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Executive Summary

Connected and Automated Vehicles (CAVs) along with new mobility modes have the potential to transform
the transportation system as we know it. Quantifying the impact of the new technologies on Mobility and
Energy requires higher system level approaches than previously considered. Indeed, while most research has
been focused at the indivual vehicle level, connectivity and automation forces us to consider the vehicle
environment (e.g., V2V, V21, 12V...). In addition, new transportation modes such as TNC (e.qg., Uber, Lyft...)
require us to understand traveller behaviour, especially why and how each traveller decides what mode to
use. Using a set of integrated and complementary tools, this paper assesses the impact of Smart Mobility at
the individual vehicle (e.g., route based control), multi-vehicle (e.g., eco-routing) and metropolitan area (e.g.,
fully automated personally owned shared vehicles) levels. We will quantify how benefits vary across
powertrains (e.g., conventional, HEVs, PHEVs, BEVS) and scenarios. We demonstrate that electrified
vehicles, especially battery electric vehicles can benefit most from advanced control enabled by connectivity
and automation, especially in urban environment. We will also demonstrate the critical importance of vehicle
electrification to mitigate the impact of increased Vehicle Miles Traveled (VMT) resulting from fully

automated vehicles.

1 Introduction

Advances in technology have brought the idea of autonomous vehicles (AVs) close to reality. However, the
potential effects of such disrupting technologies are still largely unknown, mainly due to lack of data and the
novelty of the technology. The vehicles are currently in the development phase at various automobile original
equipment manufacturers (OEMSs), mobility service providers, and other technology companies. Electrified
vehicle benefits are impacted by (1) how vehicles are driven (i.e., vehicle speed) as well as (2) how long they
are driven (i.e., daily/yearly driving distance). Different system simulation tools are required to address those
issues separately.

To quantify the impact of CAVs on vehicle speed resulting from smoother acceleration/decelerations as well
as a lower number of stops, Argonne has designed RoadRunner. simulates longitudinal movements of one or
more user-defined vehicles along a user-defined route. RoadRunner (Figure 1) is a simulation framework
built upon Autonomie [1], where multiple vehicles with full powertrain models and the interactions between
the vehicles and their environment can be simulated. It is designed to allow the simulation of a broad range
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of driving situations, while facilitating the development of control strategies where the powertrain and the
vehicle dynamics interact in a closed-loop fashion.
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Fig. 1. RoadRunner CAV Simulation Framework

To quantify the impact of new mobility modes on vehicle usage, it is necessary to model the entire
transportation system. Indeed, estimating the energy consumption during measured real-world drive cycles
provides a good approximation, but does not ensure a consistent impact on the transportation system model
as a whole [1]. This is why it is important to evaluate the energy impact on the drive cycles generated by the
system model itself. The transportation system modeling tool POLARIS [2] is used to develop and validate
a transportation system model for Bloomington, IL. It utilizes population and vehicle synthesis, along with
activity demand generation and traffic flow, to model the transportation system. The resulting stochastic
speed profiles from POLARIS, combined with the data on drive cycles and fleet distribution, are used as
inputs to Autonomie, a vehicle system modeling tool. Autonomie then simulates the energy consumption of
the transportation network for different vehicle technologies. Figure 2 illustrates the steps involved in the
process.
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Fig. 2. Transportation Network Modeling Using POLARIS and Autonomie

POLARIS is a high-performance, open-source, agent-based modeling framework that can simulate large-
scale transportation systems. It features integrated travel demand, network flow, and a traffic assignment
model, in which it can model multiple key aspects of travel decisions (activity planning, route choice, and
tactical-level driving decisions) simultaneously and in a continuous, fully integrated manner. The model
covers individual decision making at long-term, mid-term, and within-day timeframes for various travel-
related decisions. The mid-term and within-day travel behavior decisions are captured in a computational
process model representation of decision-making, which also captures the process of individual activity
episode planning and engagement [4]. These decisions are constrained by long-term choices regarding
home/workplace choice and household vehicle choices, and in turn, these influence activity and travel
episode planning and realization. The network model includes a meso-scopic representation of vehicle
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movements based on Newell’s kinematic wave model [5], with updates that represent interactions with traffic
control infrastructure. The traveler agents in the model can react in real time to changing or unexpected
network conditions based on either direct observation or information provision, using an en-route rerouting
and replanning model. For long-term choices, the fleet definitions within POLARIS can either come from
external market penetration forecasts [6] coupled with baseline vehicle registration data, or from household-
level choice modeling [7]. An additional CAV technology choice step is implemented using models based on
stated-preference survey data [8] to determine the willingness-to-pay for various levels of CAV technology
for each household vehicle.

