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Summary 
Driver’s acceleration intention is one of the most important variables in determining the powertrain 

operating state such as the target gear step of the transmission and the engine operating mode. The driver’s 

intention acquired through the accelerator pedal and the brake pedal can be changed rapidly in a short 

period of time and it may interfere with deciding the appropriate powertrain state. This study tried to 

predict the driver’s intention using various information and machine learning algorithms. The prediction 

model was employed for making proper decision in turning on the engine of the HEV. The study also 

addressed the method to manage the inaccuracy of the prediction as well as issues in implementing the 

prediction model on the embedded controller. Actual road test results were also presented to demonstrate 

the feasibility of the proposed method. 
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1 Introduction 
HEVs improve Fuel Economy (FE) and meet drivability requirements by shifting internal states of the 
powertrain corresponding to the driving condition properly. The powertrain states include engine on or off 
state, target gear of the transmission and target mode of a multi-mode hybrid powertrain configurations. In 
most cases, switching between the states and the modes requires a certain amount of time and energy. So, it 
is important to determine the appropriate target state and trigger the transition to the target state by 
examining all the different variables collected by sensors deployed inside and outside of the vehicle. The 
driver’s acceleration intention is one of the most important variables in determining the powertrain 
operating state. However, the driver’s intention can be changed rapidly in a short period of time and the 
target state can be evaluated inappropriate when the transition is completed. 

There have been studies to improve the FE of HEVs by predicting driving conditions and optimizing the 
energy management strategy with the predicted information. Some researches tried to predict vehicle 
operating conditions such as vehicle speed, battery SOC and torque command from environmental 
knowledge such as traffic conditions, traffic signals, road types and grade [1, 2, 3, 4, 5]. These methods 
didn't reach on-board implementation due to the difficulty of obtaining and communicating accurate 
environmental information to the vehicle. 
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D. Baker suggested a dynamic programming derived engine controller using a nonlinear autoregressive 
artificial neural network with exogenous inputs [6]. The study also addressed that 30 seconds is the most 
effective prediction for the Energy Management Strategy (EMS) in its application. There also have been 
approaches to employ Neural Network (NN) as a part of the intelligent online EMS [7, 8, 9]. 

This study tries to predict the driver’s intention for short time horizon by utilizing heterogeneous 
information to solve the problem brought by the rapid change of the driver’s intention. The data required in 
the learning process of the prediction model can be acquired through the navigation, telematics and radar 
systems. The conventional rule based prediction method needs a plenty of time and effort in building a 
hypothesis of the relation between various data and driver’s behaviour, and in validating it with 
experiments. Hence, a prediction model based on machine learning is developed. This paper also covers the 
optimization of the prediction model in terms of hardware resource such as memory usage and computation 
load as well as the issues to improve the accuracy of the prediction. Several different variable selection 
methods, proper learning models, and parameter tuning are considered to build the effective prediction 
model. 

2 Mode shifting control for parallel HEV powertrains 
HEVs and PHEVs are equipped with a high voltage battery which enables preserving surplus energy for 
later use. Therefore, its EMS needs to be optimized by taking account not only instantaneous efficiency of 
the powertrain but also future driving conditions. All the studies introduced above are based on this 
perspective. However, there are also transient control problems that cannot be covered by the mid to long 
range prediction based EMS. Driver's acceleration intention can be changed rapidly in response to different 
kind of events encountered during real road driving. The rapid change can decrease system operating 
efficiency by affecting the powertrain transient controls. In this chapter, the subject HEV system is 
introduced and the requirements for the prediction model are addressed to improve the transient control for 
the system. 

2.1 Impact of transient acceleration intention 
The degree of impact of the rapid intention change on FE can vary depending on the system configuration 
and its transient control characteristics. If the system has discontinuous operating states which can be 
changed in response to the driver's acceleration demand, it could be more sensitive to the transient intention 
in terms of FE since the state transition requires additional energy consumption. From this perspective, 
multi-speed transmissions could be exposed to greater impact than continuous variable transmissions since 
ineffective gear changing can be triggered. As shown in Fig. 1, if the driver's Accelerator Pedal Stroke 
(APS) value fluctuates greatly and exceeds the predetermined threshold within a short time, the transition 
from the first mode to the second mode can be triggered. However, before the actual mode transition is 
completed, the APS value may fall back below the threshold. In this case, the transition process can be 
considered unnecessary, and it needs to return to the original state, and the energy used in all of the process 
may degrade overall operating efficiency. 

 
Figure1: Inappropriate mode transition due to rapid change of driver’s intention 
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The problem can be partially mitigated by applying appropriate filtering to the signal processing of the 
driver's APS and Brake Pedal Stroke (BPS) value, but this may delay the transition to the optimal state in 
most cases. Fig. 2 presents a parallel hybrid powertrain configuration to improve its control through this 
study. This system employs an engine clutch to disengage the engine from the driveline to realize the EV 
mode, and a six-speed transmission to change the speed of the engine and motor. In this system, engine 
start up and gear shifting from the first gear to the second gear are carried out consecutively in most vehicle 
launching conditions. These characteristics can be seen in Fig. 3 which presents the engine start up 
threshold, shifting line and vehicle acceleration demand profile on the speed and torque plane in a typical 
case. Since these consecutive state changes need to be conducted promptly to achieve the benefits that can 
be obtained in the appropriate state, any delay in filtering the ineffective state change triggering can distort 
the optimal operation of the system. 

