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Summary

A smart regeneration system of electric vehicles automatically controls the regeneration torque of the elec-

tric motor to brake the vehicle by recognizing the deceleration conditions.  In order to apply this assistance 

system without a sense of heterogeneity by autonomous braking, we propose a control management agent 

who determines the reference deceleration profile to reflect the individual driver characteristics.  The agent 

is designed based on the reinforcement learning method to maximize future rewards to obtain the optimal 

value for the various driving condition.  The proposed control algorithm is implemented in a python envir -

onment using various driving data.
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1. Introduction
Intelligent transfer system dramatically affects advanced driver assistance systems (ADAS) which enhances 
not only driver convenience but also energy efficiency.  For the ADAS implementation on the vehicle such 
as energy management of hybrid vehicles and electric vehicle, smart-cruise control system, autonomous 
emergency braking, the forecasting information such as predicted vehicle velocity has been widely used for 
the efficient  operation  [1]–[4].   As one of ADAS applications,  a smart  regeneration system of electric 
vehicles uses the forecasting information at braking situations [5], [6].  This system automatically controls 
the  regeneration  torque  of  the  electric  motor  to  brake  the  vehicle  by  recognizing  the  deceleration 
conditions.  Thus, it leads the driver convenience due to excluding a driver’s physical braking.  In addition,  
avoidance of frequent braking through regeneration torque control harnesses energy that dissipates through 
a brake disk or drum.

To attain both convenience and energy efficiency through a regeneration torque control, the control system 
requires accurate prediction of vehicle deceleration profile for diverse deceleration conditions such as the 
stop  condition  in  front  of  the  traffic  light,  decelerating  before  the  curvature  load,  speed  limit  or  the 
condition when the preceding vehicle is decelerating.  Furthermore, the driver can feel the heterogeneity 
because the automatic braking control is difficult to apply the driving style of the individual drivers [4], [6], 
[7].
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In general, the smart regenerative control algorithm is applied as a rule-based control algorithm which 
adjusts the regeneration torque level according to the deceleration conditions [8].  However, this adjustable 
rule-based  control  algorithm  cannot  consider  diverse  deceleration  conditions  in  urban  driving. 
Furthermore, it is more difficult to consider the heterogeneity of individual drivers into account.  To cope 
with  these  issues  efficiently,  we  proposed  a  torque  control  management  algorithm  based  on  the 
reinforcement  learning  method  because  it  can  guarantee  the  real-time  and  robust  performance  with 
optimization of the control performance [9].  This torque control algorithm determines the weight factor for 
the desired deceleration value of the regenerative control.   The desired deceleration value is generated  
based on both the individual model and general cruise control algorithm.  Thus, we can obtain the safety 
regenerative control target by reflecting individual driver characteristics.

Paper is organized as the following.  At chapter 2, the algorithm overview is introduced.  The proposed 
algorithm consists of simulation models and torque control management.  Chapter 3 describes simulation 
models that are vehicle model, battery model 

2. Algorithm overview
Figure 1 shows the algorithm overview which contains the control algorithm, vehicle model and driver 
model.  The control algorithm determines the regenerative torque according to the driving condition.  When 
the driver takes his foot  from the acceleration pedal,  the algorithm recognizes the coasting conditions. 
Then, the control algorithm generates the regenerative torque of electric vehicle to decelerate the vehicle 
without the driver’s brake pedal control.  The vehicle model simulates the vehicle deceleration operation by 
the regenerative torque and the state of charge (SOC) of the battery.  On the other hand, the preceding 
vehicle  behaviour  and  the  vehicle  operation  on  acceleration  conditions  are  demonstrated  using  the 
measured driving data.

In  order  to  reflect  the  individual  driver’s  characteristics,  we apply  the  parametric  driver  model.   The  
parametric  driver  model  predicts  the  deceleration  profile  using  the  mathematical  equation  and  model 
parameters.  The model parameters are updated using the driving data of individual driver to represent the 
driver characteristics.  The driver model is described in other papers about our previous researches. The  
control management agent determines the weight factor between the predicted deceleration profile and the 
general  deceleration  setpoint.   This  cruise  control  algorithm  based  on  the  linear  quadratic  regulation 
controller generates the general deceleration set-point.  Consequently, the proposed control management 
agent can consider the driver characteristics while decelerating autonomously.

Figure 1Algorithm overview

3. Simulation environment
The algorithm is designed on a python environment because the python environment easily approaches to 
many deep learning libraries.  In the python environment, we designed the electric vehicle model with a  
battery model and the intelligent driver model to simulate and learn the agent.  The control management  
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agent acts to maximize future rewards.  To predict the future reward, the agent updates the reward function 
which is designed as the deep neural network.

