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Abstract

The light-duty passenger vehicles modelling has created substantial concerns due to the uncertainty from
real-world operating conditions when it comes to fuel consumption analysis. Obtaining the right kind of
data for vehicle modelling can in itself be challenging, given that while OEMs advertise the power and
torque capability of their engines, the efficiency data for the components or the control algorithms are
usually not available for independent verification. Therefore, the accuracy of a vehicle model defined only
by high-level public data might not be good. A relevant and trustworthy OEMs vehicles database attribute
would be the key to proper independent verifications of vehicle capabilities and validations of modern-day
simulation tools.

By combining the publicly available OEM’s data with some vehicle data fleet on real-world cycles and
different baseline vehicle models generated, this paper examines the level of accuracy on fuel consumption
prediction that can be achieved by such a model. The baseline vehicle models used are generated using
Autonomie [1], a simulation tool developed by Argonne National Laboratory capable of simulating various
kinds of vehicles. The paper will further provide an analysis of the potential best approach - as well as the
accuracy level associated - for the modelling procedure and fuel consumption prediction according to data

available.

1 Introduction

Several studies have been carried out using simulation tools to evaluate the impact of vehicle technologies
under real-world conditions. All these were conducted using models that were verified with test data from
dynamometers. As part of the other projects sponsored by DOE, University of Michigan has collected a large
amount of data from instrumented vehicles under real-world driving conditions. This project utilizes that data
to verify the accuracy of simulation models. This effort helps to define levels of confidence in the simulation
results involving real-world driving conditions. Past studies have shown that vehicle energy consumption
can be accurately predicted on standard cycles with validated models if the vehicle model is built using
sufficient data collected from dynamometer tests [2][3]. However many times, modellers are faced with the
challenge of building vehicle models using standard library components and scaling them to the power rating
needed in a vehicle.

The first step in this study has been to generate vehicle models by sizing the baseline vehicle models on
Autonomie using available OEM’s data and to compare the simulated vehicle energy consumption with
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published data on standard driving cycles in order to validate the vehicle model generated. The models
created were then used to predict fuel consumption in real world cycles scenarios, and results were validated
by a comparison of the simulated vehicle energy consumption with real world measurements. However, the
data collected from real-world drivers are usually full of mistake and inconsistencies. One of the main
challenges in the study is to include an automated procedure of querying, collecting and processing the data
from vehicle test fleet on real-world cycles.

2 Approach & methodology

The inputs provided by the University of Michigan was used as the on-road referral data for our models
comparison and the validation of the real word driving cycle fuel consumption: total 93027 trips recorded
for 369 vehicles.

Many on-road cycles came with various issues. So, before referring to those data, we needed to (1) identify,
list and fix (if necessary) data issues, (2) filter out unrealistic or unfixable cycles, (3) convert on-road driving
cycle data into Autonomie format and (4) add leading and trailing sections, where necessary.

Basically, we have created specific vehicle models (e.g., model year 2015 Honda Civic Lx) based on vehicle
technology database, compared the model predictions against EPA regulatory cycles then developed a
process to import University of Michigan’s test data. Lastly, we have calibrated models to match the vehicles
used by University of Michigan (UofM).
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Figure 1: Approach overview procedure

2.1 Vehicle attributes

Generic engine maps (mostly IEV engines) and pre-set vehicle parameters, i.e., transmission parameters and
road load assumptions, were generated with Autonomie to reflect different classifications of vehicles and will
be used as the baseline models. To create these baseline vehicle models for the procedure, each vehicle is
sized to meet the same vehicle technical specifications, such as performance and grade-ability [4]. The
vehicles used for this study are the conventional and hybrid electrified vehicles (HEVs), through different
timeframes (from 2010 to 2017) for gasoline and diesel fuels. The vehicle fleet used for this project has been
selected to overall represent the most used vehicles used in U.S.
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2.2 Data collection

Some OEM vehicles information were collected according to the data publicly available. The data usually
required but not necessarily accessible included:

- Manufacturer, brand, model, vehicle weight and design year;

- Road load assumptions such as the wheels characteristics and the Road Load coefficients;

- Transmission parameters such as the transmission type and architecture, the engine/battery type and
characteristics, and the gearbox ratios;

- Fuel Economy on cycles.

