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Executive Summary

In commercialized automated parking systems, a parking path is generated from the vacant parking
space detected by ultrasonic or camera sensors which produce sensing noise. Since this sensing noise
affects the detection of parking space adversely, parking path planning under perceptional uncertainty
is a challenging problem. To solve the conundrum, this paper proposes a re-plannable parking path
planning algorithm by combining a sampling method with utility theory. Uncertain parking space can
be formulated deterministically through the sampling method, and one of the sampled paths is selected
according to utility theory. Furthermore, the proposed method can provide an adaptable path in an
uncertain parking space.

Keywords: autonomous vehicle, safety, smart

1 Introduction

Automotive industries have increasingly provided drivers with a variety of functions for safety and con-
venience. An automated parking system that parks autonomously without driver intervention is able to
save time and reduce the risk of accidents. The process of such a parking system is divided into three
steps: recognizing vacant parking space with ultrasonic or camera sensors, creating a safe path to reach
the detected parking space, and controlling the vehicle to follow the generated path. Among them, park-
ing path generation is one of the core technologies which is responsible for generating a path that can
securely and accurately locates at the detected parking space.

Since the relative position of the parking space is utilized to generate a parking path, the parking space
position must be accurate and consistent to precisely locate the vehicle at the parking space. In com-
mercial systems, Around View Monitoring systems(AVM) or ultrasonic sensors, which are limited in
reducing noise, are used to detect parking spaces. When using these sensors, detection error arises as a
result of propagation from the sensing noise. Eventually, the sensing noise adversely affects the recog-
nition of the parking space in question and renders the parking space uncertain. If a parking path is
generated from the inconsistent parking space, the vehicle is prevented from reaching the actual posi-
tion. In addition, this path can lead to a system failure that may cause the vehicle to stop controlling itself
or even cause an accident. Since inconsistent errors cannot be completely eliminated, this uncertainty
should be considered in the planning process. Furthermore, the parking path planner should be able to
find another path when the vehicle does not reach the actual position.

Over the last few years, some researchers have developed advanced planning algorithms that take un-
certainty into account. One of the solutions, Sampling-Based Planning (SBP) [1-6], has been greatly
successtul in solving motion planning problems, since SBPs provide fast solutions for difficult problems
by taking a randomized sampling approach. In other words, SBPs are useful in discarding the current
path and re-planning the next in uncertain environment.

Bry et al. [1] represent external uncertainty as the probability of the ego position, and then samples nodes
in the probability boundaries. On the other hand, Vitus et al. [2] and Missiuro et al. [3] propose motion
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planning algorithms that consider environmental uncertainty as a probability of obstacle boundaries, then
sample nodes by avoiding the obstacle boundaries. [4, 5] suggest a partially observable Markov decision
process (POMDP) framework to sample nodes for SBP, whereas Burns, et al. [6] propose a sampling
method to reflect environmental uncertainty directly into the planning process by applying utility theory.
These algorithms consider uncertainty during the sampling process when constructing the searching-
tree of SBPs. However, SBPs require an enormous amount of sample nodes to operate well in narrow
environments, which are often the case for parking. The searching-tree, which consists of these many
samples, has limitations in planning and re—planning the path in real-time.

In the case of parking, there is a certain pattern of paths based on the relative position to the parking
space. For example, when we do left-sided perpendicular parking, we drive first to the upper left side
of the parking space and then move back towards the parking space. In this context, it is more useful
to sample pattern paths rather than an enormous number of nodes. When finding a parking pattern,
there are three classes: Geometric methods, Tree-searching methods, and Optimization methods. The
first class [7-9] finds a solution by combining geometric primitives such as straight lines, circles, and
spirals, etc. These methods are simple but only operate well in a predefined situation. The second
class [10-12] uses tree-searching methods such as Hybrid-A* or RRT. However, since these methods
require tremendous number of nodes constructing a tree, these take a long time to execute. The third
class is for optimization-based methods. These methods find a parking path by solving Model Predictive
Control (MPC) [13-15] or Optimal Control Problem (OCP) [16, 17]. MPC-based methods make the
parking planning problem general, although they cannot be executed in real-time when the problem is
difficult. On the other hands, OCP-based methods have a shorter execution time compared to MPC-based
methods, and these are able to find a solution regardless of the location of the vehicle.

