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Abstract

Electrochemical physics-based models are developed from the fundamental electromechanical equations
that describe cell behavior (i.e., full-order model) and therefore, allow detailed understanding of inter-
nal cell variables. The greatest challenge in using physics-based models stems from their computa-
tional complexity. To make a feasible physics-based model for battery management, we must construct
reduced-order approximations of lithium-ion battery celldynamics. We present a method to find a high-
fidelity discrete-time state-space reduced-order model (ROM) that approximates infinite order transcen-
dental electrochemical transfer functions of all electrochemical variables of interest.
Thus, for practical use, physics-based models based on infinite order transcendental electrochemical
transfer functions need to be approximated using low-ordermodels that capture their most significant
dynamics. Here, we present theLagrange-interpolated realization algorithm (LRA), which is a method
that accurately approximates the actual continuous-time infinite-order electrochemical transfer function
frequency response using a continuous-time high-order model (HOM). Then, the continuous-time HOM
is discretized and reduced using balanced techniques, generating a reduced-order model (ROM) of order
n.

Keywords: battery, lithium battery, battery model, BMS (Battery Management System).

1 Introduction

Electrochemical models are required to accurately describe all the important internal dynamics that occur
when lithium-ion cells are being operated under different conditions. The full-order model of lithium-
ion cells consists of four coupled partial differential equations and one algebraic equation. The partial
differential equations that govern the full-order model arise from the fundamental principles of charge
and mass conservation of the solid and electrolyte materials in the cell. The algebraic equation models
the lithium flux from the solid to the electrolyte material. Aset of full-order model (FOM) equations
based on the original works [2, 3] describing lithium-ion cells having single-material negative and pos-
itive electrodes is thoroughly derived in [6]. Furthermore, lithium-ion cells having multiple-material
electrodes are developed in [1].
The Doyle-Fuller-Newman (DFN) lithium-ion battery model is too complex to be used in an embedded
battery-management system. To make a feasible physics-based model for battery management, various
methods are proposed in the literature to construct reduced-order approximations of lithium-ion battery
cell dynamics.
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We prefer methods based on finding transfer functions of all electrochemical variables of interest and then
converting these transfer functions into low-order high-fidelity discrete-time state-space approximate
models. Physics-based models based on infinite order transcendental electrochemical transfer functions
(i.e., they cannot be expressed as a ratio of polynomials) are developed in [9, 5, 7]. Thus, for practical
use, these systems need to be approximated using low-order models that capture their most significant
dynamics. This paper proposes a novel model-order reduction technique whose objective is to generate
reduced-order models from the infinite-order electrochemical transfer functions.
The technique presented will provide a reduced-order discrete-time state-space model of the form

x[k + 1] = Ax[k] +Bu[k] (1)

y[k] = Cx[k] +Du[k] (2)

where the states of the system are represented byx[k] ∈ R
n×1, the input byu[k] ∈ R

m×1 and the
output byy[k] ∈ R

q×1. Note thatn corresponds to the order of the model,m to the number of inputs
and q to the number of outputs. Furthermore, the state-space matrices dimensions areA ∈ R

n×n,
B ∈ R

n×m, C ∈ R
q×n and the direct feed-through termD ∈ R

q×1. The inputu[k] will correspond to
the current applied to the cell (i.e., u[k] = iapp[k] andm = 1) and the linear outputs will correspond to
the electrochemical variables of interest.

2 Solving for the state-space A matrix

In order to have consistent physics-based reduced-order models, state-space matrices are forced to have
a certain structure. The state-spaceA matrix is diagonal, where the diagonal elements are sorted from
smallest to largest and correspond to the eigenvalues of thesystem. Hence, the diagonal elements ofA
must be less than 1 in magnitude and be real for the discrete-time system to be stable and non oscillatory.
That is,

