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Summary 

Shared autonomous electric vehicles (SAEVs) are expected to have a disruptive impact on mobility the sector. 

As mobility becomes more accessible and attractive due to low-cost and high service level vehicles, induced 

demand is likely to arise. Additionally, SAEV fleets will consists of fit-for-demand energy efficient vehicles 

with many 1-person vehicles. In this research we quantify the required vehicle fleet for the Netherlands with 

the help of an agent-based simulation showing that full adoption of SAEVs might increase the number 

simultaneous vehicles on the road by 200% - 300% due to relocation and induced demand.  However, the 

number of vehicles per 10 000 inhabitants in the Netherlands reduces from 4.488 privately owned vehicles 

per to 687-1.084 SAEVs. 
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1 Introduction 

Autonomous and electric driving technologies are expected to have a revolutionary impact on the mobility 

sector [1]–[6]. The elimination of the driver and reduced fuel costs will open a market for shared autonomous 

electric vehicle (SAEV) fleets. Such fleets provide mobility as a service with high utility, flexibility and at 

low costs [7]–[9]. How exactly this will transform the mobility sector is not completely clear. In figure 1 we 

present a causal diagram that shows the most important changes often found in literature. Also the public 

transport sector is expected to change significantly as a low-cost door-to-door service are usually more 

attractive than current public transport that requires transfers, waiting times, and first- and last mile solutions 

[10]–[13].  
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Figure 1: Key elements of the mobility transformation causes by electric and autonomous driving technologies 

 

SAEV fleets shift car ownership from private to collective. This leads to the question of what the required 

fleet size is to provide in the future mobility demands of society. A variety of studies have modelled mobility 

systems with SAEVs to answer this question. Results, summarized in figure 2, show that one SAEV can 

replace 7 to 20 private vehicles. Important factors that influence these outcomes are the relocation strategy, 

the mobility demand and ride-sharing vs car-sharing [2], [14]–[19]. However, these prior studies largely left 

out two crucial aspects of the future mobility system: 1) the induced mobility demand and 2) fit-for-demand 

vehicles.  

 

Figure 2: Vehicle fleet analysis of SAEV services of prior research 

 

The induced mobility demand as a result of SAEVs is driven by:  

• New user groups due to reduced cost and availability of mobility for children, disabled people 

and persons without driving license [7], [20] 

• Modal shifts from public transport towards SAEVs  [1], [10], [21] 

• Increased comfort and utility which increases trip frequency and distance [1] 

• Relocation of vehicles [15], [17], [19] 
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However, as shared vehicles need only be fit-for-demand for a single trip and we mostly travel alone, smaller 

vehicles are expected to replace current all-purpose family-cars. Such one- or two-person SAEVs are 

expected to be highly energy efficient. However, the previous studies that assessed the required vehicle fleet 

focused on SAEV ride-sharing with current day vehicles, such as minivans and 5-person sedans. In this study 

we fill this research gap by analyzing the required future SEAV fleet composition taking induced demand as 

well as vehicles fit-for-demand into account. With the help of agent-based modelling we simulate scenarios 

in which no private vehicles are owned and trips are made with public transport, walking/biking or shared 

SAEVs. The model focusses on average working days and is a case study of the Netherlands.  

The next section discusses related research. In section three we discuss the methodology of this research. 

This is followed by the results and conclusion. 

2 Related work 

This section provides an overview of other work related. In Table 1 we list previous agent-based models that 

studied SAEV fleets dynamics. The results of these studies are discussed below in more detail. The last two 

columns of Table 1 show to what extent the models took vehicles fit-for-demand and induced demand into 

account. 

Table 1: Overview of previous ABMs of SAEV fleets 

Authors Scope Vehicle fit-for-demand? Induced demand? 

Martinez & 

Viegas [16] 

Modelled ride-sharing services in the city of Lisbon with current-

day mobility patterns.  Full replacement of private vehicles was 

considered in two scenarios: 1) door-to-door ridesharing taxi’s, and 

2) door-to-door ridesharing taxi’s + high frequent shared minibuses. 

Modal choice, which also included metro, rails and walking, was 

based on a decision tree. 

