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Summary 

Nowadays, electromobility is an essential part of a continuing change in worldwide mobility. Users' attitudes 

towards electromobility are influenced essentially by the ability to adapt to their own personal mobility needs. 

The subjective assessment, whether an electric car could manage familiar routes, is highly decisive for the 

willingness to use electric vehicles [1]. Furthermore, increasing acceptance will lead to grid relevant load 

peaks through the parallel charging processes. To tackle both problems, i.e. overcoming user doubts and the 

prediction of the electric load, the Institute of Human Research of the University of Stuttgart developed the 

tool “Profile Generator for Electromobile Loads”1. It generates a charging profile based on the individual 

mobility behaviour of a private electric vehicle user. 
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1 Introduction and state of art 

In order to hold “the increase in the global average temperature to well below 2 °C above pre-industrial 

levels” [2] and reduce air pollution caused by the transport sector, an accelerated development of 

electromobility is indispensable. Apart from the potential of zero direct emissions, electric vehicles (EV) can 

balance the fluctuating generation of renewable energies and substitute one part of backup power plants and 

stationary storages. Thus electromobility is a key to the sustainable global transformation of the mobility and 

energy sector: more climate- and environmentally friendly, more resource-friendly and more efficient. In line 

with these potentials, the electric car market will accelerate to a mass market adoption in the next 10 to 20 

years [3]. Yet the acceptance and competitiveness of electromobility is greatly influenced by the availability 

of charging infrastructure, economic aspects and environmental benefits [4]. One of the most essential 

challenges for planning and designing charging stations is the integration of numerous stations in an existing 

energy system with a limited power supply, for example a residential parking garage with a multitude of 

parking spaces. To meet these challenges an individual load prediction for electric vehicles is required. For 

reconstructing energy needs and load profiles of electric vehicles two general methodologies are applied: on 

the one hand, historical or real data can be used [5–7], on the other hand, it is possible to simulate load flows 

with generic mobility behaviour of a selected user group. Valentine et. al. for example describes the vehicle 

usage and resulting energy demands by aggregate data; for example composed of census data and average 

trip distances [8]. Many simulation models use representative mobility data of conventional vehicles or 
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general mobility patterns. Thereby mobility studies, such as Mobility in Germany study (MiD), national 

survey on transport and travel (ENTD) for France, 2000 Census Transportation Planning Package (CTPP) 

for the US or the study of the Austrian Motorized Individual Mobility provide the databases to identify EV 

charging behaviour [9]. In the current state of research a variety of authors model EV charging load based on 

assumptions and simplifications, for example assuming a fixed percentage of EVs, adopting a rigid EV 

charging schedule, assigning a certain distance traveled per day or assuming a certain mileage and 

corresponding fixed amount of power consumption by each EV [10]. 

The present paper aims to address those shortcomings by developing a load profile generator for an individual 

user profile and deals with economic and ecological issues. The results of the charging profile tool make 

private customers turn away from the thought that the range of electric vehicles might not be sufficient to 

cover their own mobility behaviour adequately, by applying different charging strategies and electric 

vehicles. The resulting load curves are also incorporated into the planning of local energy grids and can be 

used for overall balancing. Network operators, fleet managers and other planning services, like engineering 

offices, can use this profile generator for load prediction concerning electromobility and developing 

sustainable energy concepts according to integrated energy design.  

This paper is structured as follows: Section II focuses on the methodology and introduces the main variables 

and general assumptions of the tool. The chapter is also intended to give an overview of the simulation 

process. Section III defines the case study for a selected user and a suitable electric vehicle, whereas Section 

IV shows the simulation results. Section V concludes the paper with an outlook and the major findings. 

2 Scientific approach and general assumptions 

The Load Profile Generator was developed to assist the consumer in choosing the optimal vehicle and 

determining the charging strategy based on his mobility characteristics. Therefore, the forecasting model is 

implemented in MATLAB and consists of three interactive building blocks. At first, the simulation generates 

a driving profile based on the user's input in the MATLAB app simulation interface. This profile includes the 

location of the vehicle, i.e. at home (available for charging) or at work, etc. (no charging possible), and the 

driving distances with a temporal resolution of five minutes over one year. Secondly, the simulation utilizes 

the location and route information of the user to manage the charging and calculate the resulting load profile. 

