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Abstract

Electrochemical physics-based models are developed fieffundamental electromechanical equations
that describe cell behavior.€., full-order model) and therefore, allow detailed underdtag of inter-
nal cell variables. The greatest challenge in using phsced models stems from their computa-
tional complexity. To make a feasible physics-based mantebattery management, we must construct
reduced-order approximations of lithium-ion battery cithamics. We present a method to find a high-
fidelity discrete-time state-space reduced-order mod®eMIRthat approximates infinite order transcen-
dental electrochemical transfer functions of all eledternical variables of interest.

Thus, for practical use, physics-based models based onténfirder transcendental electrochemical
transfer functions need to be approximated using low-ondedels that capture their most significant
dynamics. Here, we present thagrange-interpolated realization algorithm (LRA), which is a method
that accurately approximates the actual continuous-tifieite-order electrochemical transfer function
frequency response using a continuous-time high-ordeeh{etDM). Then, the continuous-time HOM
is discretized and reduced using balanced technjgezgrating a reduced-order model (ROM) of order
n.

Keywords: battery, lithium battery, battery model, BMS (Battery Management System).

1 Introduction

Electrochemical models are required to accurately desalitihe important internal dynamics that occur
when lithium-ion cells are being operated under differesmiditions. The full-order model of lithium-
ion cells consists of four coupled partial differential atjons and one algebraic equation. The partial
differential equations that govern the full-order modes@aifrom the fundamental principles of charge
and mass conservation of the solid and electrolyte magariahe cell. The algebraic equation models
the lithium flux from the solid to the electrolyte material. skt of full-order model (FOM) equations
based on the original works [2, 3] describing lithium-ionlgéaving single-material ne?atlve and pos-
itive electrodes is thoroughly derived in [6]. Furthermolithium-ion cells having multiple-material
electrodes are developed in [1].

The Doyle-Fuller-Newman (DFN) lithium-ion battery modsltbo complex to be used in an embedded
battery-management system. To make a feasible physiestimasdel for battery management, various
melﬂltl&ods are proposed in the literature to construct redamel approximations of lithium-ion battery
cell dynamics.
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We prefer methods based on finding transfer functions ofedtechemical variables of interest and then
converting these transfer functions into low-order higtelity discrete-time state-space approximate
models. Physics-based models based on infinite order sadental electrochemical transfer functions
(i.e., they cannot be expressed as a ratio of polynomials) ardagmakin [9, 5, 7]. Thus, for practical
use, these systems need to be approximated using low-owllsnthat capture their most significant
dynamics. This paper proposes a novel model-order redutgithnique whose objective is to generate
reduced-order models from the infinite-order electrocleairtransfer functions.

The technique presented will provide a reduced-order elisdime state-space model of the form

z[k + 1] = Az[k] + Bulk] 1)
y[k] = Cx[k] + Dulk] )

where the states of the system are represented[ljyc R"*!, the input byu[k] € R™*! and the
output byy[k] € R?<!. Note thatn corresponds to the order of the modelto the number of inputs
and g to the number of outputs. Furthermore, the state-spacdaestdimensions arel € R™*",

B € R™™ (C ¢ R?™ and the direct feed-through term € R%*!. The inputu[k] will correspond to
the current applied to the ceil.§., u[k] = iapp/k] andm = 1) and the linear outputs will correspond to
the electrochemical variables of interest.

2 Solving for the state-space A matrix

In order to have consistent physics-based reduced-orddels)cstate-space matrices are forced to have
a certain structure. The state-spacenatrix is diagonal, where the diagonal elements are sorted f
smallest to largest and correspond to the el?envalues dglydtem. Hence, the diagonal elementg\of
must be less than 1 in magnitude and be real for the disdretestystem to be stable and non oscillatory.

That is,
ag 0 0 0 0
0 aa 0 0 0
A=10 o0 0 0
0 0 0 a, O
0 0 0 0 1

where|a;| < 1V i € [1...n] for a stable model; € RV i € [1...n] for a non-oscillatory system and
a1 < as < ... < an. Notice that we add an integrator staite.( unity eigenvalue) to be able to compute
state-of-charge and also add any integrator pole transfietibns might have.