Partly, demand was fitted to vehicles 

(4p sedans + minivans) trough ride-

sharing 

No 

Fagnant and 

Kockelman 

[15] 

Explored service level and vehicle miles travelled of different 

relocation strategies with mid-sized SAVs. The model involved 

random trip generation on a synthetic grid. SAV service was limited 

to a 15 mile distance. Lack of realistic narrative.  

No Partly, relocation 

strategies 

Zhang et al. 

[22] 

Studied the amount of parking space saved with SAV system 

compared to current. Used hypothetical gridded city where 2% of 

people use SAVs instead of private vehicles. 

No No 

Kamel et al. 

[10] 

Developed an ABM methodology to analyze modal choices when 

SAVs become an additional option. The method requires input 

about user preferences of modal choices. Cost and travel time are 

the main components determining heterogeneous decisions. 

Mobility behavior of Paris was implemented. 

No No 

Scheltes et al. 

[11] 

 

Looked at the SAEV feasibility as an alternative last mile solution 

for a 1.8 km corridor from a train station to university.  

Partly, vehicle fit for trip type. 

However, just one trip type was 

modelled 

No 

Milliard-Ball 

[23] 

Studied how private AVs can impact congestion and parking 

dynamics with three strategies to avoid parking costs. It was found 

that there is incentive for AVs to induce congestion if private AVs 

intent to avoid parking costs by free-floating.  

No Partly, additional 

parking mileage 

Shen et al. [12] Examined how SAVs can replace scheduled-fixed route buses as a 

last-mile solution from metro stations in the city of Singapore. 

No No 

Iacobucci et al. 

[19] 

Studied fleet size and charging dynamics of an SAEV fleet in order 

to assess power grid integration. Car and taxi trip dynamics of 

Tokyo were implemented. 

No No 

Heillig et al. 

[17] 

Modelled a future scenario with 100% AVs and without private cars 

to determine the number of AVs required to cover the mobility 

needs of the city of Stuttgart. 

No, four person ridesharing SAEVs Partly, longer trips 
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Martinez and Viegas used an agent-based approach to study the fleet size, travel times and CO2 emissions in 

a situation where ride-sharing SAEVs replaced all car and bus trips in the city of Lisbon, Portugal. They 

found that CO2 emissions can be reduced with up to 40% (without changing the current vehicle technology), 

and congestion can achieve a 30% reduction due to greater traffic fluidity. Additionally, they found that the 

vehicle utilization increased from 30 km per day to 250 km per day, which could imply a replacement rate of 

up to 8.33 vehicles per SAEV [16].  

Fagnant and Kockelman developed an agent-based model to study the fleet requirements and environmental 

impact of a SAEV fleet when trips are generated in a grid-based neighborhood. The study only looked at 

ride-sharing. The results indicated a replacement rate of 11 vehicles per SAEV and increased travel distances 

of 10% due to reallocation and pick up [15].  

Heilig et al. modelled a future scenario with 100% AVs and without private cars to determine the number of 

AVs required to cover the mobility needs of the city of Stuttgart. The model also simulates modal choices. 

Current private car trips are in this study performed by all other available modes (including SAVs), this means 

that, for example, also number of walking and bus trips increased. The study involved only ride-sharing 

SAEVs and assumed that the conditions of using SAEVs is similar to that of current day passengers in private 

cars. In time steps of 15 minutes trips with the same destination and departure zone are bundled in SAEVs. 

The results show that the number of vehicle trips may reduce by 46%, the vehicle kilometers by 20%, and 

that a fleet size can be reduced to 15% of the current fleet. The number of vehicle trips reduced because of 

1) a high degree of modal shifts from vehicles towards other modes, and 2) modal shifts towards SAEVs as 

well as induced trips were not taken into account.  This study lacks a realistic narrative as the advantages of 

SAEVs are not regarded in the modal choices and it assumes that every person is willing to constantly share 

rides with three other passengers [17]. 