In this case, the generator considers the characteristics of the selected charging strategy and electric vehicle.  

 

Figure 1: Methodical structure and sequence of the Load Profile Generator 
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Subsequently, the users’ needs and the determined charging profile are balanced ecologically and 

economically in order to satisfy the individual mobility needs. To evaluate the results, a comparison with 

conventional vehicles is also possible. Fig. 1 reconstructs the schematic flow of the tool in which the left side 

represents the input parameters of the user interface. The right side shows the simulation steps and results. In 

order to support the user during personal input and to prevent misuse of the tool, general conditions for the 

parameters are predefined. Additional information and advice for optimal use can be viewed by pressing an 

information button. 

2.1 Mobility behaviour reconstruction 

The modelled mobility profile of privately used 

vehicles is generated from the information 

entered by the user in the app interface and can 

be determined exactly by a multitude of 

settings. Using normally distributed variables 

guarantees an individual profile despite 

identical input parameters by the user. Fig. 2 is 

an illustration of the user interface with 

individual input of the mobility behaviour of an 

exemplary user. The user interface is divided 

into six components, which generate the 

driving profile. The calendar parameters form 

the general framework for the selected year. 

Optionally, national holidays and personal 

holidays can be taken into account. The days of 

illness are automatically divided into three 

different periods of time and distributed 

randomly over the year. In addition, the choice 

of the number of profiles is also important (e.g. 

for fleets). For a single driving profile the tool 

automatically generates two different distances 

to the workplace (kmwork, kmwork+20 km) to 

investigate the influence of driving length. In 

order to allow different routes for leisure activities, the entered information 

is calculated by using a continuous equal distribution. At the beginning of 

the mobility behaviour simulation, the event matrix contains only the status 

that the vehicle is at home. The idea is that events are generated and written 

into the matrix one after another. The structure and the calculation of the 

mobility behaviour follows a prioritization of the activities. This weighting 

of the activities prevents an overlapping of calculated events at certain 

times. Fig. 3 illustrates the program flow, including prioritization, after 

which the activities are transferred to the event matrix. The departure and 

arrival times for work each day are determined on the basis of core times, 

such as start and end of work, including an automatic spread of +-1.5 h by 

using a normal distribution. For each of the four possible activities, a travel 

distance will be specified when constructing the mobility behaviour. An 

automatic doubling of the distance ensures that outward and return journeys 

are taken into account during battery discharge. The specification of a 

probability of weekly leisure activities consider the probability of 

occurrence of the event. Irregular leisure activities of the user include the 

frequency and duration of the activity as information. As a result, a vector 

in five-minutes resolution is generated for the year (in order to match the 

building load) consisting of zeros (EV not at home) and ones (EV at home) 

only to indicate the EV’s availability for charging at home. 

Figure 3: User interface of mobility behaviour 

short trips on sick days

work

work on the exception day

periodic events

shopping on days off

leisure trips on days off

going out Friday and Saturday

going out during the week

leisure trip on Sunday

Figure 2: Prioritization of 

activities 
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2.2 Load profile generation 

The second part of the simulation includes the creation of a charging 

profile for the selected vehicle based on the previously determined 

mobility behaviour and distance profile. Fig. 4 shows the user 

interface of the tool as well as the setting options for the user. The 

user interface is divided into two sections, which serve to configure 

the charging process and the preferred vehicle.  First, the maximum 

charging power is set as a representation of the household 

infrastructure for the charging processes. The actual charging power 

used in the calculation can be set in the “Load curve shape” drop-

down menu, as shown in Fig. 5. It is possible to choose between a 

constant maximum charging power, a real charging curve [11] or a 

user-defined charging curve with individual shaping and adaptation. 