2 Impact of Vehicle Control on Electrification Benefits

To illustrate the impact of CAV, we consider an eco-approach scenario with multiple vehicles: at the approach
to a connected traffic light, the lead vehicle receives information about the current state and the next change
of state. A two-stage control logic inspired by the literature [9] was implemented into RoadRunner, to
minimize average tractive energy consumption and avoid stopping at red lights to improve system efficiency
for multiple vehicles. The algorithm works in two stages: First, at each time step, upper and lower bounds
for vehicle speed are computed so that the vehicle reaches the intersection within the green phase, and within
the speed limit. Second, a cost function that balances safe distance from preceding vehicle (if any), deviation
from the upper bound speed (i.e., target speed) and vehicle tractive effort is minimized to find the commanded
speed.

The algorithm has been developed so that each vehicle minimizes its own tractive force, avoids collisions
with other vehicles and avoids stopping at red lights. We compare the approach with a baseline strategy where
the vehicles use traffic light timing information and a human driver model. For simulation purposes, we
consider scenarios with five vehicles in a single-lane road with traffic lights. To emulate real road
configurations, the route attributes in the Chicago area were extracted from HERE’s digital map by defining
an origin and a destination in a geographical interface, as shown in Figure 3.

"Route1: fom Belmont Central | Route2:from:Union Station
to Union Station = to WrigleyFie

Routez: Union Station to Wrigley Field
Route from [41.8786,-87.6396] to [41.9478,-87.657] (lat/long)
T T T T T T

Routel: Belmont Central to Union Station
Route from [41.9241,-87.7888] to [41.8793,-87.6396] (lat/long)
T T T T T

Figure 3. Route attributes in Chicago area extracted from HERE’s digital map

To analyze the energy impact of various types of electric vehicles, vehicles with three different powertrain
are considered: a micro hybrid electric vehicle (HEV), a full HEV, and a battery electric vehicle (BEV). The
midsize car vehicles were sized to have similar acceleration performance as the conventional vehicle. The
micro-HEV’s transmission is a 6-speed automatic gearbox, whereas the full HEV has a Toyota Prius-like
power-split architecture. The BEV is equipped with a direct gear transmission with a real world range of 160
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km. The BEV energy consumption is expressed as an equivalent fuel consumption (equivalent liter per
hundred kilometers), which is obtained by using the equivalence of 33.7 kWh of electricity to a gasoline
gallon as recommended by the U.S. Environmental Protection Agency. Figure 4 shows fuel consumption,
represented according to routes and powertrain architectures.
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Figure 4. Comparison of fuel consumption for a conventional vehicle, micro HEV, full HEV and BEV on Route 1 (top) and Route 2 (bottom)

The connectivity method reduces the energy consumption for all powertrain architectures. At high average
speed (Route 1), the fuel consumption reduction for the HEV and BEV are slightly larger than for the other
vehicles. At low average speed (Route 2), the reduction is relatively larger for all vehicles than at high average
speed (Route 1). The connectivity method ensures better fuel consumption reduction for electrified
powertrains (HEV and BEV) than for conventional and micro-HEV powertrains. In particular, under urban
road conditions, the connectivity method leads to larger potential decreases for the BEV rather than for other
powertrains architectures. In a previous study [10], we observed that the connectivity-related speed
transformations ensure better energy consumption reductions for electrified powertrains than for
conventional vehicles, since the reduction of loss in the electric traction component is larger than that in the
combustion engine.

