32" Electric Vehicle Symposium (EVS32)
Lyon, France, May 19 - 22, 2019

Load Profile Generator for Electric Vehicle Home
Charging

Georg Gohler!, Felix Otteny?, Henriette Triebke®, Marco Reiser”

[University of Stuttgart IAT, Stuttgart, Germany, georg.goehler@iat.uni-stuttgart.de
’Fraunhofer IAO *Robert Bosch GmbH, Corporate Research *University of Stuttgart

Summary

Nowadays, electromobility is an essential part of a continuing change in worldwide mobility. Users' attitudes
towards electromobility are influenced essentially by the ability to adapt to their own personal mobility needs.
The subjective assessment, whether an electric car could manage familiar routes, is highly decisive for the
willingness to use electric vehicles [1]. Furthermore, increasing acceptance will lead to grid relevant load
peaks through the parallel charging processes. To tackle both problems, i.e. overcoming user doubts and the
prediction of the electric load, the Institute of Human Research of the University of Stuttgart developed the
tool “Profile Generator for Electromobile Loads™. It generates a charging profile based on the individual

mobility behaviour of a private electric vehicle user.

Keywords: load profile, mobility behaviour, forecast model, power demand, electric vehicle, Matlab®

1 Introduction and state of art

In order to hold “the increase in the global average temperature to well below 2 °C above pre-industrial
levels” [2] and reduce air pollution caused by the transport sector, an accelerated development of
electromobility is indispensable. Apart from the potential of zero direct emissions, electric vehicles (EV) can
balance the fluctuating generation of renewable energies and substitute one part of backup power plants and
stationary storages. Thus electromobility is a key to the sustainable global transformation of the mobility and
energy sector: more climate- and environmentally friendly, more resource-friendly and more efficient. In line
with these potentials, the electric car market will accelerate to a mass market adoption in the next 10 to 20
years [3]. Yet the acceptance and competitiveness of electromobility is greatly influenced by the availability
of charging infrastructure, economic aspects and environmental benefits [4]. One of the most essential
challenges for planning and designing charging stations is the integration of numerous stations in an existing
energy system with a limited power supply, for example a residential parking garage with a multitude of
parking spaces. To meet these challenges an individual load prediction for electric vehicles is required. For
reconstructing energy needs and load profiles of electric vehicles two general methodologies are applied: on
the one hand, historical or real data can be used [5—7], on the other hand, it is possible to simulate load flows
with generic mobility behaviour of a selected user group. Valentine et. al. for example describes the vehicle
usage and resulting energy demands by aggregate data; for example composed of census data and average
trip distances [8]. Many simulation models use representative mobility data of conventional vehicles or

1 This work is sponsored by the project C/sells within the Smart Energy Showcases SINTEG, funded by the German Federal
Ministry for Economic Affairs and Energy (BMWi)
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general mobility patterns. Thereby mobility studies, such as Mobility in Germany study (MiD), national
survey on transport and travel (ENTD) for France, 2000 Census Transportation Planning Package (CTPP)
for the US or the study of the Austrian Motorized Individual Mobility provide the databases to identify EV
charging behaviour [9]. In the current state of research a variety of authors model EV charging load based on
assumptions and simplifications, for example assuming a fixed percentage of EVs, adopting a rigid EV
charging schedule, assigning a certain distance traveled per day or assuming a certain mileage and
corresponding fixed amount of power consumption by each EV [10].

The present paper aims to address those shortcomings by developing a load profile generator for an individual
user profile and deals with economic and ecological issues. The results of the charging profile tool make
private customers turn away from the thought that the range of electric vehicles might not be sufficient to
cover their own mobility behaviour adequately, by applying different charging strategies and electric
vehicles. The resulting load curves are also incorporated into the planning of local energy grids and can be
used for overall balancing. Network operators, fleet managers and other planning services, like engineering
offices, can use this profile generator for load prediction concerning electromobility and developing
sustainable energy concepts according to integrated energy design.

This paper is structured as follows: Section II focuses on the methodology and introduces the main variables
and general assumptions of the tool. The chapter is also intended to give an overview of the simulation
process. Section III defines the case study for a selected user and a suitable electric vehicle, whereas Section
IV shows the simulation results. Section V concludes the paper with an outlook and the major findings.