The second section allows to specify the individual charging 

behaviour to describe the user's behaviour as realistically as 

possible. As visualised in Fig. 6, the probability of a charging 

process is divided into four different levels and depends on the 

current state of charge. Irrespective of this setting, a charging 

process always takes place if the battery charge would not be 

sufficient for the next determined journey. This requirement is 

intended to refute the “range anxiety” and ensures that the route 

destinations can be reached safely. If the calculation results in an 

energy level that is too low to cover the next required distance, the 

lack of energy is noted. 

 

 

 

 

 

 

 

 

 

 

In addition to the charging option at home, the option of specifying a charging probability on the trip is also 

integrated. This modulation considers a loading process shortly before arrival or after departure. The battery 

model is kept simple, charging and discharging behaviour are restricted to a state of charge (SOC) range of 

10% < SOC < 95% [12] (DOD = 85%). The model does not account for self-discharge losses or other non-

linearities such as C-rate dependencies [13]. The configuration of the user’s vehicle takes place via real 

deposited vehicles or the definition of an own vehicle. In order to achieve a relevant comparison in the 

balancing process, the user can choose between conventional and electric vehicles, along with the 

determination of a charging strategy. A further subdivision is made on the basis of three vehicle 

classifications: 

1) Subcompact   

2) Compact  

3) Full-size 

Figure 4: User interface of load profile 

generation 

Figure 5: Load curve shape Figure 6: Charging behaviour 
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Furthermore, the user can adjust the 

consumption individually. As shown in Fig. 7, 

the vehicles’ consumption can be adapted by 

setting options for driving behaviour, outside 

temperature and driving area. The resulting 

factor, which is multiplied on the pre-set 

consumption, is indicated to the right in 

percent.  

The modelling of the load profile is based on 

the user's parameter settings, i.e. vehicle type 

and charging strategy, and the previously 

determined reconstruction of the mobility 

behaviour, which provides the information on 

the vehicle position and the distances taken.  

At the start, the assumption is made that the vehicle is at home with a fully charged battery.  

2.3 Ecological and economic balancing 

The final step of the simulation balances the user’s modelled mobility and charging behaviour from an 

ecological and economic point of view. The previously determined route requirements, the user's choice of 

vehicle and the load flow serve as a basis. The modelled mobility behaviour remains constant over the period 

under review. 

2.3.1 Life cycle assessment 

The life cycle assessment [14] considered in the context of this work, primarily deals with climate-relevant 

carbon dioxide emissions (CO2). Air pollutants and resources are not part of this study. However, in order to 

fully assess the environmental performance of different propulsion technologies, an analysis of the entire life 

cycle is required. This so-called life cycle assessment takes all emissions into account - from raw material 

production, manufacturing, operation and maintenance up to the disposal of a vehicle. The determination of 

CO2 emissions during the use phase is based on the previously modelled mobility and charging behaviour of 

the user. The CO2 emissions generated by production, including recycling, are categorised by vehicle class 

and depend on the total capacity of the battery. Tab. 1 contains the subdivision and sources of the data basis 

determining the CO2 balance. The following equation is used to determine the total CO2 emissions: 

𝐸𝑀𝑝,𝑎,𝑛
𝑖 = ∑ (

𝑦+𝑛
𝑦 𝑖𝑣𝑒ℎ

𝑝,𝑎,𝑦
+ 𝑖𝑏𝑎𝑡

𝑝,𝑎,𝑦
+ 𝑖𝑒𝑙𝑒𝑐

𝑝,𝑎,𝑦
+ 𝑖𝑓𝑢𝑒𝑙

𝑝,𝑎,𝑦
+ 𝑖𝑒𝑥ℎ

𝑝,𝑎,𝑦
 )    (1) 

𝐸𝑀𝑝,𝑎,𝑛
𝑖 : CO2 emission for driving profile p and propulsion a in period under review n [kg] 

𝑖𝑣𝑒ℎ
𝑝,𝑎,𝑦

:  vehicle production and recycling CO2 emission using propulsion a [kg] 

𝑖𝑏𝑎𝑡
𝑝,𝑎,𝑦

:  battery production and recycling CO2 emission using propulsion a [kg] 