Several studies developed agent based models to assess the impacts of SAEVs on urban space and parking 

demand. Zhang et al. developed a ride sharing agent-based model and concluded that parking demand can be 

reduced to about 90% with sufficient SAVs in the system. The authors state that at the expense of vehicle-

miles-travelled even greater reductions can be achieved [22]. Miliard-Ball identified and modelled three 

strategies of how privately owned AEVs can avoid parking costs in city centers. He argues that AEVs have 

the incentive to cause congestion and advocates congestion tariffs in order to counteract this effect. However, 

he states that shared fleets will reduce the induced congestion and he doesn’t take increased driving fluidity 

and or more packed parking of AEVs into account [23]. 

Other studies looked at SAEVs demand as a last/first mile solution trough integration with a public transport 

(PT) system. Scheltes et al. concluded that, in their case study (a last mile solution of a 1.8 km connection 

from train station to a university campus), an automated last-mile transport system may have difficulties to 

compete with bicycles. However, they pointed out the benefits that can be obtained by using existing road 

infrastructure with SAEVs as opposed to constructing new rails or roads [11]. In the agent-based model of 

Shen et al. passengers on the least economical bus routes from a metro station in Singapore were transported 

their last mile with SAEVs instead of with buses. They found increased service quality, financial benefits and 

less congestion as a result of SAEV implementation [12].  

Iacobucci et al. studied fleet size and charging dynamics of an SAEV fleet in order to assess power grid 

integration. Car and taxi trip dynamics of Tokyo were implemented. They found that the more trips per hour 

the shorter the waiting times. From a fleet size of 1.4 times the number of trips per hour waiting times seem 

to converge to 15 to 25 minutes depending on the number of trips per hour. This implied about 5-7 vehicles 

per 100 trips per day and replacement of 7-10 private vehicles per SAEV. Increased driving fluidity of SAEVs 

was not taken into account as the Tokyo driving speed during peak hour of 20 km/hr was applied. Charge 

scheduling and V2G employment was found to reduce the cost/km with 33% in the case of high adoption of 

renewable energy. With the current energy system costs may reduce about 10%, most of which results from 

charge scheduling instead of V2G. V2G and charge scheduling was set up such that it did not influence the 

service level of the SAEV fleet [19], [24]. 

Kamel et al. developed an agent-based model to simulate modal choices of a synthetic population of travelers 

based on heterogeneous user preferences. Whenever a trip is generated, a trip score, representing the disutility 
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of that specific modality, is calculated for all the available modalities. The model was calibrated with travel 

data from Paris, after which hypothetical user preferences for SAVs were implemented. They concluded that 

3.8 to 5.3 percent of the trips will be made with SAVs of their hypothetical preferences are correct [10]. The 

authors suggest further research into user preferences of SAVs in order to draw adequate conclusions for 

modal choices with SAV systems. These results are not directly transferrable to other regions, since modal 

choices are region specific. 

Papadoulis et al. modelled AV driving behavior on motorways and assessed the safety impacts connected 

AVs. They found that with 25% penetration of connected AVs up to 47% of road accidents can be avoided. 

At 100% adoption this increases to about 95%. Although less accidents, travel time increased with higher AV 

adoption according to their model. This is the result of long vehicle platoons with a slow leader have 

decreased speeds. They do note that this result is susceptible to the desired speed distribution in their model 

[9]. 

In summary, previous modelling studies on SAEV fleets have primarily been based on current demand 

figures. Most of them focused on ride-sharing services, possibly because this is seen as the core method to 

increase capacity utilization and the reduce energy consumption of urban mobility. Ignoring 1) a realistic 

narrative pointing to induced demand and 2) the potential of purpose built, fit-for-demand, one-person 

vehicles as an energy efficient and cheap SAEV service with a high service level. To our knowledge there 

have not been any attempts to quantify fleet size and composition of a future mobility system with those two 

aspects. So in this research we developed an agent-based model that can simulate a future mobility system 

with induced demand and purpose built SAEVs.  

3 Methodology 

This section explains how the SAEV fleet requirements are assessed with the help of agent-based modelling. 

It consists of three parts: 1) developing an agent-based model that simulates realistic travel behavior, 2) 

implementing SAEVs as a modality option, and 3) defining scenarios for the changes in mobility demand 

with an SAEV system and applying the case of the Netherlands. 