The Lagrange-interpolated realization algorithm (LRA) is a realization procedure that approximates
the actual infinite-order transfer function frequency e using a continuous-time high-order model
(HOM). The continuous-time HOM is discretized and reducsithg balanced techniguegenerating a
reduced-order model (ROM) of order

A single-input single-output continuous-time rationartsfer function of order, has the form

T (s) bﬁflsﬁ_l + -+ bis+ by
s) = — =
1 s+ ap_18" 1 4+ +ais + ag

+ dp 3)

whered, corresponds to the direct feedthrough term and the coeftgig andb; fori € [0...7n — 1]
will determine the pole and zero locations of the transfacfion. Notice we can accurately approximate
any given transfer functiot,(s) (even infinite-order transfer function) by using Lagrangetipolation.
The Lagrange interpolation approach consists of estigatiiues between known data points. In fre-
quency domain, we would lik& ,(s) = G,(s) at different frequency points. Thatis,H ;(s;) = G4(s;)
fori € [1...n] wheren corresponds to the transfer function order. Note that we Bavdegrees of
freedom corresponding to the numberacdindb coefficients to be estimated. However, we only gse
different frequency points in order to obtain real valueéftioients since the othet points will corre-
spond to their negative frequencies, thatis,(s;) = G4(s;) andH ,(—s;) = G4(—s;). Therefore, we
need to solve an system of equations to determine the coefficienédb from Eqg. (3). The system of
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eqguations to be solved looks like

bﬁ_ls?_l + -+ blSl + bo

Gq(s1) = — — +d
a(s1) sT 4+ ap 18" - Fagsy + ag 0
b*_l(—sl)ﬁil + -+ bl(—Sl) + bg
G, (—s1) = il _ +d
o(=s1) (=s1)" +ap—1(=s1)" 1+ -+ ai(—s1) + ao 0
bio1sy P+ +bisa+ b
Gyls2) = —7 159 s 152 + 0p 4 dy
s§ +ap—18y ~ +---+ais2+ag
b*_l(—SQ)ﬁil 4+ bl(—SQ) + bg
Gy(—s2) = L — +d
o(=52) (—s2)" +an_1(—s2)" T+ - +ai(—s2) +ag
b-_ vl s+ b
Gysn) = —20 15p ﬁ_+1 + 0187 + bo + dg
Spt+ap—185;  +---+aisp+ap
ba_1(—si)" 1+ -+ bi(—sp) + b
G —sn) = i-1(=8a)" "1+ -+ bi(=sa) + bo dy

(=8a)" + an—1(=sa)"1 4+ -+ + a1(—sz) + ao

where large order will produce a very accurate approximation@jf(s). However, as: increases, the
computational requirements to solve the lifesystem of equations also increase.

Once we have obtained a high-order continuous-time rdtiwaasfer functionH ,(s) that accurately
approximates the true (infinite-order) frequency respongecan easily convert it to state-space repre-
sentation €.9., usingt f 2ss. min Matlab), that is,H ,(s) = C,(sI; — A4,)B, + D,. Further, for our
application, we expecdl, to have real, stable poles, which is not guaranteed by theadets presented
so far. So, we elect to replace unstable polesijnby their reciprocals (maintaining the magnitude
response) and complex poles by their magnitudes (largeigtaiaing the magnitude response). In ad-
dition, we setB, = 1,,x1 and we also re-compute the state-sp@gamatrix using the method described

in Section 4.

Notice that the approach explained above is valid for SIS€desys only and therefore, need to be ex-
tended to SIMO systems. Since we are only interested in a approximationi ., we do not care
about the model order), we can easily extend the approatie t8§IMO case by assembling the different

SISO high-order models. That is,

A 0 0 0

_ 0 A, 0 0

A= : ; ; 4)
0 0 .0
|0 0 0 4,
C, 0 .0

_ 0 Cy 0 0

C= . ; s (5)
0 0 " 0 _:
(0 0 0 C, D,

where the state-space matricés, B, C, and D, correspond to the continuous-time HOM approxi-

mation the transfer functiog. Thus, theA, B, C' and D matrices estimate a total gfcontinuous-time
transfer functions. Then, the continuous-time state-spaadel can be discretized with a given sampling

1 . _ br_1s) T4 dbisitbo .
Notice that  Gg(si) = - T + do can be written as
sittap_1s; +---+ay1s;+ag

(Gq(si) — do) (8? + an—18?71 + - +aisi + ao) = bn—18?71 + -+ bisi +bo
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time T by computing the discrete-time state-space matrices as

Ag = exp (ZTS) (6)
B,=4 '(A4; - I,)B @)
Cy=C (8)
Dy=D (9)

where the subscrit refers to discrete-time matrices aftlz) = Cy(zI; — Ag)Bg + Dy.
The next step is to perform a balanced model order reductiohtf the discrete-time high-order model

H(z) in order to obtain the final discrete-time reduced-order eh&dmatrix of a given orden.
To summarize the LRA method:

1. Approximate the actual continuous-time frequency respér,(s) using a rational continuous-
time high-order modeH ,(s) via solving G,(s;) = Hy(s;) andG,(—s;) = H,(—s;) fori €
[1...7].