3 Vehicle Usage Impact Using Transportation System Simulation

Vehicle technology benefits, including their return on investment, depends where they are driven (i.e., urban
vs highway) and who long they are driven (i.e., short commute vs TNC/taxi extensive usage). We applied the
updated POLARIS simulator to the Bloomington, Illinois, region to explore the potential impacts of partially
(level 4) and fully (level 5) automated private vehicles on a regional level. The Bloomington area contains
approximately 156,000 people in 65,000 households located in 222 traffic analysis zones. The multimodal
transportation network includes 3,947 roadway links and 470 transit stops, as shown in Figure 5. The model
was built with data obtained from the McLean County Regional Planning Commission, the local
Metropolitan Planning Organization, U.S. Census Bureau information, vehicle registration data from IHS,
and other sources.
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Figure 5. Bloomington, Illinois, network and land use patterns
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In order to explore the potential impact of private AV, we consider multiple timeframes (including different
vehicle technologies) and demand levels, as shown in Table 1. We use the baseline model to develop cases
for the 2025 and 2040 forecasts using planning agency and State of Illinois population and forecast estimates
to explore the impacts of background population growth and vehicle type and technology improvements
regardless of CAV deployment. Then we add cases for level 4 AV for the 2025 and 2040 forecasts, and level
5 AV for the 2040 forecast. In each CAV scenario, there are higher and lower demand cases; we control these
by varying marginal AV technology costs. The cost then determines the market penetration through the
household-level willingness-to-pay model. In all scenarios, the value of travel time savings relative to auto
drive is set at 50% of the baseline; this is equivalent to the value to drivers of the time difference between
congested and uncongested travel [10].

Table 1. Scenario design: CAV demand and technology levels and assumptions by year

CAY Technology

e TS T T

(Year X AV demand)
Base 2040
Year
X

2015-base

2025-base X

2025-cav-low? x

2025-cav-high® x

2040-base X

2040-cav-low* X X
2040-cav-highd x x
2040-cav-low-charge=® X
2040-cav-high-chargede x
2025 low CAV scenario, price = $7,500.

2025 high CAV scenario, price = $2,500.

2040 low CAV scenario, price = $2,500.

2040 hish CAV scenario, price = $0.

High road pricing tax: $0.10 per mile for ZOV miles.
VOTTS = 0.5 x baseline.

the o o

Scenario assumptions that are left fixed for all level 5 runs relate to the cost values used within the household
vehicle-sharing optimizer. These include a fixed vehicle ownership cost of $20 per vehicle per day. This is
operationalized as a benefit for households for each vehicle in the household fleet that is not used during the
travel day; this value represents the long-run capital cost that would not be needed if fewer vehicles could
serve the household. There is also a fuel cost of $0.13 per mile and a taxi cost of $3 plus $0.8 per mile. There
is also a value of travel time of $10 per hour used with the optimization model

Finally, for the Level 5 analysis, we add cases involving a ZOV road pricing charge, when the AV is
unoccupied, of $0.10 per mile to explore a potential response that transport authorities could potentially
implement through vehicle-to-infrastructure connectivity. This gives us a total of three baseline cases, four
level 4 cases and four level 5 cases, from the travel demand perspective. However, another key issue is how
the additional loads from vehicle automation interact with vehicle design and energy consumption.