3.1 An agent based model for travel behaviour 

There are many approaches to modelling travel behavior. Depending on the research focus, elements such as 

traffic fluidity, geo-spatial routing, modal choices, and financial preferences can all be considered. Because 

this research is set around the fleet requirements of an SAEV system, we require a realistic narrative of the 

temporal mobility demand of a (large) synthetic population of people. In other words, the dynamics of the 

model should focus on: when do people go on what sort of trip with what type of mode? With this in place, 

the mobility behavior input defines the case study and induced demand can be defined by changing parameter 

settings.  

When people go on a vehicle trip they will require a private vehicle of SAEV. This construct of interaction 

in a socio-technical system where different people have different behavior is very suitable to be modelled 

with an agent-based approach. Agent-based modelling allows for simulating heterogeneous agents that make 

unique decisions and that is easily calibrated with real world data. Agent-based modelling is also a powerful 

tool for exploring new scenarios when a core model is in place. Like in the case of this research, adding 

SAEV dynamics to the travel behavior.  

Since different socio-demographic groups have different mobility patterns, we start the model by developing 

a population of people agents with adjustable socio-demographics and trip patterns. Three main trip types 

who have clearly distinct patterns are distinguished in the model: commuting trips, school trips, and leisure 

trips. In essence, leisure trips include all trips that are not commuting and school trips, such as shopping, 

sports, and visiting trips. The categorization of people agents is shown in Table 2. To create the synthetic 

people population, an age distribution is required. This distribution can be set as the prospected age 

distribution in several decades. Each category of people needs to be accompanied with their respective 

mobility behavior. The statistics and distributions required for this are shown in Table 3. 
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 Table 2 Categorization of people agents 

Category Age group Mobility characteristics 

Very young children 0 – 6 y/o No mobility demands 

Young children 6 – 12 y/o Primary school, infrequent leisure trips 

Teenage children 12 – 18 y/o Secondary school, leisure trips 

Adults 18 – 69 y/o  Commuting and leisure trips 

Elderly 69 + y/o Leisure trips 

 

Table 3 Key input data that defines mobility behavior 

Input Remarks 

Family statistics Such as family composition, number of commuters, income and car 

ownership 

Modality statistics Probabilities of what type of trips are made by what modality 

Trip distance distributions Per modality and per trip type 

Departure time distributions Per trip type 

Trip frequency statistics Heterogeneous probabilities of frequencies per trip type 

At the start of a simulation run, 10.000 heterogeneous people agents are created according to the provided 

input. Each simulated day these agents follow their unique stochastic mobility patterns. Some people may go 

daily to work/school with public transport to work or school, while others chose the car. Other people may 

stay at home all day, or make on average three leisure trips a day. Vehicle agents are used for a trip when a 

person decides to make a trip with a private car or SAEV. Each trip has its specific distance and purpose, 

however, the trip is not modelled in a geo-spatial manner. In other words, the trip is not mapped onto GIS 

space. 

3.2 SAEVs as an modality option 

In the future scenario people-agents are able to use the SAEV mode for their trip. When a people-agent 

decides to use a SAEV, a SAEV virtually picks up the person at his location at the desired departure time. 

The simulation assumes that SAEVs will always be available and establises the number of vehicles needed 

accordingly because we attempt to quantify the required vehicle fleet in a mature SAEV-only situation. The 

number and types of SAEVs on the road are monitored. The SAEV induced mobility is modelled as follows: 

1) Children can make trips with SAEVs 

2) Elderly and adults have increased probabilities of making leisure trips 

3) The average trip is a certain percentage longer 

4) Trips formerly made with public transport have a probability of being made with SAEVs 

5) 10% extra mileage and usage time (as found by [15]) is added for SAEVs after a passenger is dropped 

off to account for relocation 

Three types of SAEVs are available in the model: basic, standard and premium. The type of SAEV used 

depends on the user and the trip characteristics. The choice model implemented for this is quite basic, but is 
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intended to give an impression of not only the number of required vehicles but also the diversification in 

within the vehicle fleet. This is crucial because the operational impacts, such as energy requirements and 

costs, of an SAEV greatly differ between a 5-person sedan and a purpose built 1-person SAEV. Clearly, a 

more diverse offer of SAEVs is expected is. The choice model for the type of SAEV is shown in Table 4. 

