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Executive Summary 
Connected and Automated Vehicles (CAVs) along with new mobility modes have the potential to transform 

the transportation system as we know it.  Quantifying the impact of the new technologies on Mobility and 

Energy requires higher system level approaches than previously considered. Indeed, while most research has 

been focused at the indivual vehicle level, connectivity and automation forces us to consider the vehicle 

environment (e.g., V2V, V2I, I2V…). In addition, new transportation modes such as TNC (e.g., Uber, Lyft…) 

require us to understand traveller behaviour, especially why and how each traveller decides what mode to 

use. Using a set of integrated and complementary tools, this paper assesses the impact of Smart Mobility at 

the individual vehicle (e.g., route based control), multi-vehicle (e.g., eco-routing) and metropolitan area (e.g., 

fully automated personally owned shared vehicles) levels. We will quantify how benefits vary across 

powertrains (e.g., conventional, HEVs, PHEVs, BEVs) and scenarios. We demonstrate that electrified 

vehicles, especially battery electric vehicles can benefit most from advanced control enabled by connectivity 

and automation, especially in urban environment. We will also demonstrate the critical importance of vehicle 

electrification to mitigate the impact of increased Vehicle Miles Traveled (VMT) resulting from fully 

automated vehicles.  

1 Introduction 
Advances in technology have brought the idea of autonomous vehicles (AVs) close to reality. However, the 
potential effects of such disrupting technologies are still largely unknown, mainly due to lack of data and the 
novelty of the technology. The vehicles are currently in the development phase at various automobile original 
equipment manufacturers (OEMs), mobility service providers, and other technology companies. Electrified 
vehicle benefits are impacted by (1) how vehicles are driven (i.e., vehicle speed) as well as (2) how long they 
are driven (i.e., daily/yearly driving distance). Different system simulation tools are required to address those 
issues separately.  

To quantify the impact of CAVs on vehicle speed resulting from smoother acceleration/decelerations as well 
as a lower number of stops, Argonne has designed RoadRunner. simulates longitudinal movements of one or 
more user-defined vehicles along a user-defined route. RoadRunner (Figure 1) is a simulation framework 
built upon Autonomie [1], where multiple vehicles with full powertrain models and the interactions between 
the vehicles and their environment can be simulated. It is designed to allow the simulation of a broad range 
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of driving situations, while facilitating the development of control strategies where the powertrain and the 
vehicle dynamics interact in a closed-loop fashion.  

 
Fig. 1.   RoadRunner CAV Simulation Framework 

To quantify the impact of new mobility modes on vehicle usage, it is necessary to model the entire 
transportation system. Indeed, estimating the energy consumption during measured real-world drive cycles 
provides a good approximation, but does not ensure a consistent impact on the transportation system model 
as a whole [1]. This is why it is important to evaluate the energy impact on the drive cycles generated by the 
system model itself.  The transportation system modeling tool POLARIS [2] is used to develop and validate 
a transportation system model for Bloomington, IL. It utilizes population and vehicle synthesis, along with 
activity demand generation and traffic flow, to model the transportation system. The resulting stochastic 
speed profiles from POLARIS, combined with the data on drive cycles and fleet distribution, are used as 
inputs to Autonomie, a vehicle system modeling tool. Autonomie then simulates the energy consumption of 
the transportation network for different vehicle technologies. Figure 2 illustrates the steps involved in the 
process. 

 
Fig. 2.   Transportation Network Modeling Using POLARIS and Autonomie 

POLARIS is a high-performance, open-source, agent-based modeling framework that can simulate large-
scale transportation systems. It features integrated travel demand, network flow, and a traffic assignment 
model, in which it can model multiple key aspects of travel decisions (activity planning, route choice, and 
tactical-level driving decisions) simultaneously and in a continuous, fully integrated manner. The model 
covers individual decision making at long-term, mid-term, and within-day timeframes for various travel-
related decisions. The mid-term and within-day travel behavior decisions are captured in a computational 
process model representation of decision-making, which also captures the process of individual activity 
episode planning and engagement [4]. These decisions are constrained by long-term choices regarding 
home/workplace choice and household vehicle choices, and in turn, these influence activity and travel 
episode planning and realization. The network model includes a meso-scopic representation of vehicle 
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movements based on Newell’s kinematic wave model [5], with updates that represent interactions with traffic 
control infrastructure. The traveler agents in the model can react in real time to changing or unexpected 
network conditions based on either direct observation or information provision, using an en-route rerouting 
and replanning model. For long-term choices, the fleet definitions within POLARIS can either come from 
external market penetration forecasts [6] coupled with baseline vehicle registration data, or from household-
level choice modeling [7]. An additional CAV technology choice step is implemented using models based on 
stated-preference survey data [8] to determine the willingness-to-pay for various levels of CAV technology 
for each household vehicle. 