2.2 Conventional mode transition strategy 
There has been the conventional state transition method which adjusts the efficiency optimal engine start up 
threshold in positive or negative direction by monitoring driver's input and vehicle behaviour to avoid 
ineffective engine starting or to increase convergent speed to the optimal engine operating point, 
respectively. This compensation method consists of two different algorithms as summarized in Fig. 4. The 
first compensation logic recognizes low speed travel pattern which can be observed in the parking lot or 
traffic congestion based on the APS and vehicle speed profile and increases the engine start up threshold to 
be insensitive to transient torque demand to avoid inefficient engine operation. Another compensator 
observes the gradient of vehicle speed and determines whether the torque demand stays stable within the 
rapid acceleration range to advance the timing of engine start up by lowering the threshold. 

These compensation methods are developed using limited information and they are only applicable to 
specific driving condition due to the limitation in its developing process. Building the algorithm requires an 
iterative process that involves setting hypotheses that depend on human experience and intuition, 
evaluating through vehicle testing, and modifying the hypotheses. And since all of this is done with human 
effort, it can be difficult to increase the type of input signal or to broaden the scope of application. 

 

 
Figure2: Parallel HEV configuration 

 

 
Figure3: Typical acceleration profile which induces consecutive mode changes 
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2.3 Predictive mode transition strategy 
Nowadays, the number of sensors and controllers mounted on vehicles for various purposes is continuously 
increasing. This study utilizes machine learning in order to develop predictive algorithms that can be used 
more universally by using the information of the sensors and controllers. If a model for predicting the 
driver's acceleration or deceleration intention is implemented, it is possible to utilize not only the present 
but also the future driver's intention to decide the engine-on, so that inappropriate engine starting can be 
reduced or the engine starting can be reacted faster when it is needed. 

Considering the time it takes to start the engine, the minimum time to keep the engine running to protect 
the engine components such as catalyst, and the time it takes to turn the engine off again, the minimum 
engine run time is about 5 seconds. Therefore, this study tries to avoid ineffective engine on request which 
is shorter than the minimum engine operation time by predicting driver's near future acceleration intention 
after 5 seconds. Forecasting further could have potential for additional improvement in terms of energy 
efficiency. However, as the prediction horizon is expanded, prediction uncertainty can also be increased. 

Figure 5 shows the control flow employing the prediction model and the compensation mechanism. In this 
control scheme, the predictive compensator overrides the decision made by the conventional logic only 
when the probability is greater than a certain level. Therefore, the mode transition can be improved with 
reliable predictions and the risk of side effects, due to prediction errors, can be minimized. 

 
Figure4: Conventional mode transition control flow 

 

 
Figure5: Mode shifting control flow utilizing the acceleration prediction 
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3 Prediction model 
A single-layer NN is selected as the predictive model to be implemented inside the embedded controller, 
which is responsible for EMS and has limited resources reserved for the other functionalities. The network 
is trained with the signals data from a certain point in time as inputs and the acceleration intention of the 
driver after 5 seconds from such point as the output. This chapter introduces the process of data acquisition, 
learning and model optimizations. 

3.1 Data acquisition 
Different types of communication modules and sensors such as Radar, Lidar and camera have been applied 
to current vehicles in order to implement Advanced Driver Assistant System (ADAS) and connected car 
applications. Among the variety of information, this study utilizes the information of the roads and the 
distance from the front vehicle acquired by the GPS navigation system and the front mount radar, 
respectively. The types of signals considered in this project are summarized in Table 1. Data acquisition for 
machine learning has been conducted twice. The first was obtained from 20 drivers from April to 
September 2016 and the second was obtained from 25 drivers from September to December 2017 for 
several routes. 

3.2 Feature selection 
Among the acquired vehicle information data, input variables having a high degree of influence on the 
prediction of acceleration are selected. Using all the acquired variables increases the complexity of the 
model, which is not only disadvantageous to the implementation in the embedded system but also hinders 
effective learning of the model. Before reducing the input variables, the structure of the input variables is 
simplified by exerting efforts to signal processing such as excluding the unused area of the quantitative 
variable, reducing the label of the qualitative variable or grouping the variables with high negative or 
positive correlation. We choose some input variables to apply the model construction using VIP (Variable 
Importance on partial least square Projection), Anova (Analysis of Variance), CCF (Cross Correlation 
Function), and VIF (Variance Inflation Factor) [10, 11, 12, 13]. After training, MOI (Maximum Output 
Information) is used to rank the input variables with respect to their influence into the prediction accuracy 
[14]. As a result of repeating the above feature selection process under conditions satisfying the weighted 
precision of 98% of the existing model, the number of input variables was reduced from 40 to 20. 