The sampling-based method is necessary from the perspective of re-planning coming from the rapid
production of new solutions. However, the sampling-based method is performed within a tremendous
amount of time when the size of the searching tree becomes enormous in the narrow environment. On
the other hand, optimization-based methods hold the advanta]%e of finding a parking path in well-known
environments. By combining these two kinds of methods, the new searching tree can be constructed.
Through utility theory, the optimal path can be selected in the new searching tree. Therefore, taking
advantages of these three kinds of methods is necessary to park in the desired parking space in a precise
manner in real-driving. In this paper, we propose a parking planning algorithm that can plan and re-plan
from uncertain perceptional information lI;y combining a sampling method, an optimization method and
utility theory. The proposed algorithm has the advanta%e of significantly reducing the failure rate of
autonomous parking, and re-planning the parking path when parking failed.

We have introduced the limitations of the current parking system as well as the contribution of the
proposed method in Section 1. The remainder of this paper is arranged as follows. The overview and the
details of the proposed method are provided in Section 2. The proposed method is then evaluated with
experiments in Section 3. This paper is then concluded in Section 4.

2 Approach

The proposed algorithm is divided into three parts: Parking Space Sampling, Path Candidate Generation,
and Optimal Path Selection. At the first step, Parking Space Sampling, we propose the perceptional
error model to represent the probability of the parking space position that comes from the perception
system by utilizing Gauss error model. From the probability of the parking space position, new parking
spaces, which are likely true positions, are sampled. In the Path Candidate Generation, parking paths
are generated to reach each sampled parking spaces. An OCP-based method can find the parking path
regardless of the vehicle location within few milliseconds. In the final step, Optimal Path Selection, the
optimal path most likely to reach the true parking space position is determined by applying utility theory.
A utility function is proposed which considers the progability of each path candld[z)lte, the consistency
with the previous path, and the current position of the vehicle in question.

2.1 Parking Space Sampling

Since position uncertainty is propagated from commercial sensors that generate noisy measurements, a
parking space is always uncertain in its position even though the detection algorithm may be accurate.
We assume that the planner uses the deterministic perception model that does not consider uncertainty.
Instead, the planner uses deterministically sampled parking space information from a perception prob-
ability model to interpret an uncertainty-free world model. We now present the perception probability
model which is formulated with Gauss error function.

2.1.1 Perception Probability Model

We assume that the noise level gets higher when the measured distance is longer. For example, a parking
space which is detected near the ego vehicle has a higher true probability than a farther one. We restrict
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Figure 1: A process of parking space sampling

our model to translational axis, but the same approach could be extended to rotational axis. This is done
using the cumulative distribution function (CDF) of the Gaussian:

1 d
P(measurement) =1— (1 +erf(——= 1
( ) =15 ters(-0) m
where er f is the Gauss error function and d is the distance to the measured position. This represents an
approximation of the true probability of the measurements.

2.1.2 Sampling Process

When the parking space is detected from the perception system, the system first looks for corner points of
the parking space (see Fig.1-(a)). The corner points manifest the true probability through the perception
probability model. By using a complementary true probability of the corner points, the positions of the
corner points are sampled on the x and y axes as shown in Fig.1-(b). The number of the sampled corner
points increases according to its probability. In Fig.1-(c), it is shown that the sampled parking spaces are
the connection of two corner points.

2.2 Path Candidate Generation

To find a path candidate from the ego position to each sampled destination, optimization-based methods,
which are called Optimal Control Problems (OCP), are used in the path candidate generation. One of
the OCP-based methods [16] can solve the problem within a few milliseconds and allows the path to
be found regardless of the ego position. Furthermore, unlike other methods, this method automatically
calculates a direction switching point. For these reasons, the OCP-based method is used to generate path
candidates for each sampled destination.