2 Scientific approach and general assumptions

The Load Profile Generator was developed to assist the consumer in choosing the optimal vehicle and
determining the charging strategy based on his mobility characteristics. Therefore, the forecasting model is
implemented in MATLAB and consists of three interactive building blocks. At first, the simulation generates
a driving profile based on the user's input in the MATLAB app simulation interface. This profile includes the
location of the vehicle, i.e. at home (available for charging) or at work, etc. (no charging possible), and the
driving distances with a temporal resolution of five minutes over one year. Secondly, the simulation utilizes
the location and route information of the user to manage the charging and calculate the resulting load profile.
In this case, the generator considers the characteristics of the selected charging strategy and electric vehicle.

Load Profile Generator

Parameter Setting Model Steps

Mobility Behaviour Reconstruction Driving Profile |

location of car
driven distances
user behaviour over time

calendric parameters, work, holidays, sick days
periodic, evening and leisure activities
distances, frequency, duration

- (R -

~1_ Load Profile | —

load profile over time
charge characteristic
SOC development

charging behaviour user,
load curve shape
A

TCO & Emission | ~
econimic: variable and fixed operating costs

~1 User Balance |
Total Cost of Ownership

ecological: production, recycling, energy supply life cycle assessment

VAVAY

_/

Load Profile Generation |~
vehicle choice, charging infrastructure,

Figure 1: Methodical structure and sequence of the Load Profile Generator
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Subsequently, the users’ needs and the determined charging profile are balanced ecologically and
economically in order to satisfy the individual mobility needs. To evaluate the results, a comparison with
conventional vehicles is also possible. Fig. 1 reconstructs the schematic flow of the tool in which the left side
represents the input parameters of the user interface. The right side shows the simulation steps and results. In
order to support the user during personal input and to prevent misuse of the tool, general conditions for the
parameters are predefined. Additional information and advice for optimal use can be viewed by pressing an
information button.

2.1 Mobility behaviour reconstruction

The modelled mobility profile of privately used  caiendrio parameters

vehicles is generated from the information Y 2014 TR BEITNTES MR
entered by the user in the app interface and can ~ SckPa= | 1© ineicualvacations Mmberoffoes | 1

be determined exactly by a multitude Of  reguarworking Days aHours Periodic Activities

settings. Using normally distributed variables =~ “em®= v Vim v acivata [ 2 |
guarantees an individual profile despite Sy EEE Rk ;

identical input parameters by the user. Fig. 2 is T m

an illustration of the user interface with ~ FReguarwerkinghous: 5 14 I

except v v

individual input of the mobility behaviour of an
exemplary user. The user interface is divided .., oistances fni

into six components, which generate the wore [ 10 Perde Leswe | 69 shopeing | 45 | [ED)
driving profile. The calendar parameters form

the general framework for the selected year.

Evening Activities

. . . Frequency Duration n
Optionally, national holidays and personal on workdays axpertesk v — o
holidays can be taken into account. The days of ~ onnonworking days Trper ek v ——— b
illness are automatically divided into three  omerteisure actvities

. . . . . Frequency Duration
different periods of time e.n}d dlstrlbu‘Fed S g . @
randomly over the year. In addition, the choice o
X K rip 1x per Week v 3n n
of the number of profiles is also important (e.g. S — o o

for fleets). For a single driving profile the tool
automatically generates two different distances
to the workplace (kmwork, kmyworkt20 km) to
investigate the influence of driving length. In
order to allow different routes for leisure activities, the entered information
is calculated by using a continuous equal distribution. At the beginning of
the mobility behaviour simulation, the event matrix contains only the status
that the vehicle is at home. The idea is that events are generated and written
into the matrix one after another. The structure and the calculation of the
mobility behaviour follows a prioritization of the activities. This weighting
of the activities prevents an overlapping of calculated events at certain
times. Fig. 3 illustrates the program flow, including prioritization, after
which the activities are transferred to the event matrix. The departure and
arrival times for work each day are determined on the basis of core times,
such as start and end of work, including an automatic spread of +-1.5 h by
using a normal distribution. For each of the four possible activities, a travel

Figure 3: User interface of mobility behaviour

short trips on sick days
work
work on the exception day
periodic events
shopping on days off

leisure trips on days off

distance’ will be. specified yvhen constructing the mobility behav'iour. An going out Friday and Saturday
automatic doubling of the distance ensures that outward and return journeys

are takep into account dur.ing batte.ry. Flischargq. The speciﬁcatigp of a going out during the week
probability of weekly leisure activities consider the probability of

occurrence of the event. Irregular leisure activities of the user include the leisure trip on Sunday

frequency and duration of the activity as information. As a result, a vector

in five-minutes resolution is generated for the year (in order to match the Figure 2: Prioritization of
building load) consisting of zeros (EV not at home) and ones (EV at home) activities

only to indicate the EV’s availability for charging at home.
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2.2 Load profile generation

