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Executive Summary

Lithium ion battery technology is more and more widespread due to its high energy density and good
cyclability. Today electric vehicles runs with Lithium ion technologies. Despite Lithium ion technology has
numerous advantages, it has been proved that lithium ion battery are the cause of many accidental car fires.
Thereby battery safety is a key issue to continue to develop more performant and enduring vehicle, but also
to ensure the user’s safety. Depending on the condition of use, different aging mechanisms inside the cell
could be activated and induce physical and chemical modifications of the internal components. So, aging of
a cell has a strong influence on its safety behavior. One reference of commercial 18650-type lithium ion cell
is investigated using BEV (Battery Electric Vehicle) representative aging at various temperatures (-20°C,
0°C, 25°C, 45°C) according to the international standard IEC 62-660. Ante-mortem and post-mortem
analyses (half coin cell at the electrode level, SEM, EDX, XRD, GCMS, DSC, FTIR) are realized on internal
components in order to identify clearly which aging mechanism occurs in accordance to the electrical profile
of the cell. Then ARC test will be performed. By comparing safety behavior of fresh cell vs. aged cells, it

will be possible to understand the impact of each aging mechanism on cell safety behavior.

Keywords: battery ageing, BEV , battery SoH (State of Health), internal resistance, safety

1 Introduction

Lithium ion battery became the most important energy-storage system for portable consumer electronics
device and advance to a key technology to enable the broad commercial launch of electric vehicles. Today
electric vehicles run with Lithium ion technologies and one of the most popular format is the 18650
cylindrical cell. In this work we will study three different 18650 commercial cells with two different high
energy density technologies NCA/Graphite-Si and Ni-rich NMC/Graphite-Si.

Some research groups have already studied the impact of low temperature cycling on safety behavior [1], the
correlation of aging with the thermal stability of batteries [2] or the thermal runaways during external heating
abuse of commercial cells at different levels of aging [3]. But none of this studies accomplish a work with
several aging mechanisms identified by post mortem analysis and several abuse tests for each aged batch in
order to compare them together.
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2 Cell aging and aging mechanism

Battery is an unstable system which will evolute according to usage and time. Battery component will be the
support of physical and chemical degradation reactions which are summarized in the figure 1.

Figure 1: Degradation mechanisms of Lithium-ion cell [4]
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Depending on the condition of use, different aging mechanisms inside the cell could be activated and induce
physical and chemical modifications of the cell components. Current knowledge of literature allows to
identify aging conditions which promote specific degradation mechanism (figure 2).
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Figure 2: Scheme of the different aging mechanisms and their condition of occurrence

The aim of this work is to use cell in differents aging conditions in order to promote some degradation
mechanisms. In particular, we will age several batches of cells to obtain lithium plating, material damages

and SEI growth.
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3 Ante-Mortem Analyses

One reference of commercial 18650-type lithium ion cell has already been investigated using BEV (Battery
Electric Vehicle) representative aging at various temperatures (-20°C, 0°C, 25°C, 45°C) according to
international standard IEC 62-660. This cell is dedicated to power application.

The results of this study are described below.

First of all, ante-mortem analyses and electrical tests were carried out in order to clearly define all the
characteristics of the cell. Figure 3 explains the available characterization techniques performed on each
internal component of the cell.
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Figure 3: Diagram of all characterisation techniques used for cell ante-mortem and post-mortem studies [5]

We realized some of those tests on the fresh cell and all the characteristics of the cell are summerized in the
Table 1. Results will be compared with aged cells.

Electrical properties

Cell type: Power

Voltage : 2.5-4.2V

Capacity (C/3) : 3000 mAh
Energy density : 237 Wh/kg

Internal Resistance Hioki 1KHz, 50% SOC: 13.73 mQ

Internal résistance Pulse 10s, | max : 20,63 mQ

Electrical cycling and check up

Blend NCA/NC
Positive Active material NCA : Ni 88,5 at%, Co 10,0 at% et Al 1,5 at% MEB and EDX quantification
electrodes NCO: Ni 78,0 at%, Co 22,0 at%
Coating thickness | 45+ 1 um Micrometer
capacity 2.25 mAh/cm? Button cell cycling vs metallic Li
Electrolyte EC 40%, DMC 30%, FEC 30% GCMS
Separator material PE DSC
coating AIOOH coating on one face FTIR
X Active material Blend Graphite/Silicon MEB +EDX
Negative Coating thickness | 44 +1um Micrometer
electrodes - . —
capacity 2.39 mAh/cm? Button cell cycling vs metallic Li