Table 4 SAEV choice model implemented 

Vehicle type Used for trips Vehicle characteristics 

Basic vehicle Trips < 15 km and trips made by children 1-person 

Standard vehicle Trips > 15 km 1-person 

Premium vehicle All trips have 20% change of being a premium trip Multi-person 

It is assumed that SAEVs carry sufficient battery capacity for a day and the fleet is recharged at the start of a 

day. This is reasonable as fuel efficiency of SAEVs and battery technologies are expected to greatly improve 

during the next decades [1]. Additionally, the fleet may be managed in such a way that charging and vehicle 

utilization is optimized outside of peak hours. Hence, we model no recharging constraints on the usage of the 

SAEV fleet. There may however, be a significant value in large, flexible, and predictable storage capacity 

that SAEV fleets represent, specifically in combination with a high penetration rate of renewable energy 

sources, see also [19], [24].  

3.3 Case study and scenarios 

The experiments performed in this research are based on mobility behavior of Dutch residents. To do so, the 

statistics and distributions shown in Table 3 used in this study are derived from a nation-wide Dutch survey 

performed by KIM. This survey contains the mobility behavior of a complete day of 40.000 respondents. Of 

each trip made by the respondents detailed trip characteristics, such as modality, purpose, and vehicle and 

passenger information is provided. The data is corrected for weekends and holidays, since this research 

focusses on the average workday. 

 

In total four scenarios are simulated: one reference scenario with current mobility behavior and three SAEV 

scenarios. A variety of parameters in the model define these scenarios. For example, the percentage of 

adults that use SAEVs instead of private cars and the probabilities of people to make more than one vehicle 

trip a day. The first SAEV scenario is the transition phase. In this scenario we take the exact same mobility 

demand as in the reference scenario, except 50% of the people make their car trips with SAEVs. The other 

two SAEV scenarios assume 100% adoption and have induced mobility demand. The amount of induced 

demand differs between those two scenarios. The values used for the most important parameters (many of 

which define the induced demand) are shown in  

Table 5. 

 

Table 5 SAEV scenarios and parameter setup 

Scenario Transition Everything shared Mobility explosion 

Percentage of SAEV usage 50% of adults 100% of adults 100% of adults 

Modal shift probability* 0% 30% 50% 

Reallocation time 0% 10% of trip time 10% of trip time 

Reallocation distance 0% 10% of trip distance 10% o trip distance 

Avg. increase trip distance 0% 10% 30% 

Elderly first trip probability 36% 40% 55% 

Elderly additional trip probabilities 8% 12% 20% 

Adult day trip probability 30% 35% 45% 

Adult  additional trip probability 15% 20% 30% 
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Perc. teenage children using SAEVs 0% 20% 60% 

Teenage children avg. SAEV trip distance 0 6.8 km 12 km 

Perc. young children using SAEVs 0% 10% 25% 

Young children avg. SAEV trip distance 0 5 8 

4 Results 

In this section we display the simulation results of each scenario. First we look at the amount vehicles 

simultaneously on the road versus the amount vehicles simultaneously in use. Then we examine the required 

SAEV fleet composition as a result of the SAEV type choice model. 

4.1 Vehicle and road utilization 

First we need to define the distinction between vehicles ‘in use’ and vehicles ‘on the road’. In this research a 

vehicle ‘in use’ is defined as a vehicle that cannot yet be assigned to a new user. A vehicle is ‘on the road’ 

when it is currently moving on a road. This means, for example, that a privately owned vehicle of a commuter 

might be in use from 8:00 to 18:45, while it is on the road for only the first and last 30 minutes of that period. 

Within the scope of this research there is no distinction between SAEVs being on the road and being in use. 

This is because we assumed no charging constraints (see section 3.2) and we are not considering things such 

as maintenance. However, it is important to realize that a SAEV is in use for a certain period of time after a 

passenger has been dropped off. This time corresponds the movement of the vehicle for relocation, charging 

and/or parking purposes. With the described framework the number of vehicles ‘on the road’ is a measure of 

road utilization, while the number of vehicles ‘in use’ is measure of the amount of vehicles required to provide 

the mobility demands of the system. Figure 3 shows the simulated daily profile of these metrics in all four 

scenario.  