3.1 Vehicle model

3.1.1 Model description

The vehicle model consists of the power source module, drive train module and vehicle module as shown 
in  Figure 2.   The vehicle model only simulates the longitudinal dynamics because the proposed smart 
regenerative control assists only the driver’s braking behavior.  We assume that the driver controls the  
acceleration pedal and steering.  

Figure 2 Vehicle model

The longitudinal vehicle behavior is modeled as the first order dynamic model based on Newton’s second 
law as Equation (1) ~ (2).  According to the dynamics, vehicle acceleration is calculated using the fraction 
force from the power source and drag force from the vehicle model.  The power source generates the motor 
torque using the battery power.  The drive train transfers the motor torque with the deceleration gear ratio, 
then,  the  traction  force  to  tire  wheel  is  determined.   The  drag  force  is  calculated  as  the  sum of  the 
longitudinal resistances as Equation (3).

av=(θsT m ηs /r w−Fd )/mv (1)

mv=me+ma+4 I w+θ I m+ I s (2)

Fd=(0.75 cd v v
2
+ca+cb vv

2 ) (3)

The battery model is designed based on the well-known Chen model which is introduced in the paper [10]. 
This model can represent the battery characteristics especially according to the transient conditions.  The  
model contains two RC circuit those represent long-term transient and short-term transient characteristics 
respectively as shown in  Figure 3.  Each electric device value is determined as the exponential equation 
with three model parameters depending on the battery SOC as Equation (4).

Figure 3 Chen battery model

Ri (SOC )=r iae−r ibSOC
+ric

(4)

3.1.2 Parameter identification

The designed vehicle model can be configured as accustoming the model parameters such as the battery  
register,  driver  train  inertia,  vehicle  air  coefficient  or  vehicle  mass.   In  order  to  simulate  the  vehicle 
operation as similarly with the real experiment vehicle, the model parameters are determined through the  
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parameter identification process using the real vehicle driving data.  To secure the driving data, KONA 
electric vehicle of Hyundai Motor Company is used.  The vehicle experiments were conducted in various 
driving cases.  The driving cases contain the car-following situation on the straight load, urban and highway 
driving and the uphill driving.  Battery parameters are also identified using the driving data on various 
battery SOC range.  

All  parameters  are identified based on the nonlinear least-square solver with the trust-region-reflective  
algorithm [11], [12].  Figure 4 shows the modeling results of vehicle and battery, respectively.  As shown in 
the figure, the vehicle and battery model well represent the dynamic characteristics of the vehicle to use for 
longitudinal regenerative torque control. Table 1 and Table 2 describe parameter values.

Figure 4 Vehicle modelling results

Table 1 Vehicle model parameters

Description Value [unit] Description Value [unit]
av

Vehicle acceleration [m/s2] I w
Inertia of wheel 0.14 [khm2]

vv
Vehicle velocity [m/s] I m

Inertia of motor 0.028 [khm2]

T m
Motor torque [Nm] I s

Inertia of shaft 0.75 [khm2]

Fd
Drag force [N] cd

Air drag coefficient 0.171 [Ns2/m2]

rw
Wheel radius 0.318 [m] ca

Rolling coefficient 143 [N]

θ s
Gear ratio of shaft 7.98 [-] cb

Rolling coefficient 0.389 [Ns2/m2]

ηs
Efficiency of shaft 0.99 [-] ma

Additional mass 100 [kg]

me
Empty vehicle mass 1685 [kg]

Table 2 Battery model parameters

Description Value [unit] Description Value [unit]
R0

Series register [Ohm] C1a
Short capacitor param a -649

R1 a
Short register param a 76.52 C1b

Short capacitor param b -64.3

R1 b
Short register param b -7.95 C1c

Short capacitor param c 12692

R1c
Short register param c 23.83 C2 a

Long capacitor param a -78409

R2a
Long register param a 5.21 C2b

Long capacitor param b -0.013

R2b
Long register param b -35.23 C2 c

Long capacitor param c 30802

R2 c
Long register param c 124.9 V oc

Open circuit voltage 356 [V]

3.1.3 Regenerative torque control

To regenerative control, we determine the regenerative motor torque.  This regenerative motor torque is 
applied to the minus torque to the motor model in power source.  Then this minus torque leads both the  
deceleration of the vehicle and the energy charge of the battery.  Figure 5 shows the result of regenerative 
control using the simulation models.
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Figure 5 Regenerative control of vehicle model