2.3 Building vehicle models using OEM data

2.3.1 Methodology

The first approach to build a vehicle model, as the figure 2 shows, was to combine actual OEM referral
vehicle data and the baseline vehicle models to come out with the matching vehicle models. Then we
compared the fuel consumption on similar cycle as a first validation method for the models built.
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Figure 2: Methodology to create and validate models
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Internal Database Information

Road Load A-Coefficient  [N]
Road Load B-Coefficient [N/kph]
Road Load C-Coefficient [N/kph2]
Front Tire Width [mm]
Front Tire Aspect Ratio
Front Wheel Size [in]
Engine Displacement [L]
Number of Engine Cylinders
Engine Aspiration
Engine Fuel System
Engine Intake Valves [per cyl ]
Engine Exhaust Valves [per cyl]

151.728102
-0.9474992
0.040103625
195
65
15
18
4
Matural (NA)
Port Injection (P1)
2
2

— R

Example of the 2015 Honda Civic Lx

Use Autonomie default vehicle
model (generic conv with CVT)

Specific model created &
simulated on EPA cycles

| Overwrite Parameters | WOWE

P

Conventional midsize cvt 2wd
baseline model

Engine Compression Ratio 10.6
Engine Variable Valve Timing yes
Engine Variable Valve Lift yes
Engine Cylinder Deactivation no
Non-Hybrid Engine Stop-Start no
Fuel Economy, FTP Unadjusted [mpg — /m] 388-6.1E-5
Fuel Economy, HWFET Unadjusted [mpg — I/m] 55.1-4.2E-5
| FuelEconomy, Combined Unadjusted [mpg - /m] 44 8-53E5 1
Fuel Gasoline ~
Powertrain Type Conventional
EPACLASS Compact
Tech Class Compact
Vehicule curb weight [Ib] 2811
Transmission Type Continuously Variable (CVT)
First CVT 320
Top CVT 0.52
Final drive Ratio 3.94
Max Engine Power [hp] 143

Fuel consumption diff= ~4%
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Fuel Economy, FTP Unadjusted [mpg — I/m] 37.7-6.2E-5
Fuel Economy, HWFET Unadjusted [mpg — I/m] 48.6 -4 8E-5
Fuel Economy. Combined Unadjusted [mpg — I/m 430-55E5
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Figure 3: Autonomie’s vehicle model development & comparison process on-road data
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Data collection and available information

For the data acquisition on the vehicle, the University of Chicago used the On-Board Diagnostics (OBD)
sensor. A total of 93,027 trips were recorded for approximately 369 vehicles: 352 conventional and hybrid
electrical vehicles and, 17 plug-in electrical vehicles.

Table 1: University of Michigan vehicles testing fleet
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On-road driving cycle cleaning

Powertrain Number of vehicles(07/27/17)
ICE & HEV 352 (95.4%)
PEV 17 (15 PHEV, 2 EV) 4.6%
TOTAL 369

Firstly, the data was to be made usable for driving cycles knowing that the data collected from real-world
drivers are usually full of mistakes and inconsistencies. Therefore, we started by identifying, listing and
fixing common inconsistencies that occurred during the data acquisition. Those usually found on the cycle

include:

- Random time stamp;
- Firstand last vehicle speed different from zero on the cycle;
- Random vehicle speed dropping;

- Lake of data during a certain timeframe;

- Inconsistent distance travelled during the cycle.
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Figure 4 shows an example of the vehicle speed trace on cycle with the inconsistencies associated
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Figure4: Untreated vehicle speed trace on a real-world cycle