A =




a1 0 0 0 0
0 a2 0 0 0

0 0
. . . 0 0

0 0 0 an 0
0 0 0 0 1




where|ai| < 1 ∀ i ∈ [1 . . . n] for a stable model,ai ∈ R ∀ i ∈ [1 . . . n] for a non-oscillatory system and
a1 < a2 < ... < an. Notice that we add an integrator state (i.e., unity eigenvalue) to be able to compute
state-of-charge and also add any integrator pole transfer functions might have.
The Lagrange-interpolated realization algorithm (LRA) is a realization procedure that approximates
the actual infinite-order transfer function frequency response using a continuous-time high-order model
(HOM). The continuous-time HOM is discretized and reduced using balanced techniques, generating a
reduced-order model (ROM) of ordern.
A single-input single-output continuous-time rational transfer function of order̄n has the form

Hq(s) =
bn̄−1s

n̄−1 + · · ·+ b1s+ b0
sn̄ + an̄−1sn̄−1 + · · ·+ a1s+ a0

+ d0 (3)

whered0 corresponds to the direct feedthrough term and the coefficients ai andbi for i ∈ [0 . . . n̄− 1]
will determine the pole and zero locations of the transfer function. Notice we can accurately approximate
any given transfer functionGq(s) (even infinite-order transfer function) by using Lagrange interpolation.
The Lagrange interpolation approach consists of estimating values between known data points. In fre-
quency domain, we would likeHq(s) = Gq(s) at different frequency pointssi. That is,Hq(si) = Gq(si)
for i ∈ [1 . . . n̄] wheren̄ corresponds to the transfer function order. Note that we have 2n̄ degrees of
freedom corresponding to the number ofa andb coefficients to be estimated. However, we only usen̄
different frequency points in order to obtain real valued coefficients since the other̄n points will corre-
spond to their negative frequencies, that is,Hq(si) = Gq(si) andHq(−si) = Gq(−si). Therefore, we
need to solve a2n̄ system of equations to determine the coefficientsa andb from Eq. (3). The system of
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equations to be solved looks like

Gq(s1) =
bn̄−1s

n̄−1
1 + · · · + b1s1 + b0

sn̄1 + an̄−1s
n̄−1
1 + · · ·+ a1s1 + a0

+ d0

Gq(−s1) =
bn̄−1(−s1)

n̄−1 + · · ·+ b1(−s1) + b0
(−s1)n̄ + an̄−1(−s1)n̄−1 + · · ·+ a1(−s1) + a0

+ d0

Gq(s2) =
bn̄−1s

n̄−1
2 + · · · + b1s2 + b0

sn̄2 + an̄−1s
n̄−1
2 + · · ·+ a1s2 + a0

+ d0

Gq(−s2) =
bn̄−1(−s2)

n̄−1 + · · ·+ b1(−s2) + b0
(−s2)n̄ + an̄−1(−s2)n̄−1 + · · ·+ a1(−s2) + a0

+ d0

...

Gq(sn̄) =
bn̄−1s

n̄−1
n̄ + · · · + b1sn̄ + b0

sn̄n̄ + an̄−1s
n̄−1
n̄ + · · ·+ a1sn̄ + a0

+ d0

Gq(−sn̄) =
bn̄−1(−sn̄)

n̄−1 + · · ·+ b1(−sn̄) + b0
(−sn̄)n̄ + an̄−1(−sn̄)n̄−1 + · · ·+ a1(−sn̄) + a0

+ d0

where large order̄n will produce a very accurate approximation ofGq(s). However, as̄n increases, the
computational requirements to solve the linear1 system of equations also increase.
Once we have obtained a high-order continuous-time rational transfer functionHq(s) that accurately
approximates the true (infinite-order) frequency response, we can easily convert it to state-space repre-
sentation (e.g., usingtf2ss.m in Matlab), that is,Hq(s) = Cq(sIn̄ − Aq)Bq +Dq. Further, for our
application, we expectAq to have real, stable poles, which is not guaranteed by the method as presented
so far. So, we elect to replace unstable poles inAq by their reciprocals (maintaining the magnitude
response) and complex poles by their magnitudes (largely maintaining the magnitude response). In ad-
dition, we setBq = 1n×1 and we also re-compute the state-spaceCq matrix using the method described
in Section 4.
Notice that the approach explained above is valid for SISO systems only and therefore, need to be ex-
tended to SIMO systems. Since we are only interested in a high-order approximation (i.e., we do not care
about the model order), we can easily extend the approach to the SIMO case by assembling the different
SISO high-order models. That is,