2. Repeat Step 1 for each transfer function to be estimateeh,Tassemble the individual high-order

models via Egs. (4) and (5) to build (s). Further, replace unstable polesArby their reciprocals
(maintaining the magnitude response) and complex polelsdiyragnitudes (largely maintaining

the magnitude res_Bons_e). In addition, Bet 1,1 and re-compute the state-spacenatrix using
the method described in Section 4.

3. Discretize the rational high-order mod#l(s) to obtain a discrete-time high-order modé| z)
via Egs. (6) to (9).

4. Perform a balanced realization of the discrete-time H@K4) to obtain the discrete-time state-
spaceA matrix.

3 Solving for the state-space B matrix

TheB matrix is forced to be a column vector of ones. That is,

4 Solving for the state-space C matrix

The structure of the output matr which determines the contribution of each of the stateSamttput

IS
ci1 ci2 -+ Cip resg
o Col Cy2 1+ Cop re:$ (10)
Cql Cq2 " Cqn re%

whereq corresponds to the number of outputs, or in other words, tingber of electrochemical transfer
functions to be estimatea, corresponds to the model order and*resrresponds to the residue of the
integrator pole, which is computed as

res’ = lim sG(s).

s—0

Then, electrochemical transfer functions with integratole can be expressed as:

[G(s)]" = G(s) —res/s
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where[G(s)]" corresponds to the electrochemical transfer function thighintegrator pole removed;(s)
corresponds to the original transfer function and fesorresponds to the integrator pole. Notice that
res’ = 0 if the original transfer function does not have any integrgole.

This section introduces an optimal approach to solve foXktate-space matrix using least squares that
ensures the dc gain of the reduced-order model agrees withictial dc gain of the transfer functions.
Recall that theB matrix is a column vector of ones as described in Section 3tla@d matrix can be
found analytically as explained in Section 5.

When solving for theC matrix, we desire to minimize the squares of the errors betviee actual and
approximate frequency responses while enforcing that thgath of the approximated system exactly
mat;[che_s the dcdgain of the actual system. To do so, we forenalednstrained optimization cost function
to be minimized as

N
J = |G(wi) — H(wp)ll3 + AT (G(0) — H(0))
k=1
whereG corresponds to the actual frequency responserandrresponds to the low-order approximation

of G. For simplicity, we computé(w;,) = G(e/“¥Ts) — D and H (wy,) = C(e?+Ts] — A)71B. Let
M (wy) = (/T — A)~'B; then,H (wy,) = CM (wy) and

N

J= {Z [G(wr) — H(w)]" [Gwr) — H(Wk)]}

k=1
+ AT (G(0) — H(0))

N
) {Z T G () Gleoy)] — Tr [Geon) M () O
k=1

— Tr [CM (wi)G* (wi)] + Tr [CM (wp,) M* (wy,)CT] }

+ Tr [(G(0) — CM(0)) AT].

Taking derivatives off with respect to\ andC gives

aJ
U G(0)—-CM(©0)=0
o.J N N
GeT = ~2 2 RIGM (@] +20 3R (MM (o)
My Mo
—AMT(0)=o.
'_I[Lans_,posing and combining into one matrix equation, weestite following forC using least squares.
atis,
oM —M(0) cT 1 [ 2Mmf (11)
M7T(0) 0 AT GT(0)

In summary, using the approach presented in this sectiowaweompute th€ matrix that minimizes

the squares of the errors between the actual and approxirfratfuency responses while enforcing that
the dc gain of the approximated system exactly matches tigaidoof the actual system.