𝑖𝑒𝑙𝑒𝑐
𝑝,𝑎,𝑦

: CO2 emission from electricity supply for driving profile p and propulsion a in year y [kg] 

𝑖𝑓𝑢𝑒𝑙
𝑝,𝑎,𝑦

: CO2 emission from fuel supply for driving profile p and propulsion a in year y [kg] 

𝑖𝑒𝑥ℎ
𝑝,𝑎,𝑦

: CO2 emission from exhaust for driving profile p and propulsion a in year y [kg] 

Table 1: Data basis for determining climate relevant emissions 

 Source 

production incl. recycling Institute for Energy and Environmental Research Heidelberg [15]  

fuel supply (Well-to-Tank) Joint Research Centre-EUCAR-CONCAWE [16] 

power supply Umweltbundestamt (Federal Environment Agency) [17] 

Tank-to-Wheel ADAC EcoTest [18] 

Figure 7: Adjusted consumption 
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2.3.2 Total Cost of Ownership 

In order to compare the costs of battery-electric and combustion-engine vehicles, it is advisable to consider 

the overall costs. Therefore, all costs of use over the entire holding period of the vehicle have to be taken into 

account as precisely as possible. While an electric vehicle often has higher investment costs than its 

conventional counterpart, it can have considerably lower operating costs. The applied Total Cost of 

Ownership (TCO) [19] model considers all relevant cost parameters during the vehicle holding period. The 

holding period must be specified by the user in the user interface. The considered economic input parameters 

for conventional and electric vehicle variants are listed in Tab. 2 and deal with the following fixed and 

variable cost parameters: 

Table 2: Cost parameters of Total Cost of Ownership 

 

The following equation is used to determine the total operating costs: 

𝑇𝐶𝑂𝑝,𝑎,𝑛
𝑗

= ∑ (
𝑛+𝑦
𝑦 𝑗𝑐𝑎𝑝𝑒𝑥

𝑝,𝑎,𝑦
+ 𝑗𝑜𝑝𝑒𝑥

𝑝,𝑎,𝑦
)      (2) 

𝑇𝐶𝑂𝑝,𝑎,𝑛
𝑗

: discounted TCO for driving profile p and propulsion a in period under review n [€]  

𝑗𝑐𝑎𝑝𝑒𝑥
𝑝,𝑎,𝑦

:  discounted annual investment 𝑗𝑐𝑎𝑝𝑒𝑥 for driving profile p with propulsion a in year y [€] 

𝑗𝑜𝑝𝑒𝑥
𝑝,𝑎,𝑦

  discounted annual operating costs 𝑗𝑜𝑝𝑒𝑥 for driving profile p with propulsion a in year y [€] 

 

In order to establish comparability between the expenses, all incoming costs were discounted to the total cost 

calculation for the year under review. The probable development of energy prices according to the energy 

reference prediction are included. 

3 Case study 

In the following, an example scenario is used for the validation and entered into the user interface in order to 

illustrate the opportunities and results that can be achieved with the tool. The mobility behaviour is mapped 

by a standard commuter whose mobility behaviour is shown in Tab. 3. The route information is based on the 

mobility behaviour MIB 2008 [20]. As previously explained in Chapter two, a distinction is automatically 

made between two working distances when generating the distance profile. For the first scenario the one-

way distance to work is 10 km. To investigate the effects of the commute on the load curve, a second distance 

of 30 km is simulated. The two scenarios are described below with “distance 1” and “distance 2”.  

The focus is on charging at home, therefore 3,7 kW is selected as the charging power. Some studies also 

discuss a charging capacity of 7,4 kW or 11 kW, but a peak power of up to 3,7 kW is recommended by the 

authors of this paper and considered sufficient for charging at home [21]. Tab. 4 shows the electric (BEV) 

and conventional (ICE) vehicles used for the exemplary balancing of mobility behaviour. In order to enable 

a direct comparison, the VW e-Golf and a petrol-driven Golf were investigated and compared. The 

manufacturer's guarantee for the battery is 160.000 km or eight years [22]. In this case study the observation 

period is exactly eight years, so all CO2 emissions resulting from production and recycling are balanced.  

