zero emissions, and they are
quieter than vehicles with combustion engines. However, EV lacks the driving range due to the limited
capacity of the battery, which is one of the main concerns of producing EV. To extend an EV’s driving range,
extensive research regarding the improvement of efficiency of EV has been conducted[1]. SRS is one of the
examples that extend the driving range of EV by saving the braking energy.

In the operation of SRS, the braking energy is converted to the electric energy by the regenerative braking.
In addition to energy saving, SRS provides ease and convenience to the driver without the driver losing the
fun of driving which usually comes from acceleration. For the driver’s ease and fun of driving, SRS
intervenes the longitudinal motion of the vehicle only when the vehicle needs to decelerate. As a result, a
driver does not need to push the brake pedal when using SRS, which adds convenience.

To implement the SRS, reference deceleration is needed. The reference deceleration should satisfy the safety
criterion to avoid collision with a preceding vehicle. In addition to this, harmonization of the reference
deceleration with the driver’s pedal input is essential. SRS operates when the driver steps off the accelerator
pedal. For the driver to feel as though they are driving even in the operation of SRS, the intervention of SRS
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should be similar to a human’s brake’ pedal input. Therefore, after the driver steps off the accelerator pedal,
SRS needs to increase the deceleration gradually, decelerate to the safe point, and then finish the deceleration
steadily.

In the automated longitudinal control, a driver can feel discomfort due to the difference in the driver’s
characteristics and the automated longitudinal control’s characteristics. One of the noticeable points where
the driver can feel discomfort is, the distance to a preceding vehicle. Some drivers get close to a preceding
vehicle, while other drivers prefer to keep a longer distance to a preceding vehicle. If a driver has a driving
style to keep a long distance to a preceding vehicle, the driver feels discomfort when the automated
longitudinal control keeps a short distance to it. Due to the discomfort by the automated longitudinal control,
various research has been conducted to reflect the driver’s characteristics to the controller[2]. SRS can also
cause discomfort to the driver if the deceleration by SRS is different from the driver’s deceleration pattern.
Therefore, the personalization method is necessary. To reflect the driver’s characteristics in real-time, SRS
should be able to learn the driver’s characteristics using the driving data whenever the deceleration by the
driver’s brake pedal input finishes.

Based on the two points mentioned above: harmonization with a driver’s accelerator pedal input and
personalization, this paper suggests a deceleration planning algorithm and an online learning algorithm to
reflect the driver’s characteristics. The deceleration planning algorithm is designed as a parametric model
with four braking sections to simulate the human’s deceleration pattern. The deceleration planning algorithm
including the braking sections will be described in section 2. Then, section 3 will clarify the online learning
algorithm which updates the learning vector representing a driver’s characteristics. The simulation results of
the deceleration planning algorithm including the online learning algorithm will be explained in section 4.
Finally, section 5 discusses the conclusion and future works.

2 Deceleration planning algorithm

2.1 Split of deceleration profile

2.1.1  Analysis of deceleration profile

Deceleration profile was analysed in two different types of deceleration conditions: dynamic condition and
static condition. Dynamic condition means deceleration condition caused by any dynamic object such as a
preceding vehicle. Therefore, a car-following condition is an example of dynamic conditions. A static
condition indicates the deceleration situation by the static object like a traffic light. Stopping in front of the
traffic light and deceleration by the curved road are examples of static conditions.

The overall shape of the deceleration profile in both dynamic and static condition is similar as shown in
Figurel. Based on the similarity between deceleration profiles, we split the deceleration profile into four
braking sections: coasting, initial, adjustment, and termination section. Also, we defined four start points in
the braking sections as shown in Figurel. Depending on these braking sections, we designed a deceleration
planning algorithm and analysed drivers’ characteristics in each braking section and point.
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Figurel: Braking profiles in the dynamic and static condition
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2.1.2  Definition of each braking section

Based on the driver’s behavior in the deceleration condition, the braking profile can be divided into four
sections. The first thing that drivers do is taking their foot off the accelerator pedal. This first section is
defined as ‘costing section’. In this section, the driver does not push both the accelerator pedal and brake
pedal, so that deceleration of the vehicle is kept at a small value.

In the second section, a driver starts to push the brake pedal. This section is defined as ‘initial section’. As
the driver pushes the brake pedal more and more, the deceleration increases as shown in the green-colored
part of Figurel. A remarkable feature in this section is that the deceleration becomes greater with a nearly
constant slope.