The second part of the simulation includes the creation of a charging
profile for the selected vehicle based on the previously determined
mobility behaviour and distance profile. Fig. 4 shows the user
interface of the tool as well as the setting options for the user. The
user interface is divided into two sections, which serve to configure
the charging process and the preferred vehicle. First, the maximum
charging power is set as a representation of the household
infrastructure for the charging processes. The actual charging power
used in the calculation can be set in the “Load curve shape” drop-
down menu, as shown in Fig. 5. It is possible to choose between a
constant maximum charging power, a real charging curve [11] or a
user-defined charging curve with individual shaping and adaptation.
The second section allows to specify the individual charging
behaviour to describe the user's behaviour as realistically as
possible. As visualised in Fig. 6, the probability of a charging
process is divided into four different levels and depends on the
current state of charge. Irrespective of this setting, a charging
process always takes place if the battery charge would not be
sufficient for the next determined journey. This requirement is
intended to refute the “range anxiety” and ensures that the route
destinations can be reached safely. If the calculation results in an
energy level that is too low to cover the next required distance, the
lack of energy is noted.

Shape Characteristic

Electric Combustion Engine
Car Classification Subcompact v

Charging Parameter

Charging Power [kW)] 37 n
Load curve shape Rectangular b4 n
Charging
Behavior User Always hd n
Chance the EV is
charged on trip [%6] 25 u
Electricity Price [€/kWh]
at home 0.2913 -
on trip 0.35 2
Car Parameter
Vehicle Type M1_BMWIE v n

adjust consumption n
Leasing = % Purchase

_7| show carbon emission, production & transport n

Figure 4: User interface of load profile
generation
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fo6 208
% z
04 3 0.4
e
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State of Charge [%]

Figure 5: Load curve shape

State of Charge [%]

Figure 6: Charging behaviour

In addition to the charging option at home, the option of specifying a charging probability on the trip is also
integrated. This modulation considers a loading process shortly before arrival or after departure. The battery
model is kept simple, charging and discharging behaviour are restricted to a state of charge (SOC) range of
10% < SOC < 95% [12] (DOD = 85%). The model does not account for self-discharge losses or other non-
linearities such as C-rate dependencies [13]. The configuration of the user’s vehicle takes place via real
deposited vehicles or the definition of an own vehicle. In order to achieve a relevant comparison in the
balancing process, the user can choose between conventional and electric vehicles, along with the
determination of a charging strategy. A further subdivision is made on the basis of three vehicle

classifications:

1) Subcompact
2) Compact
3) Full-size
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Furthermore, the wuser can adjust the
consumption individually. As shown in Fig. 7,
the vehicles’ consumption can be adapted by
setting options for driving behaviour, outside
temperature and driving area. The resulting
factor, which is multiplied on the pre-set
consumption, is indicated to the right in
percent.

The modelling of the load profile is based on
the user's parameter settings, i.e. vehicle type
and charging strategy, and the previously
determined reconstruction of the mobility
behaviour, which provides the information on

a) driving style

rather sporty

ather calm
oY (+40%)

(-10%)

b) driving area

rather overland
(+40%)

rather urban
(-10%)

D user defined
J rather hot
(+20%)
i
-10°C +10°C 30°C

The EV's energy consumption as specified by the
manufacturer is adapted by:

c) average ambient temperature

rather cool
(+30%)

Figure 7: Adjusted consumption

0%

0%

0%

0%

the vehicle position and the distances taken.
At the start, the assumption is made that the vehicle is at home with a fully charged battery.

2.3 Ecological and economic balancing

The final step of the simulation balances the user’s modelled mobility and charging behaviour from an
ecological and economic point of view. The previously determined route requirements, the user's choice of
vehicle and the load flow serve as a basis. The modelled mobility behaviour remains constant over the period
under review.