 

Figure 3 Daily profile of vehicles simultaneously on road and vehicles simultaneously in use per scenario 

 

Figure three demonstrates that the current mobility demand results in a maximum number of vehicles in use 

of 2.020 per 10.000 residents. Car ownership is expected to be higher than this since vehicles are not shared, 

some people own more than one vehicle, and many people do not use their vehicle daily. Indeed, in the 

Netherlands car ownership is 4.488 per 10.000 residents. The maximum number of vehicles simultaneously 

on the road with the current mobility system is about 460 vehicles per 10.000 residents. Note that the 

simulation is based on the mobility behavior of the Dutch but does not take traffic fluidity (such as slower 
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movement in rush hours) into account. This is suitable approach for a system with greatly improved traffic 

fluidity and highway capacity due to SAEV driving dynamics. It is less suitable to depict an exact picture of 

the traffic dynamics of the current mobility system, which is not the purpose of this paper. 

 

In the transition scenario the number of vehicles on the road is higher than in the current situation, even 

though the mobility demand is exactly the same. This is a result of the additional relocation mileage of the 

SAEVs after trips. The number of vehicles ‘in use’ almost halves to 1.100 per 10.000 residents for the most 

part of the day. At 100% SAEV adoption the number of vehicles on the road increases to 600 and 950 per 

10.000 residents, respectively, in the ‘everything shared’ and the ‘mobility explosion’ scenarios. 

4.2  SAEV fleet composition 

Figure 4 shows the daily demand profile for each SAEV type each of the scenarios. The highest point each 

graph reaches is taken as the required amount of vehicles for that specific type. The total number of vehicles 

required in the full adoption scenarios are 687 and 1.084 per 10.000 residents. A large part of this demand 

(70% - 90%) consist of basic and standard SAEVs. Both of which are expected to be highly energy efficient 

purpose built vehicles. Significant peaks can be seen in the demand for basic SAEVs. This is mainly caused 

by children making school trips. 

 

Figure 4 Required SAEV fleet composition based on daily profile of types of SAEV demanded 

5 Conclusion and discussion 

In this research an agent-based simulation model has been developed that simulates heterogeneous mobility 

behavior of a large population of people-agents. Detailed mobility statistics of any case study can easily be 

implemented with this bottom-up approach. The model allows researchers to set up a realistic narrative of 

the induced mobility demand in order to study the required fleet composition of a future SAEV system. In 

this paper the mobility behavior of the Netherlands was implemented and three different SAEV scenarios 

were studied.  

The simulation results show that the number of vehicles required per 10.000 residents reduce from 4.488 to 

only 687 vehicles in the ‘everything shared’ scenario. This includes 260 basic class, 302 standard class and 

125 premium class vehicles. In the scenario ‘mobility explosion’ 1.084 SAEVs will be required, of which 

515 basic, 392 standard and 177 premium SAEVs. The large share of basic class vehicles required result 
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partly from induced demand by children using SAEVs to go to school in the morning. In the afternoon this 

peak is flattened out due to a more dispersed out-of-school time. The results from the induced demand can 

be seen in the highest number of vehicles simultaneously on the road. This number increases from 460 to 600 

or 950 vehicles per 10.000 residents, depending on the scenario. However, more vehicles on the road does 

not directly imply more demand for road infrastructure and increased energy demand of urban mobility. After 

all, traffic fluidity, road capacity, and energy efficiency are expected to improve with SAEVs. 

We recognize that fleet operators may implement a variety of methods to optimize the fleet composition. For 

example, financial incentives can influence the demand of specific SAEV types, or vehicle upgrades can be 

offered when demand for certain SAEV types exceeds capacity while other types unoccupied. However, there 

are also several factors, such as overcapacity for non-average workdays and maintenance, that may results in 

a larger required fleet size. Additionally, because geo-spatial elements were excluded in this research, it is 

possible that 10% relocation time is not sufficient during peak hours to relocate SAEVs. As peak hours in 

some cases may be tilted towards a specific traffic direction. However, fleet operators may solve this issue 

with other measures than increasing the fleet size influencing the temporal distribution of the mobility 

demand. These dynamics of the SAEV fleet can better be modelled using geo-spatial models. 
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