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Summary 

Recently, as connected vehicle technologies such as Vehicle To Vehicle(V2V) and Vehicle To Infra(V2I) 

have been developed, vehicles can predict future driving information and the information can be used for the 

control. If the target distance and velocity are known based on connectivity technologies, the control that 

minimizes the energy required for driving can be implemented with optimal control theories. These 

advantages are effective in autonomous vehicles because the driver does not drive directly. For example, if 

the autonomous vehicle is able to recognize distance to traffic light and traffic signal information, the target 

distance and velocity of the vehicle can be determined and the energy for driving can be minimized based on 

optimal control theories such as dynamic programming and pontryagin’s minimum principle. Nowadays, 

electric vehicles are attracting much attention in order to solve environmental problems. In such electric 

vehicles, the driving range is one of the most important factors for attracting customers and can be extended 

with optimal controls based on connectivity technologies. However, this problem has two states such as 

distance and velocity of the vehicle, and it needs very high computing power to solve this problem based on 

dynamic programming. So, in order to save the computing time, the optimization problem with two states 

should be defined as a dual problem with one state and constraints. In this paper, it will be introduced how 

to define the dual problem with one state and constraints and how to optimize the speed profile of automated 

electric vehicles based on dynamic programming 
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1 Introduction 
As artificial intelligence and big data processing technologies have been advanced, Vehicle communication 
technologies also have been growing. The connected vehicle technologies such as Vehicle To Vehicle(V2V) 
and Vehicle To Infra(V2I), which is one of these technologies, have been studied in many research institutions 
and companies[1],[2]. The forward vehicle information like both the velocity and distance to front vehicle 
and infra information about traffic lights and speed cameras can be known based on these connectivity 
technologies. We can predict the future driving information such as target speed and distance of the vehicle 
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with the forward vehicle information and infra information. For example, if the traffic light information like 
signal changing time and distance from the vehicle, can be known, the target speed and distance also can be 
determined. In addition, if the future driving information is known, the energy for driving can be minimized 
based on optimal control theories such as dynamic programming and pontryagins minimum principle[3]-[6]. 
The optimal control theories generally need future driving information and, in our problem, there are two 
states such as the velocity and distance of the vehicle. But, in order to solve this problem based on dynamic 
programming, it needs high computing power. So, this optimization problem with two states should be 
defined as a dual problem with one state and constraints for saving computing time. Recently, many people 
get interested in electric vehicles to cope with environmental problems[7]-[9] and, in particular, the driving 
range is important to attract customers for electric vehicles. The optimal control minimizing the energy 
required for driving based on connectivity technologies can extend the driving range of electric vehicles and 
it would be useful for growing sales of electric vehicles. This paper is structured as follows: In Section 2, the 
powertrain system for electric vehicle and dynamic equations are presented. In Section 3, the optimal control 
concept is introduced to define the dual problem. Conclusions are presented in the last Section. 

2 Vehicle Model 

2.1 Battery Model 

The battery model with an internal resistance is shown in Figure 1, where 𝑉௦, 𝑅௜, 𝑖௢ and 𝑉௢ are the open 
circuit voltage, internal resistance, output current and output voltage. A state equation of SOC can be 
expressed as follows[10]: 

𝑆𝑂𝐶ሶ ൌ െ
𝑉ௌ െ ඥ𝑉ௌ

ଶ െ 4 ∙ 𝑅௜ ∙ 𝑃ௌ

2 ∙ 𝑅௜ ∙ 𝑄ௌ
 

where 𝑃ௌ and 𝑄ௌ are the battery power and capacity of the battery. 
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Figure1: Static battery model with an internal resistance 

2.2 Powertrain System Configuration 

The powertrain system of the electric vehicle has one gear and is shown in Figure 2. The motor’s speed and 
torque can be calculated as follows: 

𝑆௠௢௧ ൌ 𝛾 ∙ 𝜁 ∙ 𝑆௢௨௧ 
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𝑇௠௢௧ ൌ
1

𝛾 ∙ 𝜁
∙ 𝑇௢௨௧ 

where 𝛾, 𝜁, 𝑆௢௨௧ and 𝑇௢௨௧ are the gear ratio, final drive ratio, wheel speed and wheel torque.  
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Figure2: Powertrain system of electric vehicles 

  

3 Optimal Control Concept 

3.1 Dynamic Programming 

Optimal control theories, such as dynamic programming and pontryagin’s minimum principle, are to define 
cost function and minimize the cost function with state equations. Dynamic programming can derive a 
globally optimal solution whereas pontryagin’s minimum principle can generally find a locally optimal 
solution with hamiltonian. However, dynamic programming requires high computing power and this 
phenomenon becomes worse as the dimension increases. When the target speed and distance are determined, 
the optimal control problem with two states can be defined as follows: 

min 𝐽 ൌ න 𝑃௕௔௧

௧೑

௧బ

ሺ𝑣, 𝑢ሻ𝑑𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣ሶ ൌ 𝑓ሺ𝑣, 𝑢ሻ 

     𝑧ሶ ൌ 𝑣 





where 𝑣, 𝑧 and 𝑢 are the vehicle’s velocity, distance and motor torque. In order to decrease computing 
time, the dual problem with one state can be defined by considering the state of the distance as a constraint 
as follows:  

min 𝐿 ൌ න ሼ𝑃௕௔௧

௧೑

௧బ

൅ 𝜆 ∙ 𝑣ሽ𝑑𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣ሶ ൌ 𝑓ሺ𝑣, 𝑢ሻ 

where 𝜆 is called Lagrange multiplier or co-state. 

3.2 Simulation Results 

In order to apply dynamic programming, the backward model is used for simulation. The simulation 
conditions and results are shown in Table1 and Figure 3. In Figure 3, the optimal speed profiles change 
according to the co-state and the driving distance also changes. The driving distance increases as the absolute 
value of the co-state increases. 
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Table1: Simulation Conditions with Dynamic Programming 

 Simulation Time Time Step Initial Speed Target Speed 
Conditions 100s 0.1s 80km/h 80km/h 

 

 

Figure3: Optimal speed profile according to co-states 

 

4 Conclusion 
Nowadays, connectivity technologies have been researched and it has become possible to recognize the 
information on both forward vehicles and infra. The future driving information such as the target speed and 
distance can be predicted with connectivity technologies and energy for driving can be minimized based on 
optimal control theories. This control strategy can be applied to autonomous vehicles because the vehicle can 
drive itself. This paper introduces the optimal control strategy that minimizes the energy of electric vehicles 
for driving based on dynamic programming. In order to decrease the computing time, the dual problem with 
one state is defined. The simulation result show that the optimal speed profiles and driving distance depends 
on the costate. In future work, it will be analyzed in detail why this speed profile is optimal with constraints 
such as driving distance and time.  
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