2.3.1 Life cycle assessment

The life cycle assessment [14] considered in the context of this work, primarily deals with climate-relevant
carbon dioxide emissions (CO2). Air pollutants and resources are not part of this study. However, in order to
fully assess the environmental performance of different propulsion technologies, an analysis of the entire life
cycle is required. This so-called life cycle assessment takes all emissions into account - from raw material
production, manufacturing, operation and maintenance up to the disposal of a vehicle. The determination of
CO2 emissions during the use phase is based on the previously modelled mobility and charging behaviour of
the user. The CO2 emissions generated by production, including recycling, are categorised by vehicle class
and depend on the total capacity of the battery. Tab. 1 contains the subdivision and sources of the data basis
determining the CO2 balance. The following equation is used to determine the total CO2 emissions:

EMpan =25 " (ip” + ipar” + el + ifuct + ioen ()
E Mz"),a‘n: CO2 emission for driving profile p and propulsion a in period under review n [kg]
ifjﬁl’y : vehicle production and recycling CO2 emission using propulsion a [kg]
if;ft‘y : battery production and recycling CO2 emission using propulsion a [kg]
ifl’g'cy : CO2 emission from electricity supply for driving profile p and propulsion a in year y [kg]
iﬁfe’ly : CO2 emission from fuel supply for driving profile p and propulsion a in year y [kg]
ifﬁl‘y : CO2 emission from exhaust for driving profile p and propulsion a in year y [kg]

Table 1: Data basis for determining climate relevant emissions

Source

production incl. recycling Institute for Energy and Environmental Research Heidelberg [15]

fuel supply (Well-to-Tank) Joint Research Centre-EUCAR-CONCAWE [16]
power supply

Tank-to-Wheel

Umweltbundestamt (Federal Environment Agency) [17]
ADAC EcoTest [18]
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2.3.2 Total Cost of Ownership

In order to compare the costs of battery-electric and combustion-engine vehicles, it is advisable to consider
the overall costs. Therefore, all costs of use over the entire holding period of the vehicle have to be taken into
account as precisely as possible. While an electric vehicle often has higher investment costs than its
conventional counterpart, it can have considerably lower operating costs. The applied Total Cost of
Ownership (TCO) [19] model considers all relevant cost parameters during the vehicle holding period. The
holding period must be specified by the user in the user interface. The considered economic input parameters
for conventional and electric vehicle variants are listed in Tab. 2 and deal with the following fixed and
variable cost parameters:

Table 2: Cost parameters of Total Cost of Ownership

Capex Opex

purchase price fuel/energy cost

tax depreciation vehicle tax, insurance, costs for main/exhaust emission test
residual value at end of holding period costs for vehicle maintenance and services

charging infrastructure costs costs for services/maintenance of charging infrastructure

The following equation is used to determine the total operating costs:
J o ynty.pay DAY
TCOp,a,n - Zy (]capex +]opex (2)

TCO! discounted TCO for driving profile p and propulsion a in period under review n [€]

p.an:

jf(ﬁ,’zx: discounted annual investment j¢qpey for driving profile p with propulsion a in year y [€]
jgi;g discounted annual operating costs j,pe, for driving profile p with propulsion a in year y [€]

In order to establish comparability between the expenses, all incoming costs were discounted to the total cost
calculation for the year under review. The probable development of energy prices according to the energy
reference prediction are included.

3 Case study

In the following, an example scenario is used for the validation and entered into the user interface in order to
illustrate the opportunities and results that can be achieved with the tool. The mobility behaviour is mapped
by a standard commuter whose mobility behaviour is shown in Tab. 3. The route information is based on the
mobility behaviour MIB 2008 [20]. As previously explained in Chapter two, a distinction is automatically
made between two working distances when generating the distance profile. For the first scenario the one-
way distance to work is 10 km. To investigate the effects of the commute on the load curve, a second distance
of 30 km is simulated. The two scenarios are described below with “distance 1” and “distance 2.

The focus is on charging at home, therefore 3,7 kW is selected as the charging power. Some studies also
discuss a charging capacity of 7,4 kW or 11 kW, but a peak power of up to 3,7 kW is recommended by the
authors of this paper and considered sufficient for charging at home [21]. Tab. 4 shows the electric (BEV)
and conventional (ICE) vehicles used for the exemplary balancing of mobility behaviour. In order to enable
a direct comparison, the VW e-Golf and a petrol-driven Golf were investigated and compared. The
manufacturer's guarantee for the battery is 160.000 km or eight years [22]. In this case study the observation
period is exactly eight years, so all CO2 emissions resulting from production and recycling are balanced.
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Table 3: Input parameters for mobility behaviour

Table 4: Data set for charging infrastructure, BEV

and ICE

Mobility Behaviour | Assumption | Parameters
Calendric Parameters Load Profile
Year 2014 Charging Power 3,7kW
National holidays German Load curve shape Real
Individual vacations 20.03 15:00 - 28.03 15:00, Charging Behaviour User  Always