!\Ioéice(tlhéa)t we need to augment the obtai@aahatrix in order to add back the integrator residues as seen
in Eq. :

5 Solving for the state-space D matrix

The D matrix (or the direct feedthrough term) models the instaetas change in outputk] when
the system is excited with inputk]. In this case, th® matrix can be found in closed-form since the
electrochemical transfer functions are analytical. That i

T
D = [hm Gi(s), Sli)rglo Ga(s), ..., Slggo Gq(s)] . (12)

5§—00
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6 Results

This section presents the performance of lthgrange-interpolated realization algorithm (LRA). The
discrete-time reduced-order models generated using tifehaRe been assumed to have ordet 6
andT, = 1s. In addition, the examples shown estimate a total of 2Xktearfunctions, corresponding
to:

[Coe(@, 2)]" [ Tapp(z)  atz =1[0,1,2,3]
J(Z,2)/ lapp(z) @tz =[0,1,2,3]

[@0(Z, 2)]" /Tapp(z) @tz =1[0,1,2,3]
D (T, 2)/Iapp(z) atz =[1,2,3]
(7, 2) / Tappl) [1,2]

Ce(Z, 2)/Iapp(z) atz =][0,1,2,3]

wherez = 0 corresponds to the negative-electroce current collegter,1 to the negative-electrode/separator
boundary,z = 2 to the separator/positive-electrode boundary and 3 to the positive-electrode cur-

rent collector. The structure of these electrochemicalsfier functions are shown in [8] and the cell
parameters used are listed in Table 1 in the Appendix.

Recall that since reduced-order models provide the lineimates of the electrochemical variables,
nonlinear corrections need to be added back to the linegutsutThat is,

e The linear output of the reduced-order moglélr, ) is the approximation to the true reaction flux.
That is, no additional correction is needed.

z

z) atx =

e The solid-surface concentration estimate is computed bingdhe initial solid concentratiod,
to the linear output, . (z,t). Thatis,c} ,(z,t) = & .(Z,t) + ¢ .

e The phase-potential difference variable can be computgfl 4%, t) = ¢5%(z, t)+Ugep(€5 avg(t))

Whereég’.“;(f,t) refers to the linear output of the phase-potential diffeeevariable with the in-
tegrator dynamics removed anfl,,(?) corresponds to the negative-electrode average solid con-
centration.

e In the negative-electrodey?(0,¢) = 0, because it is our reference and therefgf0, t) = veel.
Henceg?(z, ) corresponds to the linear output of the state-space mauh4z, t) = ¢85 (z, 1)+
veell(t), Wheregb(z, t) also corresponds to the linear output of the solid potential

e The electrolyte potential variable is computed/86z, t) = ¢f(z, t) — ¢ae(0, ) — Ubtp(cl ayg(t))

where ¢ (z,t) corresponds to the linear output of the electrolyte paaéndizs(z,t) refers to
the linear output of the negative-electrode phase-patediiference variable with the integrator
dynamics removed and , () corresponds to the negative-electrode average solid otaten.

e The actual electrolyte concentration estimate is compasefi(z,t) = ¢, (z,t) + c.,0 Wherec o
corresponds to the initial electrolyte concentration &rid, ¢) corresponds to the linear output of
the electrolyte concentration.

e The voltage of the cell is computed by combining differemicélochemical variables. That is,
veell(t) = (1°(0,£) — n"(0,1)) + (42(0, 1) — ¢2(0,1))
+ (U(F))Cp(ov t) U(?Cp(o t)) + F (Rﬂlm] ( ) - Rf?lmjn(ov t)) (13)

where if we assume that the charge-transfer coefficient0.5, as is often the case, we can write
the overpotential)(z, t) as

(o 2RT _ . J'(z, 1)
n'(z,t) = ——asinh
E 2Hf /L (2.1) (Ch s — he(@:1)) L o(2,1)

The performanceof the Lagrange-interpolated realization algorithm (LRA) is addressed in this section;

2Computational performance was not the principal focus isfwtork and therefore, the code is not optimized.

EVS32 International Battery, Hybrid and Fuel Cell Eleciehicle Symposium 6



Cell voltage rms error [mV]
(New TF, LRA, OUT-B)

35

State-of-charge’p]

-15 5 5 15 25 35 45 55
TemperatureqC]

Figure 1: Performance of LRA usingw electrochemical transfer functions.

that is, speed, memory, robustness and accuracy. Itis aigb mentioning that the overall performance
of the LRA depends on its tuning parameters. The results stemrespond to the following set of
tuning parameters:

e The continuous-time frequency vector for buildi6gs) was chosen to comprise one point.at
0, 30 additional points spaced evenly on a logarithmic scate/éen10~'2 and10~% (to capture
very slow dynamics) and 500 additional points spaced evamby logarithmic scale betweef ¢
and107 (to capture the rest of dynamics).

e The order of each transfer function to be estimated was chtwsben; = 40 fori € [1...q|.
Hence, the order of the complete high-order system is n;q whereq corresponds to the total
number of transfer functions to be estimated.