Table 1: Characteristics of the fresh cell obtained after ante-mortem analyses
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4 Post-Mortem Analyses

Cells were aged using BEV representative aging at various temperatures (-20°C, 0°C, 25°C, 45°C) and
calendar aging (45°C at 4.2V and 45°C, 100% SOC, undefined potential). State of health via electrical
performance measurement were realized at 25°C every 28 days for cycling aging. This electrical test allows
us to track the evolution of some relevant characteristics of the cell: Capacity, Internal resistance, Energy
density and Nominal Voltage.
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Figure 4: 25°C Check up results (a) capacity at C/3, (b) internal resistance, (c) energy density at C/3 and (d) nominal
voltage at C/3 during cycle aging at different temperature

In terms of capacity, figure 4 (a) shows that aging at very low temperature (-20°C) is very harmful for cell.
We note that during aging at -20°C, after a few days of cycling, the cell capacity falls down to ~70
mAh.Voltage thresholds in charge and discharge, were reached very quickly when a current was applied to
the cell. However, when the cells were put at 25°C, it was possible to reach reasonable capacity. We guess
the presence of Li plating for this cycling conditions. At high temperature (45°C) the cell performance
decrease as well quite quickly: the effective capacity has decreased by ~20% after 300 equivalent cycles. At
this temperature, electrode material damage should be responsible for capacity fading. Between 0°C and 25
°C, the evolution of cell capacity is less pronounced: capacity fading is approximately ~10% at 0°C and
~15% at 25°C after 300 equivalent cycles. All those results are in agreement with cell manufacturer datasheet:
lifetime of cell should be equal to 250 cycles (with charging conditions between 0°C and 50 °C).

One significant indicator used for cell State Of Health (SOH) estimation is internal resistance [6,7]. In this
study, internal resistance has been evaluatedd by two methods: Current Pulse method (10s, | discharge
max=15A) and impedance measurement (AC,1 kHz, HIOKI equipment). Both technics allow to evaluate two
aspects of electrochemical behavior of the cell (capacitive or resistive behavior), considering the
corresponding time constant (respectively 10s or 1ms). Based on these results, we can conclude that
impedance data at 1 kHz does not vary significantely during aging (few percent growth after a few months
of cycling). It means that electrical contact between electrodes particles and/or collector should not have
changed significantly after aging. Global impedance spectra study is currently led to understand the impact
of aging on cell performance.
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In regards to pulse measurements, we can already assume that aging impacts internal resistance, especially
at high temperature. Aging mechanism which could be responsible for the internal resistance enhancement
is the passivation layer growth due to chemical reactions (ex: SEI Growth on negative electrodes at high
temperature).

Figure 4 (d) represents variations of nominal voltage during aging: two different trends are visible. For aging
at low temperature (0°C and -20°C) the nominal voltage has increased after aging. For aging at ambient and
high temperature the nominal voltage has decreased after aging. This observation seems to be the results of
a non equiponderant aging of both positive and negative electrodes.

Post-mortem analysis will help us to identify the degradation mechanisms which take place for each
conditions of aging [5]. Main post-mortem results obtained during this work are described below.
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Figure 5: Cycling curves of (a) positive and (b) negative cycled electrodes vs. metal Li

In Figure 5, samples have been taken from both electrodes of aged cells (for each aging) and have been
reintroduced in half coin cell. Towards the positive electrodes (Figure 5 (a)), the cycling profiles reveal that
during discharge, the potential of positive electrode vs Li is lower for high temperature aging cells than for
fresh or low temperature aged cells. The potential fall is about 0.1V vs. Li. So we can assume that in high
temperature the main damages take place on the positive electrodes. By comparing the cycling curves of
positive eletrodes from fresh cell and low temperature cycled cells, we can also assume that positive electrode
did not demonstrate significant damages.