A =




A1 0 0 0

0 A2 0 0

0 0
. . . 0

0 0 0 Aq


 , B =




B1

B2

...
Bq


 , (4)

C =




C1 0 . . . 0

0 C2 0 0

0 0
.. . 0

0 0 0 Cq


 , D =




D1

D2

...
Dq


 , (5)

where the state-space matricesAq, Bq, Cq andDq correspond to the continuous-time HOM approxi-
mation the transfer functionq. Thus, theA, B, C andD matrices estimate a total ofq continuous-time
transfer functions. Then, the continuous-time state-space model can be discretized with a given sampling

1Notice that Gq(si) =
bn̄−1s

n̄−1

i
+···+b1si+b0

sn̄
i
+an̄−1s

n̄−1

i
+···+a1si+a0

+ d0 can be written as

(Gq(si)− d0)
(
sn̄i + an̄−1s

n̄−1

i + · · ·+ a1si + a0

)
= bn̄−1s

n̄−1

i + · · ·+ b1si + b0
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timeTs by computing the discrete-time state-space matrices as

Ad = exp
(
ATs

)
(6)

Bd = A
−1

(Ad − In̄)B (7)

Cd = C (8)

Dd = D (9)

where the subscriptd refers to discrete-time matrices andH(z) = Cd(zIn̄ −Ad)Bd +Dd.
The next step is to perform a balanced model order reduction [10] to the discrete-time high-order model
H(z) in order to obtain the final discrete-time reduced-order model A matrix of a given ordern.
To summarize the LRA method:

1. Approximate the actual continuous-time frequency responseGq(s) using a rational continuous-
time high-order modelHq(s) via solvingGq(si) = Hq(si) andGq(−si) = Hq(−si) for i ∈
[1 . . . n̄].

2. Repeat Step 1 for each transfer function to be estimated. Then, assemble the individual high-order
models via Eqs. (4) and (5) to buildH(s). Further, replace unstable poles inA by their reciprocals
(maintaining the magnitude response) and complex poles by their magnitudes (largely maintaining
the magnitude response). In addition, setB = 1n×1 and re-compute the state-spaceC matrix using
the method described in Section 4.

3. Discretize the rational high-order modelH(s) to obtain a discrete-time high-order modelH(z)
via Eqs. (6) to (9).

4. Perform a balanced realization of the discrete-time HOMH(z) to obtain the discrete-time state-
spaceA matrix.

3 Solving for the state-space B matrix

TheB matrix is forced to be a column vector of ones. That is,

B =
[
1 1 . . . 1 1

]T

4 Solving for the state-space C matrix

The structure of the output matrixC, which determines the contribution of each of the states to the output
is

C =




c11 c12 · · · c1n res∗1
c21 c22 · · · c2n res∗2
...

...
. . .

...
...

cq1 cq2 · · · cqn res∗q


 (10)

whereq corresponds to the number of outputs, or in other words, the number of electrochemical transfer
functions to be estimated,n corresponds to the model order and res∗ corresponds to the residue of the
integrator pole, which is computed as

res∗ = lim
s→0

sG(s).

Then, electrochemical transfer functions with integratorpole can be expressed as:

[G(s)]∗ = G(s)− res∗/s
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where[G(s)]∗ corresponds to the electrochemical transfer function withthe integrator pole removed,G(s)
corresponds to the original transfer function and res∗/s corresponds to the integrator pole. Notice that
res∗ = 0 if the original transfer function does not have any integrator pole.
This section introduces an optimal approach to solve for theC state-space matrix using least squares that
ensures the dc gain of the reduced-order model agrees with the actual dc gain of the transfer functions.
Recall that theB matrix is a column vector of ones as described in Section 3 andthe D matrix can be
found analytically as explained in Section 5.
When solving for theC matrix, we desire to minimize the squares of the errors between the actual and
approximate frequency responses while enforcing that the dc gain of the approximated system exactly
matches the dc gain of the actual system. To do so, we formulate a constrained optimization cost function
to be minimized as