 
Table1: Data acquired to predict the near future acceleration 
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3.3 Neural network structure 
The prediction model was originally designed to output one of seven steps from deceleration to acceleration. 
However, in the training process, the result was observed to be biased on the intermediate output step 
because there are a large number of data corresponding to constant speed driving. In order to alleviate the 
data imbalance problem, oversampling method and weighted cost function are considered to be applied. 
Furthermore, even though the versatility is weakened, the outputs are reconstructed in 3 classes and their 
thresholds are adjusted to respective proper values. However, the prediction result for the 3rd class (rapid 
acceleration) was below acceptable levels. Hence, we developed a 2-steps model to first predict whether or 
not the output corresponds to the 1st class, and if not, a second model classifies it as the 2nd or 3rd class as 
shown in Fig.6. 

Model compression methods are also applied to reduce the model size to fit into embedded boards with 
limited storage. Furthermore, the energy consumption can be reduced in the compressed small model. The 
first method, pruning reduces the model by keeping only the most informative connection. Another method, 
quantization allows shared weights to be used with a codebook containing the corresponding indices [15]. 

3.4 Training and validation 
We trained and validated the NN using 5-fold cross validation. In order to guarantee the reliability of the 
predictions we only considered output from the softmax layer which are above a certain confidence 
threshold (in our case 70% or higher). Figure 7 shows the prediction accuracy for each class by sequentially 
applying the improvements such as variable selection method, output class re-definition, 2-steps structure 
and model compression. This result shows that the accuracy of the output class is improved, and especially 
in the third model with 2-stages, the predictive reliability of output 1 and 3, which are closely related to 
engine-on or engine-off judgment, is improved significantly. Under these conditions, sample retention 
associated with predictive control is close to 40%. 

Figure 8 shows the code size and calculation load for each model. As the input has been reduced due to the 
variable selection methods and the output class has also been reduced, the second model has been greatly 
reduced in size and can be mounted on the embedded controller. We can see the benefits of execution time 
in the third model by applying pruning and weight sharing, but we can see that the code size itself has 
increased slightly due to the 2-step structure. 

4 Experiment and result 
The predictive model was applied to the hybrid control unit for the parallel hybrid vehicle in the same 
manner as proposed in Chapter 2. And it was confirmed whether the engine-on decision was properly 
compensated in the evaluation test route focused on low - speed driving in the city. 

 

 
Figure6: 2-stage neural network structure for acceleration prediction 
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In the test, three improvement cases were observed as shown in Fig.9. In the first case, the model predicted 
a smooth driving of class 1 with a prediction probability of 70% or more, and activated the low-speed travel 
correction logic to suppress engine starting. Next, the existing low-speed travel correction logic operated to 
raise the engine-on threshold, but in the predictive model, the acceleration of class 3 was predicted, and the 
threshold correction was recovered. The last case shows that the rapid acceleration judgment logic was 
activated, but it was suppressed according to the prediction result. Observing the changes in the torque 
demand before and after the predictive model intervention, the second case was improved to allow the 
engine to be started in continuous acceleration situation and in the other two cases intermittent acceleration 
input was filtered to suppress unnecessary engine starting. 

Among the three improvement cases, the first low-speed travel case was applied to the vehicle fleet test and 
the result is shown in Fig.10. In the entire test period, there were 237 acceleration events where torque 
demand input exceeds the engine-on thresholds, of which 42.6% were intermittent demand torque patterns 
that could cause ineffective engine operation. Of these, 27.7% inhibited by conventional logic, and the 
predictive model could suppress ineffective engine-on in 8.9% of cases, except in cases where the 
probability of prediction was low or not operated by interference from other control logic. 

 

 
Figure7: Weighted precision for each class; (a) initial model, (b) model with enhanced variable selection method and 

output class re-definition and (c) model with 2-step structure and model compression 

 

 
Figure8: Code size and calculation load for each model 
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Figure9: Correction result of the engine on-off judgement based on the proposed prediction model; (a) Class1 

prediction to raise the threshold, (b) Class3 prediction to override the low-speed travel recognition and lower the 
threshold and (c) Class1 prediction to override the rapid acceleration recognition and raise the threshold 

 

 
Figure10: Overview of the vehicle fleet test result 

 

5 Conclusion 
In this study, we tried to suppress ineffective engine start by predicting the acceleration / deceleration of the 
driver in the near future and using this prediction information in the engine-on decision process of the 
hybrid vehicle. 

Using machine learning algorithms and various information available in the vehicle, we developed the 
predictive model that outputs the acceleration after 5 seconds with their respective probabilities. 

The data bias of the constant speed range of data for accelerating / decelerating prediction and the lack of 
data of the high acceleration region could be improved by redefining the acceleration / deceleration output 
class in the way appropriate for the application, and by using the two-stage model structure. 

By using methods such as VIP, Anova, CCF, and VIF, we selected candidate input variables for model 
construction, and we used MOI for feature selection. Furthermore, model compression methods such as 
pruning and weight sharing were applied to reduce the code size and computation load for embedded 
system implementation. 

The effectiveness of the predictive model and compensation logic was evaluated in real road conditions of 
low speed congestion zone where the driver's acceleration / deceleration change is prominent. 
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