Subsequently, what usually follows next, is that the driver keeps the degree of stepping on the brake pedal.
In this section, the driver adjusts the degree of pushing the brake pedal to keep appropriate velocity and
distance to dynamic or static object. We defined this section as ‘adjustment section’.

In the final section, drivers step off the brake pedal gradually. As the degree of stepping the brake pedal
decreases, the deceleration becomes smaller and finally reaches to a small value. This section is defined as
‘termination section’.

2.2 Definition of model parameters

Several model parameters are defined which are used in the deceleration model. Some of them are constant
regardless of the driving condition. Another model parameters change based on the driving condition such as
the distance to the object and speed of the ego vehicle. The other model parameters depend on not only the
driving condition but also drivers’ characteristics, which are defined as learning parameters. The list of model
parameters including the learning parameters is like the below.

Tablel: List of model parameters

Parameters

Initial acceleration slope Qi

Initial distance d;
Adjustment distance d,
Adjustment acceleration aq

Termination acceleration a;
Maximum acceleration am
Reference acceleration Aref

Coast acceleration a.
Adjustment gain K,
Termination gain K;

Time step of the planning algorithm Ts
Acceleration exponent o

2.3 Deceleration model

Under the operation of SRS, the acceleration depends on the driver, but the deceleration is automatically
decided by SRS. Therefore, the deceleration generated by SRS should be harmonized with the acceleration
generated by the driver’s accelerator pedal input. To make the drivers feel like they’re driving, the
deceleration planning algorithm is designed based on the four braking sections. As a result, the deceleration
generated by it is like the deceleration profile measured in the vehicle experiment.

To be harmonized with the driver’s acceleration, the deceleration model was designed as a parametric model
which is modified depending on the braking sections. The basic form of the parametric model is an intelligent
driver model which is suggested by M. Treiber in 2000 (1)[3]. In this equation, there are two key factors
influencing the acceleration: effective distance and reference velocity. The deceleration planning algorithm
generates appropriate deceleration by modifying the reference velocity and effective distance according to
the braking section and driving condition.
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The description of deceleration model consists of two parts. One part is descriptions of the condition for
transitions between the braking sections, such as from the coasting section to the initial section. The other

part is descriptions of modification of two key factors in the equation depending on the braking section. The
results of the proposed algorithm are shown in Figure3

2.3.1 Coasting section

If a driver gets off the accelerator pedal, the deceleration model starts to generate a deceleration profile and
the braking section in this time is in the coasting section. As mentioned in 2.1.1, the deceleration in the
coasting section is kept at a nearly constant value. Therefore, the deceleration model in the coasting section
generates deceleration which is kept at a fixed value called ‘coasting acceleration’. Coasting acceleration is
set as the mean value of deceleration in the coasting section based on the vehicle experiment data. To keep
coasting acceleration, deceleration model modifies the reference velocity and effective distance as shown in
equation (2). With the modified equation, the deceleration is kept at the coasting acceleration.

1

) degr =0 2)

Vrer (k) =1/ (1~

ac
am

2.3.2 Initial section

In both dynamic and static condition, a driver starts to push the brake pedal as the distance to the object
becomes smaller. The distance, in the coasting point and initial point, in the experimental data has a
correlation so that the deceleration model can decide the start point of the initial section based on the initial
distance calculated by the coast distance. The algorithm of calculating learning parameters, such as the initial
distance, will be explained in 3.2.

According to the deceleration profile analysis, the deceleration in the initial section has a nearly constant
value of the slope. Therefore, the deceleration model applies different reference velocity and effective
distance as shown in equation (3) to keep the constant slope.

Vyer (k) = D(k — 1)/Tv;(k) , depr = 0 .
rvy(k) = (Po( = 1) = 227 @

2.3.3  Adjustment section

Even if the vehicle decelerates with the initial acceleration slope, the distance to the object becomes smaller.
When the distance reaches a specific value, drivers start to keep the degree of stepping the brake pedal. The
distance to object in this point is adjustment distance which is different by deceleration condition and drivers’
characteristics. The deceleration model calculates it based on the initial distance. If the distance to the object
becomes smaller than the initial distance, the braking section changes to the adjustment section.