08.08 14:00 - 16.08 11:00 EV is charged on trip 25 %
Sick Days 10 Electricity Price at home 0,29 €/kWh
Period under Review 8 years Electricity Price on trip 0,35 €/kWh
Number of Profiles 1 BEV
Regular Working Days & Hours Name VW e-Golf
Work Mo-Fr, 6:00-14:00 Usable Capacity 35,6 kWh
One-way Distance 1) 10km  2) 30 km Consumption 12,7 kWh/100km
Periodic Activities ICE
Attendance 90 % Name VW Golf, Petrol
Point in time Tuesday, 18:00-20:00 Consumption 5,91/100km
One-way Distance 3 km direct CO2-emission 141 g/km

Evening Activities

On workdays 2x per Week, 2h
On non-working days Ix per Week, 4h
One-way Distance 6,9 km

Other Leisure Activities

Shopping Ix per Week, 2h
One-way Distance 4,5 km

Trip 1x per Week, 3h
One-way Distance 80 km

4  Simulation results

After entering all parameters into the user interface and a subsequent start command, the Load Profile
Generator calculates the mobility behaviour, the charging strategy as well as the balancing of the user. All
results are automatically presented in a clear and understandable way in tables and diagrams. Furthermore, it
is possible to view explicit times of the simulated year in detail by using the zoom-in function. In the
presentation of the results of the example scenario, the first working week of the simulated year 2014 is
explicitly depicted. Fig. 8 illustrates the generated mobility behaviour from 6 January to 13 January in 2014
and provides information on the status of the user and the location of the car.

Day of the Year

Visualisation of the Mobility Behaviour

Figure 8: Generated mobility behaviour

Leisure

4 @Home

en route without EV

En route with EV
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The resulting route profile achieves a total mileage for the simulated year 2014 of

e distance 1: 9570 km
e distance 2: 19370 km.

Based on the route profile, the next step is to develop a charging strategy for the consumer. Fig. 9 outlines
the resulting charging and SOC curves of the charging strategy developed for the electric vehicle. All targets
of the reconstructed mobility task are safely achieved. The peak load for both distances is 3,55 kW. The
capacity of the vehicle battery is sufficient for all calculated routes and there is no lack of energy at any time.
The minimum state-of-charge level is 58 % for distance 1 and 28 % for distance 2 and therefore never falls
below the defined boundary of 10% in the example scenario.

Load Profile Electic Vehicle (VWe-Golf)
T T |

4 *'7 I [ |
L L L | distance 1
L l | I | | distance 2 i
= 3 EV not at home
4
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g =
1+ \ \ \ —
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0= T L B — B — — | ‘
Jan 08 Jan 07 Jan 08 Jan 09 Jan 10 Jan 11 Jan 12 Jan 13
2014
] SOC development over time (VWe-Golf)
= - _— = ] e ] _— distance 1
X o0.8 e A T 7 e distance 2 |
o / / / 4 EV not at home
o /
© 0.6 _
L
[&]
%5 0.4 -
]
g 0.2 —
0
Jan 06 Jan 07 Jan 08 Jan 09 Jan 10 Jan 11 Jan 12 Jan 13

2014
Figure 9: Generated load profile and SOC (06.01.2014 - 13.01.2014)

To provide the user a better overview of his charging behaviour, the average load and start times of his
charging operations are listed. Fig. 10 illustrates the average load curve of the user's charging station over
one day. In addition, the total of 525 charging processes with a total energy demand of 1.771 kWh for distance
1 and 3.684 kWh for distance 2 are plotted. The load profile shows peak loads and a frequency of the start
time at 3 p.m., which is related to the arrival after work. The number of charging processes is the same for
both distances, as the electric vehicle is always connected to the charging station when it arrives at home.

Average Load (VWe-Golf) 25 Essential Charge Characteristics (VWe-Golf)

distance 1 @ distance 1
distance 2 | | @ distance 2

20

o =
® = [}
T T

electric pwoer in KW

o
>
charged energy amount in kWh

I
IS
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0 . h . . 0 . . h .
00:00 04:00 08:00 12:00 16:00 20:00 24:.00 00:00 04:00 08:00 12:00 16:00 20:00 24:.00
Hour of the day begin of the charging event

Figure 10: Overview of generated charging behaviour
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The following bar chart of mobility behaviour in Fig. 11 compares the absolute values over the observation
period in order to illustrate the ecological and economic consequences to the user. A comparison of different
electric models across vehicle classes shows, that the CO2 balance of an electric vehicle is determined in
particular by the high CO2 emissions from battery production and by the CO2 emissions from power supply.
Particularly electric models with high battery capacities and high power consumption have an unfavourable
CO2 balance. Only with the possible use of renewable energy, a clear improvement can be seen. Based on
the German electricity mix, CO2 emissions for the use of the BEV will amount to 0.104 kg/km for energy
supply in 2014. The economic comparison of the drive concepts shows higher purchase costs with lower
usage costs for the BEV. In general, a high annual mileage is an essential key to the economic efficiency of
electromobility.