2 Impact of Vehicle Control on Electrification Benefits 
To illustrate the impact of CAV, we consider an eco-approach scenario with multiple vehicles: at the approach 
to a connected traffic light, the lead vehicle receives information about the current state and the next change 
of state. A two-stage control logic inspired by the literature [9] was implemented into RoadRunner, to 
minimize average tractive energy consumption and avoid stopping at red lights to improve system efficiency 
for multiple vehicles. The algorithm works in two stages: First, at each time step, upper and lower bounds 
for vehicle speed are computed so that the vehicle reaches the intersection within the green phase, and within 
the speed limit. Second, a cost function that balances safe distance from preceding vehicle (if any), deviation 
from the upper bound speed (i.e., target speed) and vehicle tractive effort is minimized to find the commanded 
speed. 

The algorithm has been developed so that each vehicle minimizes its own tractive force, avoids collisions 
with other vehicles and avoids stopping at red lights. We compare the approach with a baseline strategy where 
the vehicles use traffic light timing information and a human driver model. For simulation purposes, we 
consider scenarios with five vehicles in a single-lane road with traffic lights. To emulate real road 
configurations, the route attributes in the Chicago area were extracted from HERE’s digital map by defining 
an origin and a destination in a geographical interface, as shown in Figure 3. 

 

 
Figure 3. Route attributes in Chicago area extracted from HERE’s digital map 

To analyze the energy impact of various types of electric vehicles, vehicles with three different powertrain 
are considered: a micro hybrid electric vehicle (HEV), a full HEV, and a battery electric vehicle (BEV). The 
midsize car vehicles were sized to have similar acceleration performance as the conventional vehicle. The 
micro-HEV’s transmission is a 6-speed automatic gearbox, whereas the full HEV has a Toyota Prius-like 
power-split architecture. The BEV is equipped with a direct gear transmission with a real world range of 160 
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km. The BEV energy consumption is expressed as an equivalent fuel consumption (equivalent liter per 
hundred kilometers), which is obtained by using the equivalence of 33.7 kWh of electricity to a gasoline 
gallon as recommended by the U.S. Environmental Protection Agency. Figure 4 shows fuel consumption, 
represented according to routes and powertrain architectures.  

 
Figure 4. Comparison of fuel consumption for a conventional vehicle, micro HEV, full HEV and BEV on Route 1 (top) and Route 2 (bottom) 

The connectivity method reduces the energy consumption for all powertrain architectures. At high average 
speed (Route 1), the fuel consumption reduction for the HEV and BEV are slightly larger than for the other 
vehicles. At low average speed (Route 2), the reduction is relatively larger for all vehicles than at high average 
speed (Route 1). The connectivity method ensures better fuel consumption reduction for electrified 
powertrains (HEV and BEV) than for conventional and micro-HEV powertrains. In particular, under urban 
road conditions, the connectivity method leads to larger potential decreases for the BEV rather than for other 
powertrains architectures. In a previous study [10], we observed that the connectivity-related speed 
transformations ensure better energy consumption reductions for electrified powertrains than for 
conventional vehicles, since the reduction of loss in the electric traction component is larger than that in the 
combustion engine.  

3 Vehicle Usage Impact Using Transportation System Simulation 
Vehicle technology benefits, including their return on investment, depends where they are driven (i.e., urban 
vs highway) and who long they are driven (i.e., short commute vs TNC/taxi extensive usage). We applied the 
updated POLARIS simulator to the Bloomington, Illinois, region to explore the potential impacts of partially 
(level 4) and fully (level 5) automated private vehicles on a regional level. The Bloomington area contains 
approximately 156,000 people in 65,000 households located in 222 traffic analysis zones. The multimodal 
transportation network includes 3,947 roadway links and 470 transit stops, as shown in Figure 5. The model 
was built with data obtained from the McLean County Regional Planning Commission, the local 
Metropolitan Planning Organization, U.S. Census Bureau information, vehicle registration data from IHS, 
and other sources. 