J =

N∑

k=1

‖G(ωk)−H(ωk)‖
2
2 + λT (G(0) −H(0))

whereG corresponds to the actual frequency response andH corresponds to the low-order approximation
of G. For simplicity, we computeG(ωk) = G(ejωkTs) − D andH(ωk) = C(ejωkTsI − A)−1B. Let
M(ωk) = (ejωkTsI −A)−1B; then,H(ωk) = CM(ωk) and

J =

{
N∑

k=1

[G(ωk)−H(ωk)]
∗ [G(ωk)−H(ωk)]

}

+ λT (G(0) −H(0))

=

{
N∑

k=1

Tr [G∗(ωk)G(ωk)]−Tr
[
G(ωk)M

∗(ωk)C
T
]

− Tr [CM(ωk)G
∗(ωk)] + Tr

[
CM(ωk)M

∗(ωk)C
T
]
}

+Tr
[
(G(0) − CM(0))λT

]
.

Taking derivatives ofJ with respect toλ andC gives

∂J

∂λ
= G(0) − CM(0) = 0

∂J

∂CT
= −2

N∑

k=1

R [G(ωk)M
∗(ωk)]

︸ ︷︷ ︸
M1

+2C
N∑

k=1

R [M(ωk)M
∗(ωk)]

︸ ︷︷ ︸
M2

− λMT (0) = 0.

Transposing and combining into one matrix equation, we solve the following forC using least squares.
That is, [

2MT
2 −M(0)

MT (0) 0

] [
CT

λT

]
=

[
2MT

1

GT (0)

]
. (11)

In summary, using the approach presented in this section, wecan compute theC matrix that minimizes
the squares of the errors between the actual and approximated frequency responses while enforcing that
the dc gain of the approximated system exactly matches the dcgain of the actual system.
Notice that we need to augment the obtainedC matrix in order to add back the integrator residues as seen
in Eq. (10).

5 Solving for the state-space D matrix

The D matrix (or the direct feedthrough term) models the instantaneous change in outputy[k] when
the system is excited with inputu[k]. In this case, theD matrix can be found in closed-form since the
electrochemical transfer functions are analytical. That is,

D =
[
lim
s→∞

G1(s), lim
s→∞

G2(s), . . . , lim
s→∞

Gq(s)
]T

. (12)
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6 Results

This section presents the performance of theLagrange-interpolated realization algorithm (LRA). The
discrete-time reduced-order models generated using the LRA have been assumed to have ordern = 6
andTs = 1 s. In addition, the examples shown estimate a total of 21 transfer functions, corresponding
to:

[C̃s,e(x̄, z)]
∗/Iapp(z) at x̄ = [0, 1, 2, 3]

J(x̄, z)/Iapp(z) at x̄ = [0, 1, 2, 3]

[Φ̃s,e(x̄, z)]
∗/Iapp(z) at x̄ = [0, 1, 2, 3]

Φ̃e(x̄, z)/Iapp(z) at x̄ = [1, 2, 3]

Φ̃s(x̄, z)/Iapp(z) at x̄ = [1, 2]

C̃e(x̄, z)/Iapp(z) at x̄ = [0, 1, 2, 3]

wherex̄ = 0 corresponds to the negative-electroce current collector,x̄ = 1 to the negative-electrode/separator
boundary,x̄ = 2 to the separator/positive-electrode boundary andx̄ = 3 to the positive-electrode cur-
rent collector. The structure of these electrochemical transfer functions are shown in [8] and the cell
parameters used are listed in Table 1 in the Appendix.
Recall that since reduced-order models provide the linear estimates of the electrochemical variables,
nonlinear corrections need to be added back to the linear outputs. That is,

• The linear output of the reduced-order modeljr(x̄, t) is the approximation to the true reaction flux.
That is, no additional correction is needed.