'CO2 emission over period under review, production and recycling breakdown of the cost components

I A cquistion costs

[ Charging infrastructure
45000 - | [ Fixed costs

I Varizble costs

Energy costs
| I Fuel cost

CO2 emission in kg
costs in €
:

distance 1 distance 1 distance 2 distance 2 distance 1 distance 1 distance 2 distance 2
BEV ICE BEV ICE BEV ICE BEV ICE

Figure 11: Ecological and economic balance

Additionally, the tool offers the option of reading in several predefined user profiles and combining the
resulting load profiles. This option can be used, for example, in the layout of micro smart grids or car parks.
Fig. 12 shows the total load curve of 30 different user profiles with up to 11 kW per charging station. The
load profile reflects the resulting energy demand of 30 different mobility characteristics, from student to
manager. 21 charging stations offer an output of 3,7 kW and 9 stations 11 kW for charging the battery. For
this case study the maximum power requirement is up to 59 kW with a total installed power of 176,7 kW.

60 Load Profile Electric Vehicles
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Figure 12: Total load profile of 30 electric vehicles
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Compared to the annual peak load, a maximum output of 43 kW is achieved in the exemplary week. Thereby
Fig. 13 illustrates the load curve from Monday till Sunday in five-minutes resolution. Since this case study
is about home charging and standard commuters are considered, the load peaks are normally in the afternoon.
This example shows that the charging behaviour is not the same every day. On Thursday and Friday the

charged amount of energy is significantly lower.
60 Load Profile Electric Vehicles
‘ ‘ ‘Total Load (30 EVs) |
50 |- —
240 \ L |
IS l\ ﬁl b A
530 LA F)L { \’w . 1t B
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Figure 13: Total load profile of 30 electric vehicles (6.01.2014 - 13.01.2014)

5 Conclusion

To conclude, the charging profile generator can cope with two application goals. It enables the consumer to
perceive the opportunities and risks of electric mobility by directly balancing his personal mobility behaviour

from an

ecological and economic point of view. Additionally, the Load Profile Generator can be used to

determine the energy demand and load flow curve for the mobility sector, e.g. in micro smart grids. The
setting options of the tool aim for a realistic representation of the behaviour. In the following, two different
application possibilities are summarized: on the one hand the added value for the private user to verify, if an
electric vehicle will satisfy his mobility needs. On the other hand network operators and planners of charging
infrastructure can benefit from the load profile prediction for a whole vehicle fleet.

Profile for the private consumer

After entering the personal mobility behaviour and vehicle selection, the load profile generator
develops a charging strategy. The development of this charging strategy by means of a load flow
calculation shows the charging process for the considered year and aims to take away the consumer's
“range anxiety”. The final comparison between electric and conventional vehicles based on the
calculated mobility behaviour reflects the two most important success and decision factors when
choosing a vehicle: environmental friendliness and economy.

Today, electric vehicles are already more climate-friendly than comparable combustion-engine
vehicles. This also applies if vehicle production and the German electricity mix dominated by fossil
fuels are taken into account and real energy consumption is included in the calculations.
Profitability depends strongly on external factors such as the development of energy prices and of
the residual value of the vehicle. To act economically, electric vehicles have to be driven a lot in
order to amortize the higher purchase costs through lower consumption and maintenance costs. In
fact, the decision is strongly dependent on whether the driving profile can be mastered purely
electrically. With relatively even daily driving cycles and sufficient annual mileage, electric vehicles
are the most economical choice.

Profile for integration in the power sector

By defining different user profiles with mobility behaviour, vehicles and charging stations, the load
profile generator develops a load demand out of the sum of the individual profiles. The resulting
load profile can provide information for the dimensioning of neighbourhoods or multi-storey car
parks with regard to temporal power demands and load peaks. The possibility of generating
individual mobility needs of the individual users make it possible to estimate the load profile for a
specific case.
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