Speed: The LRA average run time is 66.00 seconds where most of theimsed to solve the linear
system of equations.

Memory: The Iargest matrix size used by LRA is 5.645 MB, which cor to the high-order model
A matrix. TheA matrix dimension is: = n;q wheren; is the order of each transfer function to
be estimated and corresponds to the total number of transfer functions todbienated. Notice
that if we generate reduced-order models freib°C to 55C in 10°C increments and from 0% to
100% state-of-charge in 5% increments, we would need adbte$8 models, which would take
approximately 3 hours.

Robustness: The LRA is enforced to produce real and stable poles by regaanstable poles i
by their reciprocals (maintaining the magnitude respo complex poles by their magnitudes
(largely maintaining the magnitude response).

Accuracy: We are most interested in the time-domain performance o§ipsybased reduced-order
models generated using the LRA. Figure 1 shows the cellg®eltaot-mean squared error between
the full-order model and the physics-based reduced-ordmteirgenerated using theagrange-
interpolated realization algorithm for a 3-min 0.5C constant-current discharge pulse followed
a 2-min rest period starting at different state-of-change temperatures. The smallest cell voltage
root-mean squared error is 0.14 mV corresponding to 85%-sfatharge and5°C.

Figure 2 shows the frequency domain performance of the LRAnthﬁroximatin the phase
potential difference transfer function at the cell bouiwtar We see that the reduced order model
generated using the LRA approach is in complete agreeméimthg actual transfer function. Re-
call that the actual transfer function has an infinite nundf@oles and zeros and the reduced-order
model is approximating a total of 21 transfer functions gsinly 6 poles.
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Figure 3:vcen(t) simulation result using LRA to generate the ROMs.

In order to verify how the good frequency response approtionaf the LRA translates into good time
domain results, cell voltagee(t) for 7 consecutive UDDS cycles and a long 0.5C constant-gtirre
discharge is shown in Fig. 3. The agreement between thefd#r model and the (4th order) physics-
based reduced-order model is outstanding. We see celgeoils;aaccurateg/ predicted for high dynamic
simulations and also long constant-current events. Themaan squared error between the full-order
model and the reduced-order model generated usingatyenge-interpolated realization algorithm is
3.18 mV for the 7 consecutive UDDS cycles and 9.88 mV for timg10.5C constant-current discharge.
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Table 1: Cell parameters for simulation.

Symbol Units Negative electrode  Separator Positive aldetr
L pm 128 76 190
R pm 125 - 8.5
A m? 1 1 1
o Sm! 100 - 3.8
E? kJ mol~! 0 - 0
€s m3m—3 0.471 - 0.297
€e m3m~3 0.357 0.724 0.444

brug - 1.5 - 15

Cs max mol m~3 26390 - 22 860
Ce.0 mol m~3 2000 2000 2000
0o - 0.05 - 0.78

6100 - 0.53 - 0.17
D, m?s! 3.9 x 10714 - 1.0 x 10713
EDs kJ mol ! 4 - 20
D, m2s~! 7.5 x 101t 7.5 x 1071 7.5 x 10711
EDe kJ mol ! 10 10 10
Er kJ mol~! 20 20 20
t9 - 0.363 0.363 0.363
ko molm™2s 2.29 x 10° - 2.21 x 10®
Eko kJ mol ! 30 - 30
o - 0.5 - 0.5
Rﬁlm Q m2 0.0 - 0.0
dlnfi/dlnc8 - 3 3 3

We computer®f = g¢, reff

b b
= ree 8, D = D g™

g

In the electrolyte, conductivity is a function of concetitra:

For the negative electrode, the open-circuit potentiatfion is:

Uoep(0) =

For the positive electrode, the open-circuit potentiaktion is:

k(ce) = 4.1253 x 1072 4+ 5.007 x 10" %¢, — 4.7212 x 10772
+1.5094 x 10719¢% — 1.6018 x 107142,

—0.16 + 1.32 exp (—3.00) 4+ 10.0 exp (—2000.06) .

Uocp(f) = 4.19829 + 0.0565661 tanh (—14.55466 + 8.60942)
1
(0.998432 — 0492465

—0.157123 exp(—0.047386%) 4 0.810239 exp [—40(8 — 0.133875)] .

—0.0275479

—1.90111
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