Based on the analysis of the braking profile, we found that the acceleration in the adjustment section tends
to get closer to the reference acceleration. The reference acceleration is calculated by equation (5), which is
a so-called constant acceleration (CA) model. Therefore, the deceleration model in the adjustment section
was designed to conduct a role of I controller to follow the reference acceleration. The modified equation of
reference velocity and effective distance is equation (6)

Uz%re(k_l)_ﬁ(k_ 1)

aref(k) = dyor(k—1) (5)
(k-1 5 A(k—1)=arer(k)
ror (00 = 2550, gy () = dra e = 1) 14 J K, g ©
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2.3.4 Termination section

As the acceleration gets closer to the reference acceleration in the adjustment section, the acceleration
becomes larger than the reference acceleration. Then, the braking section moves from the adjustment section

to the termination section.

In the termination section, the deceleration generated by drivers’ brake pedal input has similar value with the
reference acceleration as described above. Therefore, the deceleration model in the termination section leads
the acceleration to follow the reference acceleration. The modified equation of reference velocity and
effective distance is comparable to equation (7). It is similar to the adjustment section but equation (7) has a

bigger I-control gain.
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3 Online learning algorithm

3.1 Analysis of drivers’ characteristics

As mentioned in 2.2, some of the model parameters are determined by not only the driving condition such as
the distance to the object and velocity but also drivers’ characteristics. These model parameters are defined
as learning parameters. The set of learning parameters is different according to the deceleration conditions.
The list of learning parameters and correlated index which influence the value of learning parameters in each
deceleration condition is shown in Table 2.

Table2: List of learning parameters

Deceleration condition Parameters Correlated index
Initial acceleration slope i Initial index
Dynamic condition Initial distance dreri Coasting distance
Adjustment distance dreta Initial distance
Initial acceleration slope Qi Initial index
Static condition Maximum acceleration am Coast index
Adjustment acceleration Qgaqj Initial index

Figure4 and 5 show the correlation between the learning parameters and the index values in each dynamic
and static condition. As shown in both figures, the value of learning parameters changes depending on the
index values and the driver. Three drivers have similar deceleration style individually in both the dynamic
and static conditions. For example, the driver3 has moderate deceleration pattern generally. In the Figure4,
the value of the initial acceleration slope of driver3 is smaller than the other drivers, which means he usually
pushes the brake pedal gradually. In the Fugure5, the driver3 has smaller maximum acceleration than the
other drivers. In conclusion, the driver3 decelerates moderately in both the dynamic and static conditions.
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Figure5: Correlation of learning parameters depending on drivers in the static condition

3.2 Algorithm of calculating learning parameters in deceleration model

The overall process of the learning algorithm is described in Figure6. It consists of four small processes:
parameter activation, measurement profile calculation, reference parameter calculation, and parameter vector
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update. In the four processes, parameter activation calculates learning parameters. The detail of the
calculating process will be described in the next paragraph.
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Figure6: The overall process of the online learning algorithm

Learning parameters are calculated by the dot product of two vectors: effective probability vector and
learning vector. Whenever the coating section or the initial section starts, the index value such as the initial
index is determined using vehicle driving data. Then, the Gaussian distribution is determined whose mean
value is the index value. Based on the basic index vector, the Gaussian distribution is converted to the
effective probability vector by normalization. Figure7 shows an example of this process when the index value
is 7.5.
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Figure7: The process of calculating the effective probability vector

After calculating the effective probability vector, the learning parameters are calculated by the inner product
of the effective probability vector and the learning vector. Learning vector is a vector, which consists of
learning parameter values appropriate to each index value in the basic index vector. This learning vector is
updated whenever the deceleration profile ends.

3.3 Online learning algorithm to reflect a driver’s characteristics

If the parameter activation and the reference parameter calculation is completed in Figure6, the value of the
reference parameter reflects the driver’s characteristics because it is directly extracted from the driver’s
driving data. However, the value of the learning parameter does not reflect the driver’s characteristics because
it is calculated by the learning vector which is not updated based on the driver’s characteristics. Therefore,
the learning parameter is different from the reference parameter. Using this difference and learning degree,
the learning vector is updated to reflect the driver’s characteristics. The learning degree is calculated based
on the effective probability. The higher the value of the effective probability vector, the higher the learning
degree is and the more the learning vector is updated.
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4  Validation

The deceleration planning algorithm proposed in this paper was validated by software-in-the-loop simulation
(SILs) using Simulink. For validation, vehicle experimental data is used as the input of the deceleration
planning algorithm. Vehicle configuration used in the vehicle experiment and the experiment site will be
described in the next part.