Regarding the first (and last) speed problems for instance, it was assumed that during the first (last) 20
seconds, the vehicle has a constant acceleration (deceleration) grade, as displayed in the figure 4. This
assumption helps to waive a potential speed transitory period that appears when the vehicle speed
reaches the real starting speed, corresponding to the beginning of the actual driving cycle.
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Figure 5: Process to clean extract a vehicle speed trace on real-world cycle
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3 Project results

3.1 Vehicle modelling

During this study, over 200 vehicles from model year 2011 to model year 2018, have been considered, so
far, to match the UofM’s vehicles fleet provided. That includes 143 conventional vehicles, 52 HEVs, 13
PHEVs and 2 EVs.

The figures 6 and 7 show the density distribution of the vehicle fleet modeled, using the methodology
described on the part 2.3. The following charts only consider the conventional vehicles and the hybrid
electrical vehicles (HEV).
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Figure 6: vehicles fleet histogram distribution according to the relative fuel consumption difference with
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Figure 7: vehicles fleet density distribution according to the relative fuel consumption difference with public
EPA vehicle information

The figure 7 shows that around 88% of the conventional and hybrid electrical vehicles modeled have been
validated on EPA regulatory cycles with a fuel consumption difference less than 10%.
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3.2 Case study of a conventional: 2017 Mazda3

For this case study, we assumed 600W for the accessories load during the cycle simulation. This value
represent the U.S drivers average accessories energy consumption.

Table 2: 2017 Mazda3 characteristics

Unit Value
Model Year - 2017
Vehicle type - Conventional
EPA class - Compact
MSRP $ 25475
EPA FE (city/hwy) MPG 26/35
0-60mph S 8.1
Curb weight kg 1361
Powertrain architecture - ICE
Engine - 2.5L, 184hp
Engine tech ) Chain-driven dual overhead cams, 4 valves per
' cylinder with variable intake valve timing (VVT)
Net power hp 184
Transmission - Planetary Automatic
Final drive - 3.59
Cq - 0.31
Frontal area m’ 2.24
Autonomie model accuracy % 1.6
%107
25 13
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Figure 5: Real world data for a cycle
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Figure 6: Autonomie results for a cycle

Table 3: Autonomie models accuracy on four real world cycles

Distance Real world fuel ~ Autonomie fuel  Fuel consumption Real world Autonomie
[km] consumption consumption difference fuel economy  fuel economy
[1/100km] [[/100km] [%] [mpg] [mpg]
Cycle 1 7.3 7.4 6.8 8.5% 31.9 34.7
Cycle 2 2.9 8.0 8.4 4.3% 29.3 27.9
Cycle 3 3.3 8.1 8.0 0.8% 29.2 29.2
Cycle 4 4.2 6.1 6.9 13.6% 38.9 34.0

There is a large uncertainty variation across cycles, which need additional data analysis. Indeed Autonomie’s
models only represent operation under ambient conditions (i.e., 72F with warmed up engine) and the test data
does not provide information on several important parameters such as the vehicle accessory load (i.e., A/C,
heat...) or the initial state of charge (SOC), for the electrified cars.

Conclusions

In this study, vehicles considered so far (for the manufacturing years from 2011 to 2018) include 143
conventional vehicles, 52 HEVs, 13 PHEVs and 2 EVs. The vast majority of vehicles show <10% fuel
economy uncertainty on the standard driving cycles. Therefore, we can attest a good level of confidence on
the methodology used and the results obtained. However, Autonomie’s models only represent operation under
ambient conditions (i.e., 72F with warmed up engine). Because of that, the lack of information on several
important parameters (i.e. vehicle accessory load, outside temperature, Initial SOC) can explain the wider
prediction uncertainties in certain cases. For the future data collection efforts funded by DOE, we would
request the inclusion of more parameters that would help in calibrating Autonomie models.
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