3.2 Parametric deceleration model

3.2.1 Description of the prediction process

The parametric deceleration model was introduced in our previous research [13].  This model is designed 
based on the well-known intelligent driver model  [3].  However, the model parameters of the existing 
intelligent driver model are designed as the parametric equations to represent the vehicle driving state under 
deceleration conditions.  Furthermore, the driver model parameter affects the parametric equation to reflect 
the individual  driver  characteristics.   Consequently,  since the deceleration profile  is  determined as the  
parametric equation, the model parameter can reflect the individual driver characteristics to the deceleration 
prediction.  The model parameters are described in  Figure 6.  When the driver decelerates, the braking 
timing, initial jerk, and specific acceleration values especially represent the driver characteristics.  Thus, we 
determined these physical values as the model parameters.  Also, when the deceleration is terminated, the  
termination relative velocity to the preceding vehicle also represents the driver characteristics.

Equation  (5)  describes  the  parametric  deceleration  model.   The  reference  velocity(vref)  and  effective 

distance(deff )  are  designed  as  the  parametric  equations  and  the,  parametric  equations  are  determined 
according to the braking section and model parameters as shown in  Figure 7.  The braking section is a 
definition of braking interval meaning the deceleration characteristics. Its period is determined also by the  
driver model parameters.  Each braking section means as follows.  The coasting section means the driver’s  
pedal shifting time from the acceleration pedal to the brake pedal.  When the initial section, the driver 
pushes the brake pedal until the vehicle deceleration reaches to a specific value.  The acceleration slope on 
the initial section is determined as the initial jerk parameter.  After initial the section, the driver adjusts the 
brake pedal to converge to velocity condition for the preceding vehicle.  Then, the driver controls the brake 
pedal to keep a safety distance. Using these braking sections, the model can represent the deceleration  
characteristics in detail.

a=am(1−(
v

vref
)

δ

−(
d

deff
)

2

) (5)
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Figure 6 Driver model parameters and deceleration profile

Figure 7 Model prediction process

3.2.2 Parameter learning algorithm

As mentioned in the introduction, the model parameter should be updated according to the driving data of  
each driver on the real-time driving condition.  Thus, the learning algorithm which can be applied to the 
real-time embedded system is designed.  The vector arrays for each model parameter are pre-determined for 
embedded suitable update algorithm.  At first, the initial values of parameter vector are defined using the 
whole driving data of every driver.  Second, the reference parameter values are calculated using the driving 
data of individual driver when every time a deceleration occurs.  Then, using the reference parameter, the 
vector  array of  each parameter  is  updated.   Consequently,  the model parameters  are  updated for  each 
deceleration driving according to individual driver characteristics.  This update algorithm should determine 
the vector index for the model parameter vector to the vector index has a high correlation to its parameter 
value.  

Figure 8 shows the parameter values and its index values for each parameter.  As shown in the figure, the 
parameter  initial  jerk  is  correlated  to  the  index  parameter  which  means  the  initial  vehicle  states.   It 
describes, when deceleration starts, the driver pushes the brake pedal more aggressively as the relative 
distance is small.  The relative distance parameters are correlated of the relative distance at the previous 
braking section.  The driver intends to keep the same time to collision of the previous braking section.  
Figure 8 also shows the base vector which is an initial value of the parameter vector and the learning results  
of three drivers.  The result describes the driving characteristics; then, each updated parameter vector is 
used to agent learning.
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Figure 8 Model parameters and its updated vector for each driver

3.2.3 Acceleration set-point generation based on the driver model

Through the  above parametric  deceleration  model  of  each  driver,  the  predicted  acceleration  when the 
deceleration condition is determined.  Figure 9 shows the prediction results for each driver; then we used 
this predicted acceleration profile as the acceleration set-point reflecting driver characteristics.

Figure 9 Deceleration states prediction results according to the individual driver

3.3 General cruise control algorithm

In the contrary, the general cruise control algorithm which determines the acceleration profile for cruise 
control is designed based on the linear quadratic regulation algorithm  [14], [15].  The system model is 
designed with two regulated states that are relative velocity and safe distance.  The relative velocity means  
the velocity  difference between the preceding vehicle  and ego vehicle.   The safety distance state  is  a  
distance that should be controlled in a cruise situation.  This parameter is determined depending on the 
preceding vehicle velocity and safety time gap.  The cruise control algorithm generates the acceleration set-
point to regulate these two states to keep the safety distance and control vehicle velocity to preceding  
vehicle velocity.