 
Figure 5. Bloomington, Illinois, network and land use patterns 
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In order to explore the potential impact of private AV, we consider multiple timeframes (including different 
vehicle technologies) and demand levels, as shown in Table 1. We use the baseline model to develop cases 
for the 2025 and 2040 forecasts using planning agency and State of Illinois population and forecast estimates 
to explore the impacts of background population growth and vehicle type and technology improvements 
regardless of CAV deployment. Then we add cases for level 4 AV for the 2025 and 2040 forecasts, and level 
5 AV for the 2040 forecast. In each CAV scenario, there are higher and lower demand cases; we control these 
by varying marginal AV technology costs. The cost then determines the market penetration through the 
household-level willingness-to-pay model. In all scenarios, the value of travel time savings relative to auto 
drive is set at 50% of the baseline; this is equivalent to the value to drivers of the time difference between 
congested and uncongested travel [10]. 

Table 1. Scenario design: CAV demand and technology levels and assumptions by year 

 
Scenario assumptions that are left fixed for all level 5 runs relate to the cost values used within the household 
vehicle-sharing optimizer. These include a fixed vehicle ownership cost of $20 per vehicle per day. This is 
operationalized as a benefit for households for each vehicle in the household fleet that is not used during the 
travel day; this value represents the long-run capital cost that would not be needed if fewer vehicles could 
serve the household. There is also a fuel cost of $0.13 per mile and a taxi cost of $3 plus $0.8 per mile. There 
is also a value of travel time of $10 per hour used with the optimization model 

Finally, for the Level 5 analysis, we add cases involving a ZOV road pricing charge, when the AV is 
unoccupied, of $0.10 per mile to explore a potential response that transport authorities could potentially 
implement through vehicle-to-infrastructure connectivity. This gives us a total of three baseline cases, four 
level 4 cases and four level 5 cases, from the travel demand perspective. However, another key issue is how 
the additional loads from vehicle automation interact with vehicle design and energy consumption.  

Vehicle Assumptions 
To explore the potential impact of Level 5 CAV, we look at multiple timeframes and demand levels.  We use 
the baseline model and develop cases for the 2025 and 2040 forecast years using MPO and State of Illinois 
population and forecast estimates to explore the impacts of background population growth and vehicle type 
and technology improvements regardless of CAV deployment.  Then, we add cases for Level 4 CAV for the 
2025 and 2040 forecast years, and Level 5 CAV for the 2040 forecast year.  In each CAV scenario, there are 
higher and lower demand cases, which are controlled through varying the marginal CAV technology cost. 
The cost then determines the market penetration through the household level willingness to pay model. 
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The estimation of regional transportation energy consumption for the various scenarios rely on detailed 
Autonomie vehicle energy consumption simulation models. The vehicle fleet assumptions selected for the 
scenarios incorporate the different vehicle technology targets across analysis years as generated by the U.S. 
DOE. For each analysis year, 23 vehicle models have been developed across 5 different EPA vehicle 
classifications (compact, midsize, small SUV, midsize SUV, and pickups). Each driving cycle generated from 
POLARIS and converted to drive traces through SVTrip [11] is matched with an appropriate vehicle model 
to estimate the energy consumption for that trip. The vehicle models used for the study includes conventional 
vehicles (gasoline and diesel), power-split HEVs, plug-in hybrids (PHEVs) and battery electric vehicles 
(BEV). We add two additional cases two the scenario definitions, where the vehicle technology has a 
business-as-usual (Low) case, and a US DOE Vehicle Technologies Office program success case (High). 
Market penetration models from various research papers have been used to inform the distribution of the 
advanced vehicle technology and segment types for each scenario. Distributions of the characteristics by 
scenario are shown in Figure 6. 

 
 (a) (b) 

Figure 6. Distribution of (a) Vehicle powertrain and (b) segment by scenario 

Table 2 details the different assumptions for the various vehicle technology targets. For simplicity, only a 
subset of the assumptions were picked for comparison. The detailed list of vehicle attribute assumptions is 
included in the Vehicle Technologies Office Benefits and Scenario Analysis study [12]. 

Table 2. Vehicle technology scenario assumptions 
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To represent CAVs additional sensors and computing power, additional base accessory load is added to the 
all the vehicle combinations. To evaluate the uncertainty of additional accessory loads, three different base 
accessory load vehicles were developed with an additional 600, 1000, and 2500 W, representing a reasonable 
range of potential values. 

Impact of Personally Owned AVs on Mobility and Energy 
The metrics include the total trips taken in the region, overall vehicle mileage (VMT), the total hours traveled 
by vehicles (VHT), the average experienced speed (a key measure of congestion) as well as the vehicle energy 
consumption.  By looking at the scenarios over time (Figure 7), we can visualize the range of potential 
impacts with the AV low and high demand cases providing the ranges, along with the baseline change over 
time.  We can see that the uncertainty surrounding the AV penetration provides a wide range of outcomes, 
which would certainly be extended if we consider uncertainty over the other parameters in the model as well.  
Additionally, as the AV technology level increase, this uncertainty gets wider. Overall, it is clear that the level 
5 AV has a much higher impact on mobility than level 4. 