Vehicle Assumptions

To explore the potential impact of Level 5 CAV, we look at multiple timeframes and demand levels. We use
the baseline model and develop cases for the 2025 and 2040 forecast years using MPO and State of Illinois
population and forecast estimates to explore the impacts of background population growth and vehicle type
and technology improvements regardless of CAV deployment. Then, we add cases for Level 4 CAV for the
2025 and 2040 forecast years, and Level 5 CAV for the 2040 forecast year. In each CAV scenario, there are
higher and lower demand cases, which are controlled through varying the marginal CAV technology cost.
The cost then determines the market penetration through the household level willingness to pay model.
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The estimation of regional transportation energy consumption for the various scenarios rely on detailed
Autonomie vehicle energy consumption simulation models. The vehicle fleet assumptions selected for the
scenarios incorporate the different vehicle technology targets across analysis years as generated by the U.S.
DOE. For each analysis year, 23 vehicle models have been developed across 5 different EPA vehicle
classifications (compact, midsize, small SUV, midsize SUV, and pickups). Each driving cycle generated from
POLARIS and converted to drive traces through SVTrip [11] is matched with an appropriate vehicle model
to estimate the energy consumption for that trip. The vehicle models used for the study includes conventional
vehicles (gasoline and diesel), power-split HEVs, plug-in hybrids (PHEVSs) and battery electric vehicles
(BEV). We add two additional cases two the scenario definitions, where the vehicle technology has a
business-as-usual (Low) case, and a US DOE Vehicle Technologies Office program success case (High).
Market penetration models from various research papers have been used to inform the distribution of the
advanced vehicle technology and segment types for each scenario. Distributions of the characteristics by
scenario are shown in Figure 6.
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Figure 6. Distribution of (a) Vehicle powertrain and (b) segment by scenario

Table 2 details the different assumptions for the various vehicle technology targets. For simplicity, only a
subset of the assumptions were picked for comparison. The detailed list of vehicle attribute assumptions is
included in the Vehicle Technologies Office Benefits and Scenario Analysis study [12].

Table 2. Vehicle technology scenario assumptions

2015 2025
| Low

- o e S

hybrid hybrid hybrid hybrid

turbo turbo turbo turbo
Conventional transmission 6-speed 6-speed 8-speed 8-speed 8-speed

automatic automatic  automatic automatic  automatic

Engine peak efficiency (%) 36 38 43 43 50
Electric machine specific power (W/kg) 1125 1500 1600 1900 2000
Electric machine peak efficiency (%a) a2 a3 94 25 a7
Battery specific power [HEV] (Wikg) 2750 4000 3000 5000 6000
Battery specific power [PHEV] (Wikg) 375 1000 1500 1000 1500
Battery usable energy density [PHEV] (Wh'kg) 70 105 125 115 170
Battery usable energy density [BEV] (Wg'kg) 170 230 310 280 320
Mass reduction (%) 0 0.8 23 44 246
Aero reduction (%) 0 42 127 o7 203
Rolling resistance reduction (%o) 0 0 125 125 25
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To represent CAVs additional sensors and computing power, additional base accessory load is added to the
all the vehicle combinations. To evaluate the uncertainty of additional accessory loads, three different base
accessory load vehicles were developed with an additional 600, 1000, and 2500 W, representing a reasonable
range of potential values.

Impact of Personally Owned AVs on Mobility and Energy

The metrics include the total trips taken in the region, overall vehicle mileage (VMT), the total hours traveled
by vehicles (VHT), the average experienced speed (a key measure of congestion) as well as the vehicle energy
consumption. By looking at the scenarios over time (Figure 7), we can visualize the range of potential
impacts with the AV low and high demand cases providing the ranges, along with the baseline change over
time. We can see that the uncertainty surrounding the AV penetration provides a wide range of outcomes,
which would certainly be extended if we consider uncertainty over the other parameters in the model as well.
Additionally, as the AV technology level increase, this uncertainty gets wider. Overall, it is clear that the level
5 AV has a much higher impact on mobility than level 4.

90% 140%
%A VMT %A VHT
80%
120%
T70%
100%
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40%
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2015 2025 2040 2015 2025 2040