• The solid-surface concentration estimate is computed by adding the initial solid concentrationcr
s,0

to the linear output̃cr
s,e(x̄, t). That is,cr

s,e(x̄, t) = c̃r
s,e(x̄, t) + cr

s,0.

• The phase-potential difference variable can be computed asφr
s-e(x̄, t) = φ̃r,∗

s-e(x̄, t)+Un
ocp(c

n
s,avg(t))

whereφ̃r,∗
s-e(x̄, t) refers to the linear output of the phase-potential difference variable with the in-

tegrator dynamics removed andcn
s,avg(t) corresponds to the negative-electrode average solid con-

centration.

• In the negative-electrode,φn
s(0, t) = 0, because it is our reference and therefore,φp

s(0, t) = vcell.
Hence,φn

s(x̄, t) corresponds to the linear output of the state-space model, andφp
s(x̄, t) = φ̃

p
s(x̄, t)+

vcell(t), whereφ̃p
s(x̄, t) also corresponds to the linear output of the solid potential.

• The electrolyte potential variable is computed asφr
e(x̄, t) = φ̃r

e(x̄, t)− φ̃n,∗
s-e(0, t)−Un

ocp(c
n
s,avg(t))

where φ̃r
e(x̄, t) corresponds to the linear output of the electrolyte potential, φ̃n,∗

s-e(x̄, t) refers to
the linear output of the negative-electrode phase-potential difference variable with the integrator
dynamics removed andcn

s,avg(t) corresponds to the negative-electrode average solid concentration.

• The actual electrolyte concentration estimate is computedascr
e(x̄, t) = c̃r

e(x̄, t) + ce,0 wherece,0
corresponds to the initial electrolyte concentration andc̃r

e(x̄, t) corresponds to the linear output of
the electrolyte concentration.

• The voltage of the cell is computed by combining different electrochemical variables. That is,

vcell(t) = (ηp(0, t) − ηn(0, t)) + (φp
e(0, t) − φn

e(0, t))

+
(
Up

ocp(0, t)− Un
ocp(0, t)

)
+ F

(
Rp

filmjp(0, t)−Rn
filmjn(0, t)

)
(13)

where if we assume that the charge-transfer coefficientα = 0.5, as is often the case, we can write
the overpotentialηr(x̄, t) as

ηr(x̄, t) =
2RT

F
asinh


 jr(x̄, t)

2kr
0

√
cr
e(x̄, t)

(
cr
s,max − cr

s,e(x̄, t)
)
cr
s,e(x̄, t)


 .

The performance2 of theLagrange-interpolated realization algorithm (LRA) is addressed in this section;
2Computational performance was not the principal focus of this work and therefore, the code is not optimized.
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Figure 1: Performance of LRA usingnew electrochemical transfer functions.

that is, speed, memory, robustness and accuracy. It is also worth mentioning that the overall performance
of the LRA depends on its tuning parameters. The results shown correspond to the following set of
tuning parameters:

• The continuous-time frequency vector for buildingG(s) was chosen to comprise one point atω =
0, 30 additional points spaced evenly on a logarithmic scale between10−12 and10−6 (to capture
very slow dynamics) and 500 additional points spaced evenlyon a logarithmic scale between10−6

and107 (to capture the rest of dynamics).

• The order of each transfer function to be estimated was chosen to ben̄i = 40 for i ∈ [1 . . . q].
Hence, the order of the complete high-order system isn̄ = n̄iq whereq corresponds to the total
number of transfer functions to be estimated.

Speed: The LRA average run time is 66.00 seconds where most of the time is used to solve the linear
system of equations.

Memory: The largest matrix size used by LRA is 5.645 MB, which corresponds to the high-order model
A matrix. TheA matrix dimension is̄n = n̄iq wheren̄i is the order of each transfer function to
be estimated andq corresponds to the total number of transfer functions to be estimated. Notice
that if we generate reduced-order models from−15◦C to 55C in 10◦C increments and from 0% to
100% state-of-charge in 5% increments, we would need a totalof 168 models, which would take
approximately 3 hours.

