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Executive Summary

Over the last years a large growth in Electric Vehicles (EV) and charging infrastructure (CI) development
has been observed. Particularly in metropolitan areas this growth has led to a system in which multitudes
of interactions between EV users take place. While many researchers have focused on EV user charging
behavior and deployment strategies for CI, little attention has been paid to conceptualizing the problem
domain. This research provides a brief overview of complex systems theory, and derives six characteriz-
ing elements of complex systems that may be applicable for CI. The paper investigates both theoretically
but also empirically how these characterizing elements apply for CI and provides implications for the
further roll-out of CI for both policy makers and researchers. We illustrate our findings with preliminary
results form ongoing research. Recommendations include the further development of simulation tools
that are capable of exploring effects of e.g. non-linear behavior, feedback loops and emergence of new
patterns on CI performance. In the end this paper aims to provide directions to enable policy makers to
be better prepared for the anticipated exponential growth of EVs and CIL.

1 Introduction

The suggestion that the number of Electric Vehicles (EVs) will increase exponentially in the upcoming
years is becoming a realistic scenario [13,61]. Future market developments point at a large EV uptake and
an increased market attractiveness due to the release of new BEV models in an affordable price range. As
a result, policy makers and market parties have deployed an increasing number of private, semi-private
and public charging points both Aé) and DC. Particularly in metropolitan areas where charging infras-
tructure is mainly part of the public domain, this leads to a multitude of interactions between EV users.

Since the first release of modern EVs, researchers and policy makers have shown interest in zero emis-
sion mobility [13, 61], particularly in planning charging infrastructure deployment [42]. Main questions
to solve are when and where to deploy what type of charging infra. Research on DC Fast charging has
typically focused on planning located nearby highways or corridors on semi-private locations [20,44,49],
whereas A6C charging has private home or office charging, semi-public 1n garages or in the public
space [23, 60].

Despite the sheer volume of literature, little attention has been paid to the nature of the challenges of the
EV systems. As a result a gap in literature is found that describes of complexity of EV user behavior in
relation to an optimal deployment strategy [18].

Many studies use a demand side approach to charging infrastructure planning that involves (1) planning
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using operational research methods on spatial (2) traffic density data using (3) data driven planning
methods using spatio-temporal presence of vehicles (mostly non EV) data. A common optimization
target is to minimize the inability of charging EVs so as to install charging stations at locations where
either a trip ends or at locations that many trips have in common [42].

A drawback of these models is their linearity in scaling and lack of complex behavioral aspects. For
example, the underlying assumptions of these models do not include interactions between EV users, and
hence no feedback loops or adaptation of behavior in the system. Recently, predictive simulation models
have shown insights in deployment strategies that include either traveling behavior or EV user charging
behavior. While these models may include interactions between EV users, they pay limited attention to
the simulation results in relation to the complex systems theory. Another drawback of these models is
that they are not validated or only validated using small amounts of real data [27,41,45,56,59,72,74,76],
which decreases the predictive certainty of the simulation results [56] and [41].

In this paper we aim to explore how knowledge from complex systems theory may enhance our un-
derstanding of charging infrastructure development for EVs, identify implications of viewing charging
infrastructure as a complex system and how this may translate into policy recommendations. We do so
by exploring the complex systems literature to gain insight in the general properties and typical chal-
lenges of these kinds of systems. Thereafter, we analyze and evaluate charging infrastructure on the
typical characteristics of complex systems found in literature. We also provide several illustrations from
ongoing research on CI using the complex systems perspective. Results contain implications for both
researchers and policy makers.

2 Definition and properties of Complex Systems

Complex Systems Theory (CST) is an approach towards system analysis that focuses at emerging struc-
tures on a macro level derived from micro level behavior [33]. The methods provided in the complex
system theory have proven to provide a deeper understanding of systems that are difficult to predict from
a individual level [33]. The application of this field of science can be found in among others ecology, bi-
ology and social studies. Also systems in which the interaction between human behavior and technology
Elays an important may benefit from the complex systems approach may reveal [16,62]. Besides, CST
as proven to support in public policy making [50] and critical infrastructures [34].

In this research the following definition is “a complex system is one whose evolution is very sensitive to
initial conditions or to smallg perturbations, one in which the number of independent interacting compo-
nents is large, or one in which there are multiple pathways by which the system can evolve. “ [65]. From
this definition a set of features can be extracted that characterizes complex systems [33, 50]. Note that
not all features may be required identify a system as being complex;

e Self organization

Feedback loops and adaptation

Non-linearity

e Emergence

Robustness and vulnerability

e Path dependency.

A typical property of a complex system is the lack of a central control system, which means that the
system is self organized in a bottom up manner. Each element in the system is autonomous and has a set
of rules that determines its behavior [17]. Rules can be uniform for all elements or unique for each one,
rules may be simple, complex or data driven. The feedback loops occur due to the fact that experiences
of elements in the system are inputs for future behavior of other elements or itself. These experiences are
caused by interactions of elements. The feedback loops may cause adaptation of behavior to a changing
psychical environment or interaction with other individuals. For this reason different initial conditions
may lead to different interactions and thus to different adaptation patterns of users. Non-linearity is an
essential element of a complex system. A non-linear system has the property that the change in output of
a system does not scale linearly with the change of the input or parameter of the system. As such, scaling
the size of such a system may different regimes of behavior on micro and macro level without changing
the properties of entities on the micro level.