4.1 Condition for data acquisition

411  Vehicle configuration

For the experiment, KONA Electric of Hyundai was used. It has a radar sensor which can estimate the
distance to the dynamic object in front of the ego vehicle and relative velocity. The detail information about
it is described in Table3. The distance to the object and relative velocity is used in the deceleration planning
algorithm for the dynamic condition. In addition, the vehicle is equipped with RTK-GPS. In the algorithm
for the static object, the estimation of the ego vehicle position is essential. In the experiment, the location of
the ego vehicle is highly accurately estimated by RTK-GPS.

Table3: Specifications of the radar sensor and RTK-GPS

Sensor Specifications

Maximum range: 150m
Radar FOV +/- degrees over 60m, +/- degrees under 60m
Update rate: 50ms

Accuracy (RMSE): 2cm

RTK-GPS Update rate: 20ms

4.1.2  Vehicle experiment site

The experiment was conducted in Yeongjongdo, Incheon in Korea. The experiment site for each dynamic
condition and static condition is represented in Figure8. The experiment in the dynamic condition was
conducted in the site where the road is nearly straight, and the slope is almost zero. Three test drivers drove
the ego vehicle to acquire the data for the analysis of drivers’ characteristics. Also, to make the driving
condition for the dynamic condition, the other test driver drove the preceding vehicle. For the static condition,
three test drivers drove the vehicle and stopped in front of every traffic lights.

N2

Experiment site for static condition

Experiment site for dynamic condition

Figure8: Vehicle experiment sites
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4.2 Simulation results

The experimental data in each condition is used for the validation of the deceleration planning algorithm.
The deceleration profile generated by the algorithm is compared with the measured deceleration in the
experiment. In both the dynamic condition and the static condition, not only. The generated braking profile
such as acceleration, velocity and distance to the object is compared with the measured data

As shown in Figure9 and Figurel0, the deceleration profile generated by the algorithm is harmonized with
the driver’s accelerator pedal input. When the driver steps on the accelerator pedal, the algorithm dost not
generate any deceleration. Then, if the driver steps off the accelerator pedal, the deceleration profile is
generated based on the driving situation. The generated braking profile such as acceleration, velocity, and
relative distance is very similar to the measured data in both the dynamic and static conditions. In the case of
static condition, the distance to the traffic light reaches zero by the deceleration of the algorithm, which means
that the vehicle stops at the exact position.
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Figurel0: Planning results in the static condition

The comparison of the generated braking profile and measured braking profile was conducted using the
driving data of one driver. However, the validation of an online learning algorithm is conducted based on the
results of three different drivers to check if the algorithm updates the learning vector appropriately. Figurell
shows the result of the updated learning vector for the initial acceleration slope in the dynamic condition. As
shown in Figl1, the driver3 tends to have a smaller value of initial acceleration slope in the same situation
than the other drivers. As a result, the updated learning vector of the initial acceleration slope of driver3 has
a small absolute value generally. The result of online learning algorithm in the static condition is shown in
Figure 12. As shown in Figure 12, the driver2 usually drive with a larger maximum acceleration than the
other driver. Therefore, the updated learning vector of the maximum acceleration of driver3 has large value.
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Figurell: Learning results of initial acceleration slope in the dynamic condition
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5 Conclusion and future works

In this paper, the deceleration planning algorithm and the online learning algorithm was proposed. Based on
the analysis of the braking profile, the deceleration profile is split into the four braking sections. The
deceleration planning algorithm generates a deceleration profile by modifying the reference velocity and the
effective distance depending on the braking sections. It has learning parameters which can reflect a driver’s
characteristics. These parameters are updated through the online learning algorithm. The online learning
algorithm updates the learning vectors based on the effective probability and learning degree. The
deceleration planning algorithm and the online learning algorithm was validated in the SILs. The results of
SILs show that the generated deceleration profile is comparable to the data measured in the experiment.

The proposed algorithm generates a reference deceleration profile for SRS. The proposed algorithm will be
improved to be applied in more static conditions. The next step to implement SRS in the vehicle is controlling
regenerative braking torque. Research of a robust controller to control the regenerative braking torque in
diverse driving conditions will be conducted. Thereafter, SRS will be implemented in the vehicle by
integrating the deceleration planning algorithm and torque controller.
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