CAV-5 mCAV-4  mBase

Figure 7. Range of VMT and VHT changes over time

Similarly, we can visualize the change in total fuel and electrical use over time, with the best and worst cases
defining the ranges. Here the range is even wider, as we are layering on an additional uncertainty in the fleet
composition and AV accessory load. The low technology adoption with high AV accessory load scenarios
define the highest fuel use/lowest electrical use bound and the high technology adoption with low AV load
cases do the opposite. We see in Figure 8 that in the baseline scenarios, there is a gradual reduction in fuel
use and increase in electrical use representing the change due to vehicle technology improvements, ranging
from 50% to 70% reductions from current levels — depending on the level of advanced technology adoption.
In the level 4 and level 5 cases, we see that fuel use and electrical use are always higher, due to the increased
travel, although it is fairly close for the level 4 best-case scenario. In the worst case, however, the gains in
fuel efficiency from improved baseline vehicle technology are almost entirely erased and the 2040 fuel use
is only about 8% less than current levels. In all cases, electrical use is increasing due to increased vehicle
electrification.
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Figure 8. Range of fuel and electrical use changes over time

Since we model individual vehicles in Autonomie, we can quantify the impact of connectivity and automation
across each individual powertrain according to multiple uncertainties. Figure 9 shows the impact of increased
accessory loads on the overall energy benefits.

CAV-4 (high demand) CAV-5 (high demand)

veh low veh high veh low veh high For low tech scenario:
2500 difference of up to 21%
i fuel and 23% electricity
usage based on CAV
acc. load

Avg. Fuel (MWh)
=
w
o
(=]

o @ For high tech scenario:
500 difference of up to 31%
0 fuel and 27% electricity

usage based on CAV
acc. load

CAV accessory load

soow [l 1000w [ 2500w

Figure 9. Impact of Additional AccessoryLoads due to Sensors on Energy Consumption
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4 Conclusion

The benefits of vehicle technologies, including electrification, will be greatly impacted by the emergence of
connectivity, automation and sharing. To understand potential future impact, different system simulation
tools were used to estimate the impact from (1) advanced control targeting both vehicle speed and powertrain
as well as change in driving behaviour (i.e., vehicle distance travelled...).

An eco-driving strategy was first assessed using RoadRunner. The eco-approach algorithm was applied to
various powertrain architectures with V2V and V21 communication, so that the signal time and phase
information of the traffic signals was considered to be available to the individual vehicles. The simulation
results showed 5-9% reduction in fuel consumption. WThe reduction is greater for a low-average-speed
scenario than for a high-average-speed scenario. Most importantly, under urban road conditions (low average
speed), BEVs showed greater potential for relative energy savings compared to conventional vehicles and
HEVs.
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Fully autonomous, privately owned vehicles have the potential to substantially impact traffic and energy use
by induced demand and ZOV travel due to vehicle repositioning. In the absence of data on how such vehicles
would actually be adopted and used, simulation with reasonable assumptions is best way to analyze possible
outcomes. Therefore we developed a new optimization model of household vehicle and ride-sharing and
implemented it as a behavioral module in POLARIS, building on previous work representing privately owned
partially automated vehicles. This allows us to simulate people’s travel behavior changes in the presence of
level 5 CAVs. We ran the combined POLARIS-Autonomie model for privately owned, shared CAVs for the
Bloomington, Illinois, metropolitan area for 2015, 2025, and 2040 demand scenarios. The model results
demonstrate substantial impacts on vehicle travel and energy consumption from increasing automation, as
well as some potential mitigation strategies including increased electrified vehicle deployment and ZOV
pricing.

Our results indicate that the presence of significant penetration of fully automated privately owned vehicles
would increase trips more than 20% (for low penetration rate/high cost) and 29% (for high penetration
rate/low cost). With the combined effect of ZOV travel, this would increase system level VMT by 36% and
52%, respectively. When analyzing the energy consumption driven by this increase, we find that this would
negate much of the gains in reducing fuel consumption due to baseline vehicle technology improvement over
time. However, introducing a reasonable ZOV pricing strategy of $0.1 per mile could reduce this impact
somewhat (to 30.5% and 45.4%, correspondingly). The research clearly shows that these results could vary
by city and context, depending on their characteristics, as well as the assumptions used, with potentially much
more impact in more diverse, larger metropolitan areas. Due the potential increase in VMT, a significant
increase in electrified vehicle will be required to reduce future fuel use, especially when considering high
accessory loads required by fully automated vehicles.
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