2.2.1 Vehicle Kinematic Model

Since a vehicle is in low speed during parking, the tire slips of a given vehicle can be ignored. The
vehicle kinematic model is used to describe vehicle motion. The vehicle model is simplified to have one
front wheel and one rear wheel. This model has a state composed of [x, 3, ], where [z, ] is the center
position of the rear axle, and # denotes the direction of the vehicle. The mathematical equation of the
kinematic model is described by

T v cos 6

d=|vy| = | vsinf 2)
2 tand
0 ptand

where v and ¢ are control inputs that relate to the velocity and steering angle, and L indicates the wheel-
base of the vehicle. To reduce computation time, this kinematic model can be simplified by using Path-
Velocity-Decomposition [18]. With this decomposition, time can be ignored. Velocity can be written as

v = D%, where s is the path length and D € {—1, 1} indicates the vehicle direction (i.e. forward or
backward). The simplified equation can be written as,

/

T D cos 6
d=1|y | =|Dsn6 (3)
0 Dy
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where ()/ denotes the derivative with respect to the path length s, and the new control input u; is equal to
tan /L. To apply discrete optimization, equation (3) can be discretized with respect to the path length
s by using second order Runge-Kutta discretization. The discretized equation can be written as,

Tit1 x; + Dn; cos(0; + D%)
Qi+1 = | Yiv1 | = | vi + Dn;sin(6; + D%) 4)
9i+1 91 + Dmuli

where the control input u of (4) is comprised of u; and step length 7.

2.2.2 Obstacles

To generate a collision-free path, obstacles need to be expressed as constraints. If obstacles can be de-
scribed to convex polygons, the computation time of optimization will be reduced. Therefore, obstacles
are regarded as convex polygons. If the obstacle is non-convex, the obstacle would be divided into a set
of convex polygons through convex decomposition [19]. All convex polygonal obstacles are described
being larger than their original size. During optimization, obstacles are transformed into inequality con-
straints in the cost function. The inequality constraints check whether the vehicle is within the obstacle
boundary or not.

2.2.3 Optimal Control Problem

To find a set of optimal control inputs, the optimal control problem should be formulated. This can be
done by the constrained static optimization problem.

argmin o, (qi+1) )
st. Qi1 = f(qi,u4, D) (6)
hp(qit1) <0 %)

Wmin S u; S Umazx (8)

where the objective function (5) is expressed as,
lo,(a;) = reej. +ep Rep,. ©

The objective function is comprised of error terms with weighting terms. Error terms between the current
state to the final state include the distance error in direction x,y and the heading angle error with the
starting position qg. The weighting term R and ry with respect to each error should be positive definite
and positive value, respectively. There is one equality constraint and two inequality constraints. The first
constraint in (6) is equal to (4) for the vehicle motion constraint. The two inequality constraints in (7),
(8) are for collision and control inputs, respectively. The collision constraint can be formulated with the
Minkowski sum [19], and input constraint should be within the physical limits of the vehicle, which are
the maximum steering angle and the maximum step length at one optimization iteration.

2.2.4 Direction Switching Point

To find a path before arriving at the starting position, the vehicle may exhibit changes in the direction.
There are two heuristic rules for directional change. The first rule is to switch the direction when the
vehicle cannot move in that direction. This means that the vehicle will collide with obstacles. The second
rule is to change the direction when the current result of optimization [+ is larger than the previous

result [o: . The larger value of the cost function refers to a more distant position from the start position.
Therefore, the vehicle changes direction in order to reduce the distance error with the start position.