Figure 10 shows the cruise control results when the same deceleration case.  When the deceleration starts,  
the cruise control algorithm generates large acceleration set-point value in comparing to the acceleration 
set-point from the driver model.   Since the cruise control algorithm regulates states,  it  generates large  
control  result  according  to  initial  state  values  when  deceleration  starts.   However,  the  driver  model 
considers the pedal shift time of human behavior when deceleration starts.  As a result, the acceleration set-
point from the driver model is small when the initial deceleration condition.  In the other hand, generated 
acceleration set-point values show the opposite tendency when braking ends.  The cruise control generates  
small deceleration value because the vehicle has already decelerated sufficiently.  To determine the merged 
acceleration set-point, we designed the torque control management that defines the weight factor between 
these two set-points.
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Figure 10 Cruise control results based on LQR algorithm

4. Torque control management

4.1 Overview of the reinforcement learning algorithm

We propose a torque control management that determines the weight factor of acceleration set-point of the 
torque  controller.   The  algorithm should  select  the  optimal  weight  factor  between  set-point  from the  
deceleration model and cruise control set-point. However, it  is difficult to determine the optimal value  
because the parametric model and cruise controller encounters diverse driving conditions.  Thus, the model 
is designed based on a reinforcement learning algorithm since the reinforcement learning algorithm can 
handle the nonlinear and complex problem as learning by itself [16]–[18].  

The reinforcement learning algorithm determines the optimal action to maximize future reward.  Figure 11 
describes the concept of reinforcement learning. As shown in the figure, the algorithm consists of an agent  
and an environment.  The algorithm determines the optimal action based on the Markov Decision Process 
(MDP) by the interaction of the agent and environment.  MDP deals with bellow features [ S , A ,R , Π ]. S 
is a state that represent the current environment.  A is the action of the agent. R is a reward function of the 
environment.   The agent selects the action to makes the environment gives a maximum reward at  the 
current  state.   Then,  the  state  of  the  environment  is  changed  according  to  the  action  and  transition  
probability model Π .  The environment generates the reward for each state and action.

Figure 11 Reinforcement learning for torque control management

In order to determine the future reward according to the current state, the reinforcement learning algorithm 
defines the value function about the current state.  As Equation (6), the value function V (s) for each state 
means the expected sum of the reward.  To focus on the current reward, the discounted factor γ is applied. 
The value function of the current states can be reformulated as a recursion expression by Bellman theory.  
As a result, the optimal policy of the agent is a selection of an action to maximize the value function at the  
current state.

EVS32       8



The action-value function Q is defined as Equation (7).  While the value function means the future reward  
at current state S, the action-value function q means the future reward by taking action A at current stateS. 
Thus, the Q learning algorithm that optimal policy selects the maximum q action, is widely used.  Since the  
determination of Q value function for all states and all action is impossible in various driving condition and  
control  actions,  the  Q value  function  can  be  determined  as  a  deep  neural  network.   On  the  learning 
situation, the reinforcement learning algorithm updates this Q network using the simulation data.  The 
learning algorithm and Q network are described in detail in the following chapter.

V (S)=E ( R t+1+Rt+2+Rt+3+…+Rend ) (6)

Q (S , A )=E (Rt+1+γQ (st+1 , At+1 )) (7)

4.2 Reinforcement learning algorithm application

On the proposed algorithm, the vehicle states, preceding vehicle speed and deceleration model states are 
defined as the state of the environment.  The vehicle state and preceding vehicle speed are importance  
states in cruise control situations.  Furthermore, the model states of parametric deceleration model are also  
defined due to reflect the individual driving characteristics.  According to the states and vehicle simulation 
results, the environment model generates the reward.  Since the agent selects the action to maximize the  
reward, the affordable definition of the reward function can determine the performance of the algorithm.  

To consider  safety,  comfort  and energy,  we determine the three reward functions.   The  safety reward  
function prevents the vehicle collision.  This reward function generates the high penalty value when the 
relative distance between vehicles is minus value.  In addition, the relative distance is smaller than the 
criterion value, the reward function generates the normal penalty values to prepare for the collision.  The 
comport reward function is related to the driver characteristics and driving data.  The error value between 
the real-diving data and control result is defined as penalty values.  To reduce this penalty, the agent selects 
the action as like human driving data.  The comfort reward function also uses the predicted value from the  
parametric model of each driver because the driving data that is used to learning can only reflect that  
measured driving situations.  By using the parametric driver model, the agent can consider the general  
driving characteristics of individual driver even in other driving cases.  The last reward function is an 
energy regeneration reward function.   The increasement of  battery SOC by the regenerative control is 
determined as the positive reward of algorithm.  