Robustness: The LRA is enforced to produce real and stable poles by replacing unstable poles inA
by their reciprocals (maintaining the magnitude response)and complex poles by their magnitudes
(largely maintaining the magnitude response).

Accuracy: We are most interested in the time-domain performance of physics-based reduced-order
models generated using the LRA. Figure 1 shows the cell voltage root-mean squared error between
the full-order model and the physics-based reduced-order model generated using theLagrange-
interpolated realization algorithm for a 3-min 0.5C constant-current discharge pulse followedby
a 2-min rest period starting at different state-of-charge and temperatures. The smallest cell voltage
root-mean squared error is 0.14 mV corresponding to 85% state-of-charge and45◦C.
Figure 2 shows the frequency domain performance of the LRA when approximating the phase
potential difference transfer function at the cell boundaries. We see that the reduced order model
generated using the LRA approach is in complete agreement with the actual transfer function. Re-
call that the actual transfer function has an infinite numberof poles and zeros and the reduced-order
model is approximating a total of 21 transfer functions using only 6 poles.
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Figure 2: Performance of the LRA approximating[Φ̃s,e(x̄, z)]
∗/Iapp(z) at x̄ = [0, 1, 2, 3].
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Figure 3:vcell(t) simulation result using LRA to generate the ROMs.

In order to verify how the good frequency response approximation of the LRA translates into good time
domain results, cell voltagevcell(t) for 7 consecutive UDDS cycles and a long 0.5C constant-current
discharge is shown in Fig. 3. The agreement between the full-order model and the (4th order) physics-
based reduced-order model is outstanding. We see cell voltage is accurately predicted for high dynamic
simulations and also long constant-current events. The root-mean squared error between the full-order
model and the reduced-order model generated using theLagrange-interpolated realization algorithm is
3.18 mV for the 7 consecutive UDDS cycles and 9.88 mV for the long 0.5C constant-current discharge.
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A Cell parameters

The parameters of the cell listed in Table 1 are used in this publication and were those published by Lee
et al. [5], except for the activation energies, which were extracted from [4].
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Table 1: Cell parameters for simulation.

Symbol Units Negative electrode Separator Positive electrode

L µm 128 76 190
Rs µm 12.5 - 8.5
A m2 1 1 1
σ Sm−1 100 - 3.8
Eσ

a kJmol−1 0 - 0
εs m3m−3 0.471 - 0.297
εe m3m−3 0.357 0.724 0.444

brug - 1.5 - 1.5
cs,max molm−3 26 390 - 22 860
ce,0 molm−3 2000 2000 2000
θ0 - 0.05 - 0.78
θ100 - 0.53 - 0.17
Ds m2 s−1 3.9 × 10-14 - 1.0× 10-13

EDs
a kJmol−1 4 - 20
De m2 s−1 7.5 × 10-11 7.5× 10-11 7.5× 10-11

EDe
a kJmol−1 10 10 10
Eκ

a kJmol−1 20 20 20
t0+ - 0.363 0.363 0.363
k0 molm−2 s−1 2.29 × 10-5 - 2.21 × 10-5

Ek0
a kJmol−1 30 - 30
α - 0.5 - 0.5

Rfilm Ωm2 0.0 - 0.0
d ln f±/d ln ce - 3 3 3

We computeσeff = σεs, κeff = κεbruge , Deff
e = Deε

brug
e .

In the electrolyte, conductivity is a function of concentration:

κ(ce) = 4.1253 × 10−2 + 5.007 × 10−4ce − 4.7212 × 10−7c2e

+1.5094 × 10−10c3e − 1.6018 × 10−14c4e.

For the negative electrode, the open-circuit potential function is:

Uocp(θ) = −0.16 + 1.32 exp (−3.0θ) + 10.0 exp (−2000.0θ) .

For the positive electrode, the open-circuit potential function is:

Uocp(θ) = 4.19829 + 0.0565661 tanh (−14.5546θ + 8.60942)

−0.0275479

[
1

(0.998432 − θ)0.492465
− 1.90111

]

−0.157123 exp(−0.04738θ8) + 0.810239 exp [−40(θ − 0.133875)] .
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