2.3 Optimal Path Selection

To select the optimal path candidate, the planner must use limited information to identify the best possible
path. To achieve this, we use the formalization of Bernoullian utility [20]. Based on utility theory,
every beneficial path has positive utility, which exhibits a high probability of reaching the parking space.
Conversely, every useless path has negative cost. Negative cost is computed from the consequences of
a path failure such as being too far from the ego vehicle, or not reaching the designated parking space.
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Expected utility combines the notions of utility and cost, weighted by the probability that the path is
beneficial. The expected utility of each path candidate can be formulated as

P(p =true) - U(p = true) + (1 — P(p = true)) - C(p = far) (10)

where, p indicates the path candidate, the function U measures utility and the function C' measures cost.
P(-) measures the true probability of the path candidate. This can be calculated in the same way as the

parking space, since the path candidate is generated from each sampled parking space. The path with
the greatest expected utility maximizes rewards and minimizes risks of misplacement at a given parking
space.

2.3.1 Utility

The function U(-) measures the preference of the path candidate. To calculate utility, we consider
whether the vehicle can reach to the actual parking space through the path candidate and how close
the path candidate is to the ego vehicle. The first term (Uy,;) can be expressed by the distance between
the currently detected parking space and the end point of the path candidate. The second term (Ueg,)
can be formulated as the distance between the position of the ego vehicle and the first point of the path
candidate. Total utility can be calculated through the weighted sum of each utility term.

U(p) = wast - Udst + Wego * Uego (11)

where Uy, refers the utility of the distance between the currently detected parking space and the end
point of the path candidate, and U,g, refers to the utility of the distance between the position of the ego
vehicle and the first point of the path candidate. wq,; and weg, are weighting term for each utility term.
Uqst and Uy, can be normalized through Gauss error function.

U) = 501 —erf(=22) (12

where, d refers the distance of each utility term, and o denotes the covariance of each term. Here, o can
be a tuning factor which determine the accuracy of the equipped perception system.

2.3.2 Cost

The cost function C(-) determine the non-preference of each path candidate. There are three types of
cost: Destination cost (Cgs), Ego cost (Cego), and Consistent cost (Ceonst). The first two terms are
measured in the same way as the distance in each utility term. Consistent cost refers to the consistency
between the previous and current optimal path candidate. Consistent cost can be formulated the distance
of each path point between the previous path and the current path. To make sure that the cost has negative
value, we use a modified Gauss error function as,

Clp) = —%(1 + erf(o_dz)) (13)

Similar to utility function, d denotes the distance of each cost term, and o is able to tune the cost term.
Total cost can be measured through the weighted sum of each cost term.

2.3.3 Re-planning Strategy

When the expected utility is negative, or when the currently detected parking space is far from the
previous one with differences in x-direction ¢, y-direction €,, and heading angle ¢, all path candidates
are useless. This means that all the sampled parking spaces are significantly different from the actual
parking space. At that time, the vehicle must lrj)e stopped to resampige parking spaces from the currently
detected parking space.

3 Simulation Results

To verify the re-planning capability of the proposed algorithm and the feasibility of the re-planning
strategy, simulation scenarios are investigated, which imitate the real-driving situation using our system
that are equipped with AVM sensors. The dimensions of the vehicle are set identically to the electric
vehicle Z%E. The parameters are given in Table 1, where [ represents the length and w the width of the
vehicle. The simulation vehicle parks at the parking space with length [, and width wj,. The maximum
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Table 1: Parameters for the vehicle and the parking space

[(m) w(m) L(m) ly(m) wy(m)
4084 1730 2845 50 20

Table 2: Parameters for the proposed algorithm

N UUdst (m) UUego (m) Ucdst (m) Ucego (m) UCconst (m) €z (m) ey (m) €0 (deg)
30 0.2 0.05 0.2 0.05 1 0.2 0.2 2.0

control input for path candidate generation w; is given by v;,,,, = M = 0.2rad. The step length is

limited to i € [0.1m,0.3m|. The parameters for parking space sampling and optimal path selection are
also shown in Table 2. The parameters can be used to adjust the quality of re-planning. A higher value
of N leads to a robust planner from a large number of sampled parking spaces. Furthermore, smaller
values of €, €,, and €5 mean that the algorithm terminates in a more precise manner.