 

Capex Opex 

purchase price  fuel/energy cost 

tax depreciation vehicle tax, insurance, costs for main/exhaust emission test 

residual value at end of holding period costs for vehicle maintenance and services 

charging infrastructure costs  costs for services/maintenance of charging infrastructure 
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4 Simulation results 

After entering all parameters into the user interface and a subsequent start command, the Load Profile 

Generator calculates the mobility behaviour, the charging strategy as well as the balancing of the user. All 

results are automatically presented in a clear and understandable way in tables and diagrams. Furthermore, it 

is possible to view explicit times of the simulated year in detail by using the zoom-in function. In the 

presentation of the results of the example scenario, the first working week of the simulated year 2014 is 

explicitly depicted. Fig. 8 illustrates the generated mobility behaviour from 6 January to 13 January in 2014 

and provides information on the status of the user and the location of the car.  

 

 Parameters 

Load Profile  

Charging Power  3,7 kW 

Load curve shape Real 

Charging Behaviour User Always 

EV is charged on trip 25 % 

Electricity Price at home 0,29 €/kWh 

Electricity Price on trip 0,35 €/kWh 

BEV 

Name VW e-Golf 

Usable Capacity 35,6 kWh 

Consumption 12,7 kWh/100km 

ICE  

Name VW Golf, Petrol 

Consumption  5,9 l /100km 

direct CO2-emission 141 g/km 

Table 3: Input parameters for mobility behaviour              Table 4: Data set for charging infrastructure, BEV 

and ICE 

Mobility Behaviour Assumption 

Calendric Parameters 

Year  2014 

National holidays German 

Individual vacations 20.03 15:00 - 28.03 15:00, 

08.08 14:00 - 16.08 11:00 

Sick Days 10 

Period under Review 8 years 

Number of Profiles 1 

Regular Working Days & Hours 

Work Mo-Fr, 6:00-14:00 

One-way Distance 1) 10 km     2) 30 km 

Periodic Activities  

Attendance 90 % 

Point in time  Tuesday, 18:00-20:00 

One-way Distance 3 km  

Evening Activities  

On workdays 2x per Week, 2h 

On non-working days 1x per Week, 4h 

One-way Distance 6,9 km 

Other Leisure Activities 

Shopping 1x per Week, 2h 

One-way Distance 4,5 km 

Trip 1x per Week, 3h 

One-way Distance 80 km 

Figure 8: Generated mobility behaviour 
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The resulting route profile achieves a total mileage for the simulated year 2014 of 

 distance 1:  9570 km 

 distance 2: 19370 km. 

Based on the route profile, the next step is to develop a charging strategy for the consumer. Fig. 9 outlines 

the resulting charging and SOC curves of the charging strategy developed for the electric vehicle. All targets 

of the reconstructed mobility task are safely achieved. The peak load for both distances is 3,55 kW. The 

capacity of the vehicle battery is sufficient for all calculated routes and there is no lack of energy at any time. 

The minimum state-of-charge level is 58 % for distance 1 and 28 % for distance 2 and therefore never falls 

below the defined boundary of 10% in the example scenario. 

 

To provide the user a better overview of his charging behaviour, the average load and start times of his 

charging operations are listed. Fig. 10 illustrates the average load curve of the user's charging station over 

one day. In addition, the total of 525 charging processes with a total energy demand of 1.771 kWh for distance 

1 and 3.684 kWh for distance 2 are plotted. The load profile shows peak loads and a frequency of the start 

time at 3 p.m., which is related to the arrival after work. The number of charging processes is the same for 

both distances, as the electric vehicle is always connected to the charging station when it arrives at home. 