4.2 Q network design and learning algorithm

To estimate the optimal action value, the Q network is designed based on the deep neural network.  At first, 
we proposed a sequential deep neural network.  Since the sequential network is advantage to the time 
sequential  data,  it  is  suitable  for  torque  control  application.   In  addition,  since  the  deceleration 
characteristics of the driver are affected by the braking section which is time dominant period, the proposed  
q network is effective.

The recurrent neural network with a long short-term memory is used to the sequence neural network for Q 
value approximation.  The RNN is a representative sequence network because it takes the sequence input 
and predicts the sequential output.  Using the hidden network, RNN extends the conventional feedforward 
neural network to handle the time sequential information.  However, the RNN model has the vanishing  
problem  and  blowing  up  gradient  cause  the  long-term  dependency  problem.   LSTM  architecture  is  
introduced to solve this problem.  The LSTM includes the memory cells in the hidden layer.  This memory  
cell  predicts  the  hidden  state  as  like  RNN,  however,  the  cell  state  and  gated  structure  can  solve  the 
limitation of RNN.  The gate structure consists of the input gate, the output gate and the forget gate.  The  
equations and Figure 12 describe the LSTM algorithm.

ht=σh (W xh x t+W hhht−1+bh ) (8)

it=σ g(W ig [ ht−1 , x t ]+big) (9)

f t=σ g (W fg [ht−1 , x t ]+bfg ) (10)
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o t=σg(W og [ht−1 , xt ]+bog) (11)

~c t=σ r (W cg [h t−1 , x t ]+bcg) (12)

c t=f t ∙c t−1+it ∙
~c t (13)

Figure 12 RNN architecture with LSTM cell

The Q networks are determined based on the sequential neural network, and they are updated through the Q 
learning algorithm with temporal difference learning method  [19].  The Q learning updates the network 
after taking action A of state  S.  In this time, the environment generates the immediate reward and state 
transition.  Using these action, state and reward, the action-reward value is calculated as Equation (7).  
Then, using this action-reward value, the target value for Q network parameter update is determined as 
Equation (14) ~ (15).

θt+1=θ t+α (Y t
Q
−Q ( S t , A t ;θt ))∇θt

Q ( S t , A t ;θt ) (14)

Y t
Q
=Rt+1+γ max

a
Q ( St+1 , a ;θt ) (15)

5. Control results
Figure 13 shows learning results for one deceleration case.  The left top figure is an acceleration of the  
vehicle.  The driver model generates the model acceleration set-point which is a blue line, and the cruise 
controller generates the cruise acceleration set-point which is a yellow line.  The red line is a control result  
by  the  merged  acceleration  set-point.   The  torque  control  management  determines  the  merging  ratio 
between the model and the cruise controller by selecting the action index.  As shown in the left bottom 
figure, the smaller action index value is, the more acceleration set-point from the model is used.  This 
system is learned iteratively to maximize the Q value as shown in the right bottom figure.  
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Figure 13 Learning and Regenerative control results for deceleration case

Figure 14 Regeneration control results using driving data
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Figure 14 shows the control results for the various driving case.  The proposed algorithm conducts the 
regenerative control when the driver releases the foot from the acceleration pedal.  In each deceleration 
condition, the driver model and cruise control algorithm generates acceleration set-point, then the control 
management selects the merging ratio.  As a control results about 170 seconds, the control management 
select the model-based acceleration set-point dominantly because this case the model well  predicts the 
driver’s behavior.  On the other hand, the algorithm selects the cruise control set-point since the model does  
not work about 460 seconds.

Figure 15 Regenerative control results depending on individual driver

Figure 15 shows the different control results according to individual driver model.  To reflect the driver  
characteristics, the agent is learned using different driver parameters.  As a result, the control results and 
action index of control management are different for the same deceleration condition.

Conclusion
In this paper, we proposed the smart regenerative control management based on the reinforcement learning 
algorithm  to  reflect  the  driver  characteristics.   The  proposed  algorithm  recognizes  the  deceleration 
condition; then, the driver model generates the acceleration set-point.  Since the driver model can represent  
the  individual  driver  characteristics  for  deceleration  behaving,  the  control  algorithm  controls  the 
regenerative  torque  to  trace  the  model  generated  set-point  for  reflecting  the  driver  characteristics. 
Furthermore, the cruise controller generates acceleration set-point based on the LQR algorithm to prepare 
inaccurate prediction of the model.  The control management is updated based on the Q learning algorithm 
to select the optimal merging ratio of acceleration set-point between the model and cruise controller.  The  
learning algorithm is simulated using the vehicle model.  Control results  show the proposed algorithm 
selects optimal merging ratio with reflecting the driver characteristics.
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