As shown in Fig.2, the parking space is modelled in the shape of polygons where each point has a noise.
When parking, the detected parking space (gray rectangle) moves with this noise, and the noise level
varies with its speed. The final parking space (black rectangle) eventually differs from the initially-
detected parking space. The total error between the initial parking space and the actual parking space is
(0.37m, 0.06m, 2.5 deg) in x, y-direction and heading angle, respectively.

36.00 [sec]

X [m]

Figure 2: A simulation scenario that imitates the real-driving car equipped with AVM sensors

Fig.3 shows the sequence of automated parking without re-planning. The ego vehicle (green rectangle)
starts at (Om,0m) and the parking space is located at (2m,—6m). Due to sensor noise, the parking
space is detected at (2.34m, —5.89m) and the parking path (blue line) has been planned to reach this
imprecise parking space. Since the ego vehicle tracks this inaccurate path, it is eventually mislocated at
the initially-detected parking space with an error (0.34m,0.11m, 2.40 deg) in X, y-direction and heading
angle, respectively.

On the other hand, the sequence of the proposed algorithm is shown in Fig.4 to 6. The overall process
from parking space sampling to optimal path selection is shown in Fig.4. The gray rectangles are the
sampled parking spaces and the gray paths are the path candidates. Each path candidate has an expected
utilitg/ calculated by its probability, utility, and cost. The blue path is the optimal path from Section
2.3 that has a maximum expected utility. At time 18.0s, 28.8s, and 33.3s in Fig.5, it is shown that the
proposed algorithm selects the optimal path that is close to the garking space currently being detected
which is likely to be the true parking space. However, since the vehicle at 33.4s in Fig.6 has erred
over €, and €g, the proposed algorithm samples parking spaces again and re-generates path candidates to
reach the right parking space. Eventually, the vehicle parks close to the true parking space with an error
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(0.09m, 0.05m, 0.57 deg). To check the capability of the proposed algorithm, we have evaluated it 100
times in the noisy environment. The results are verified by two criteria: average error and worst-case
error. As shown in Table 3, The average error of the proposed algorithm was reduced by (74.2%, 66.6%,
62.7%) percent, and in worst-case was reduced by (55.8%, 60.4%, 59.6%) percent compared to planning

without re-planning.

Figure 3: Automated parking without re-planning; the planner does not try to plan a path again even though the
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detected parking space is different from the one detected first.
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Figure 4: Overall process of the proposed algorithm from parking space sampling to optimal path selection
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Figure 5: The effect of optimal path selection; the proposed algorithm selects the optimal path
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Figure 6: The effect of re-planning strategy; the proposed algorithm tries to re-sample parking spaces and re-
generates path candidates

Table 3: The comparison of the average error between without re-planning and with re-planning

€rror Lavg (m) Yavg (m) eavg(deg) Lworst (m) Yworst (m) Oworst (deg)
without replanning 0.31 0.18 2.33 0.42 0.32 3.81
proposed 0.08 0.06 0.87 0.19 0.13 1.54

4 Conclusion

In this paper, a re-plannable parking path planning algorithm is proposed, which operates in uncertain
environments. The detected parking space from the perception system is sampled according to its prob-
ability for reaching actual parking space. Then, the parking path candidates are generated to reach each
sampled parking spaces. At the end, the optimal parking path candidate is selected through the utility
function that considers the true probability of the currently detected parking space and the consistency
of the selected path candidate.

Simulation results show the capability and the feasibility of the pr(}posed algorithm. The proposed al-
gorithm can reach the actual parking space even though the input of the planner, which is the currently
detected parking space, is continuously being changed. Through the proposed algorithm, the vehicle
can be located in the actual parking space with reduced errors than the parking path planner without
re-planning. Extensive simulations 1Erove that the proposed algorithm is able to 1provide feasible paths
for various noisy scenarios. Nevertheless, future work will address planner implementation subject to
various sensor models and dynamic obstacles.
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