Figure 9: Generated load profile and SOC (06.01.2014 - 13.01.2014) 

Figure 10: Overview of generated charging behaviour 
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The following bar chart of mobility behaviour in Fig. 11 compares the absolute values over the observation 

period in order to illustrate the ecological and economic consequences to the user. A comparison of different 

electric models across vehicle classes shows, that the CO2 balance of an electric vehicle is determined in 

particular by the high CO2 emissions from battery production and by the CO2 emissions from power supply. 

Particularly electric models with high battery capacities and high power consumption have an unfavourable 

CO2 balance. Only with the possible use of renewable energy, a clear improvement can be seen. Based on 

the German electricity mix, CO2 emissions for the use of the BEV will amount to 0.104 kg/km for energy 

supply in 2014. The economic comparison of the drive concepts shows higher purchase costs with lower 

usage costs for the BEV. In general, a high annual mileage is an essential key to the economic efficiency of 

electromobility. 

 

Additionally, the tool offers the option of reading in several predefined user profiles and combining the 

resulting load profiles. This option can be used, for example, in the layout of micro smart grids or car parks. 

Fig. 12 shows the total load curve of 30 different user profiles with up to 11 kW per charging station. The 

load profile reflects the resulting energy demand of 30 different mobility characteristics, from student to 

manager. 21 charging stations offer an output of 3,7 kW and 9 stations 11 kW for charging the battery. For 

this case study the maximum power requirement is up to 59 kW with a total installed power of 176,7 kW. 

 

Figure 11: Ecological and economic balance 

Figure 12: Total load profile of 30 electric vehicles 
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Compared to the annual peak load, a maximum output of 43 kW is achieved in the exemplary week. Thereby 

Fig. 13 illustrates the load curve from Monday till Sunday in five-minutes resolution. Since this case study 

is about home charging and standard commuters are considered, the load peaks are normally in the afternoon. 

This example shows that the charging behaviour is not the same every day. On Thursday and Friday the 

charged amount of energy is significantly lower. 

5 Conclusion 

To conclude, the charging profile generator can cope with two application goals. It enables the consumer to 

perceive the opportunities and risks of electric mobility by directly balancing his personal mobility behaviour 

from an ecological and economic point of view. Additionally, the Load Profile Generator can be used to 

determine the energy demand and load flow curve for the mobility sector, e.g. in micro smart grids. The 

setting options of the tool aim for a realistic representation of the behaviour. In the following, two different 

application possibilities are summarized: on the one hand the added value for the private user to verify, if an 

electric vehicle will satisfy his mobility needs. On the other hand network operators and planners of charging 

infrastructure can benefit from the load profile prediction for a whole vehicle fleet. 

 Profile for the private consumer 

After entering the personal mobility behaviour and vehicle selection, the load profile generator 

develops a charging strategy. The development of this charging strategy by means of a load flow 

calculation shows the charging process for the considered year and aims to take away the consumer's 

“range anxiety”. The final comparison between electric and conventional vehicles based on the 

calculated mobility behaviour reflects the two most important success and decision factors when 

choosing a vehicle: environmental friendliness and economy.  

Today, electric vehicles are already more climate-friendly than comparable combustion-engine 

vehicles. This also applies if vehicle production and the German electricity mix dominated by fossil 

fuels are taken into account and real energy consumption is included in the calculations. 

Profitability depends strongly on external factors such as the development of energy prices and of 

the residual value of the vehicle. To act economically, electric vehicles have to be driven a lot in 

order to amortize the higher purchase costs through lower consumption and maintenance costs. In 

fact, the decision is strongly dependent on whether the driving profile can be mastered purely 

electrically. With relatively even daily driving cycles and sufficient annual mileage, electric vehicles 

are the most economical choice. 

 

 Profile for integration in the power sector 

By defining different user profiles with mobility behaviour, vehicles and charging stations, the load 

profile generator develops a load demand out of the sum of the individual profiles. The resulting 

load profile can provide information for the dimensioning of neighbourhoods or multi-storey car 

parks with regard to temporal power demands and load peaks. The possibility of generating 

individual mobility needs of the individual users make it possible to estimate the load profile for a 

specific case. 

Figure 13: Total load profile of 30 electric vehicles (6.01.2014 - 13.01.2014) 
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