Toward negative electrodes( Figure 5 (b)), the cycling profiles reveal that during discharge, the potential of
the negative electrode vs Li is lower for low temperature aging cells than for fresh or high temperature aged
cells. The potential fall is about 0.03V vs. Li. So we can assume that in low temperature major damages take
place on the negative electrodes. By comparing the cycling curves of negative eletrodes from fresh cell and
high temperature cycled cells, we can also assume that the negative electrode did not demonstrate significant
damages.
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Figure 6: SEM Images of fresh and cycled negatives electrodes

SEM images of cycled negative electrodes show surface evolutions. Particles identification has been
performed by EDX analysis. At -20°C we clearly see that silicon particles have been totaly destroyed but
graphite particles did not demonstrate significant evolution. At 0°C and 25°C, cracks appear in silicone
particles and the particles surface becomes locally coated. At 45°C cracks of silicone particles appear and the
coating seems to be more homogeneous. To complete these visual observations and to determine more
precisely the nature of the coating, XRF analyses will be performed on fresh and cycled electrodes.
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Figure 7: SEM Images of fresh and aged positive electrodes

SEM images of cycled positive electrodes did not show significant visual evolution. To complete these visual
observations and to determine if modification happened or not, XRF analyses will be performed also on fresh
and cycled electrodes.
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5 Abuse Testing

To understand the impact of degradation mechanisms on safety behavior of cells, abuse tests are in progress
on fresh and cycled cells. We presents here, the cell thermal stability behavior according to the Accelerating
rate calorimetry (ARC) test (figure 8).
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Figure 8: Results of ARC Abuse test for fresh and cycling aged cells

The results of ARC test (figure 8), highlight that “onset temperature” of cells aged at low temperatures (0°C
and -20°C) did not change significantly compared to fresh cells (~55-58°C). In contrary, the cells aged at
ambient and high temperatures (25°C and 45°C) for which onset temperature has increased by more than 10
degres (~70-75°C). In other terms we can assume that degradation mechanisms which occur at ambient and
high temperatures improved the range of thermal safety behaviour of cell.

Once the thermal runaway started, we focused on the rising temperature speed at 90°C. We observe that
temperature elevating speed is faster for the cycling at low temperature (~0.1 °C/min) and decreases gradually
when temperature of aging is increased. For example the rising temperature speed is 2.5 times faster for aged
cell at -20°C compare to fresh cell and aged cell at 45°C.

This experiment shows that cells aged at low temperature is much more reactive than cells aged at high
temperature and than fresh cells. In other terms, physical-chemical changes due to cycling at low temperature
causes a more violent thermal runaway. So cells having suffered from low temperature aging is more
dangerous.

To complete this study, other abuse tests are planned i.e. Short-circuit, Overcharge and Overdischarge. By
comparing all results, it will be possible to better understand the impact of each aging conditions and
degradation mechanisms on the safety behavior of the cell. It is noteworthy that ARC has been voluntary
stopped before the triggering of the cell event in order to proceed to a post abusive study of the internal
components.
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6 Conclusion

Post-mortem analyses helped us to identify the degradation mechanisms which take place for each conditions
of aging. Performed analyses allowed us to understand that high temperature cycling involved mainly
damages on positive electrode. In other terms it is plausible that at high temperature the positive electrode
endured crystalline damages that can promote SEI growth on negative electrode [8] and/or passivation layer
formation. Low temperature cycling caused main damages on negative electrodes material with possible Li
plating [9]. To cleary identify which mechanism occurs and the exact nature of damage, some complementary
analyses will be performed.

After ARC testing, some trends have been determined. Aging at high temperatures (positive material damage
and SEI growth) enhance thermal stability of the cell because the onset temperature has increased. Aging at
low temperatures (negative material damage and Li plating) makes the cell more reactive because the rising
temperature speed during thermal runaway is significantly faster.

To complete this study, other abuse tests will be performed on fresh and aged cells. In addition, the same
study will be carred out on two other references of commercial 18650 Li-ion cells for energy application.
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