 
Figure 7. Range of VMT and VHT changes over time 

Similarly, we can visualize the change in total fuel and electrical use over time, with the best and worst cases 
defining the ranges.  Here the range is even wider, as we are layering on an additional uncertainty in the fleet 
composition and AV accessory load. The low technology adoption with high AV accessory load scenarios 
define the highest fuel use/lowest electrical use bound and the high technology adoption with low AV load 
cases do the opposite.  We see in Figure 8 that in the baseline scenarios, there is a gradual reduction in fuel 
use and increase in electrical use representing the change due to vehicle technology improvements, ranging 
from 50% to 70% reductions from current levels – depending on the level of advanced technology adoption.  
In the level 4 and level 5 cases, we see that fuel use and electrical use are always higher, due to the increased 
travel, although it is fairly close for the level 4 best-case scenario.  In the worst case, however, the gains in 
fuel efficiency from improved baseline vehicle technology are almost entirely erased and the 2040 fuel use 
is only about 8% less than current levels.  In all cases, electrical use is increasing due to increased vehicle 
electrification. 
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Figure 8. Range of fuel and electrical use changes over time 

Since we model individual vehicles in Autonomie, we can quantify the impact of connectivity and automation 
across each individual powertrain according to multiple uncertainties. Figure 9 shows the impact of increased 
accessory loads on the overall energy benefits.  

. 
Figure 9. Impact of Additional AccessoryLoads due to Sensors on Energy Consumption  

4 Conclusion 
The benefits of vehicle technologies, including electrification, will be greatly impacted by the emergence of 
connectivity, automation and sharing. To understand potential future impact, different system  simulation 
tools were used to estimate the impact from (1) advanced control targeting both vehicle speed and powertrain 
as well as change in driving behaviour (i.e., vehicle distance travelled…). 

An eco-driving strategy was first assessed using RoadRunner. The eco-approach algorithm was applied to 
various powertrain architectures with V2V and V2I communication, so that the signal time and phase 
information of the traffic signals was considered to be available to the individual vehicles. The simulation 
results showed 5-9% reduction in fuel consumption. WThe reduction is greater for a low-average-speed 
scenario than for a high-average-speed scenario. Most importantly, under urban road conditions (low average 
speed), BEVs showed greater potential for relative energy savings compared to conventional vehicles and 
HEVs. 
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Fully autonomous, privately owned vehicles have the potential to substantially impact traffic and energy use 
by induced demand and ZOV travel due to vehicle repositioning. In the absence of data on how such vehicles 
would actually be adopted and used, simulation with reasonable assumptions is best way to analyze possible 
outcomes. Therefore we developed a new optimization model of household vehicle and ride-sharing and 
implemented it as a behavioral module in POLARIS, building on previous work representing privately owned 
partially automated vehicles. This allows us to simulate people’s travel behavior changes in the presence of 
level 5 CAVs.  We ran the combined POLARIS-Autonomie model for privately owned, shared CAVs for the 
Bloomington, Illinois, metropolitan area for 2015, 2025, and 2040 demand scenarios.  The model results 
demonstrate substantial impacts on vehicle travel and energy consumption from increasing automation, as 
well as some potential mitigation strategies including increased electrified vehicle deployment and ZOV 
pricing. 

Our results indicate that the presence of significant penetration of fully automated privately owned vehicles 
would increase trips more than 20% (for low penetration rate/high cost) and 29% (for high penetration 
rate/low cost).  With the combined effect of ZOV travel, this would increase system level VMT by 36% and 
52%, respectively. When analyzing the energy consumption driven by this increase, we find that this would 
negate much of the gains in reducing fuel consumption due to baseline vehicle technology improvement over 
time. However, introducing a reasonable ZOV pricing strategy of $0.1 per mile could reduce this impact 
somewhat (to 30.5% and 45.4%, correspondingly). The research clearly shows that these results could vary 
by city and context, depending on their characteristics, as well as the assumptions used, with potentially much 
more impact in more diverse, larger metropolitan areas. Due the potential increase in VMT, a significant 
increase in electrified vehicle will be required to reduce future fuel use, especially when considering high 
accessory loads required by fully automated vehicles. 
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