The aforementioned interactions are the source of adaptation patterns, adaptation of rules, in the system.
Literature has shown that interactions between elements may lead to unexpected spontaneous patterns of
behavior such as collaboration and competitions between elements [21]. These macro level patterns are
known as emergent behavior. This type of behavior is not part of the set of rules nor controlled as a goal
of the population strive for. As with flock of birds, all the birds want to be part of the flock, but there is
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no leader or centralized coordination.

The patterns of behavior are said to be robust, since in case of perturbations of the system the behavioral
patterns tend to reoccur after recovery [33]. Though, the effect of a perturbation may be dependent on
the state of the system. In an influential paper Bak, Tang and Wiesenfield discovered that elements in a
complex system may self-organize into a Self Organised Critical (SOC) state, where small perturbations
can have large impacts. They modeled the effect of avalanches in a simple simulation model of sand
piles in which at each time step a new grain of sand was added at a random point in the system [3]. Once
a pile reached a the certain threshold, 1t collapsed, redistributing the grains towards its neighbors, which
could reach the level of threshold and so on. The emergent pattern they discovered was that the system
organized itself towards a state in which the size of the avalanche, being the cascade of the propagated
perturbation, displayed a power-law distribution [3]. This implies that many perturbations cause little
1mpact, but some cause massive system scale impacts.

In literature, examples of this state of SOC in the context of infrastructure are found among others in
electricity networks and traffic each with specific power law exponents [7,32,37,38]. It is found that
perturbations at specific nodes of the system typically cause larger effects than others, leading to the idea
of vulnerabilities in the complex systems [1,4,9,34].

Research on vulnerability of these complex networks revealed that as the load in the system increases the
cascading failures are more likely to occur [9]. Research has shown that the likelihood of cascades does
not gradually increase with system load, yet it reaches a critical point (sometimes called phase transition
or regime shift) at which the propagation of failures suddenly increases [?]. Therefore, during design
and operation of complex systems the system load needs to be balanced with the economic benefits of
the system. A more efficiently used system may potentially lead to larger blackouts, while sub optimal
operation in terms of load on the system leads to a more robust system. Likewise, intelligent rerouting
of load in a complex network may decrease the effect of perturbations, but may require some form of
central steering in the system.

As mentioned before, the development of behavior of the system over time is said to be path dependent
which refers to the idea that initial conditions and therewith following interactions between elements
determined that certain pathways of development are locked in or locked out. A classic example of path
dependency is the railway %auge which relates to a folks tale that it is about 2 horses wide [?]. In practice,
path dependency makes it hard to transform a system from one regime to another. This is the reason that
1t is difficult to reform the health care system from its current financial structure to another [50].

2.1 Modeling and analysis of Complex Systems

In literature several methods for the analysis of complex systems can be found. Particularly of interest
are tools that simulate the behavior of the system using a bottom up approach of modeling the individual
elements of the system with a set of behavioral rules.Typical examples are agent based models (ABM)
which have been shown to be a useful tools for simulating behavior in complex systems [17,26,29,43]. In
such model each agent behaves based on a set of simple rules. These rules may be based on distributions
of behavior [12, 71], derived from actual data [75], cause-reaction rules or game theoretical approaches
[21,51]. An important feature of ABMs is that they allow testing interventions such as policies in these
complex environments. So far, limited research has been published that realtes the use of agent based
models aimed to optimize deployment of complex infrastructures to complex system features [8, 56].
Regarding analysis of the behavior in the system, behavioral patterns of agents may be analyzed in
terms of distributions of performance metrics to reveal what happened in the system [17]. Yet, to gain
a deeper understanding OF the interactions of elements in the system complex network measures used to
gain a deeper understanding in the interactions between elements in the system. Two types of networks
generated from the system are of specific interest (1) a resource-to-resource network and(2) a bipartite
network generated from interaction between agents and resources. The first network can reveal insight in
how the system will respond to failures. The latter graph is a triplet Gpipartite = (T,L,E),where T C R
is a subset of resource access points and L C U is a subset of the user. Each edgee € £ C T'is a
connection between one top and bottom edge and derived from the set of transactions. Each edge e can
have a strength from using different perspectives of the network, such as power distribution.

Bipartite graphs have been used extensively in computational ecology to model natural animal-food
systems. From literature in this field of science, a large number of metrics on the bipartite graph can
be used. Next, from each bipartite graph an upper T and lower L projection can be made (taking into
account loss of information) that reveals the relation between top a bottom elements based on the total
interaction in the system. From the Bipartite graph optimal resource allocation for users to resources can
be run as well to reveal the minimum configuration of the system [30,46]. Next, bipartite graph can also
reveal adoption patterns for newly deployed resources [39].

3 Charging infrastructure as Complex System

This paragraph the features that characterize complex systems are put in to the context of charging
infrastructure. We elaborate on the how the features match in the context of charging infrastructure and
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point at future developments of from both a technology and a behavioral perspective.

A central concept to the discipline of charging infrastructure research is EV user charging behavior.
Charging behavior relates to the patterns of choices (when) EV users make to charge their electric vehi-
cle at a specific (where) charging point (CP) of the charging infrastructure. It is generally accepted that
EV user decisions and preferences are independent of central coordination. Charging behavior research
has revealed factors determining the decision to charge such as traveling patterns, user types, charg-
ing infrastructure density and user battery interaction [2, 24, 73]. Charging behavior may therefore be
considered as self organized. While some researchers have modeled the potential of centrally arranged
charging transactions [55, 64], in the context of public chargin% infrastructure scheduling this may be
unfeasible for two reasons; (1) personal preferences such as walking distance to end destination and (2)
environmental context such as parking pressure.

An added complexity of charging infrastructure is the heterogeneity of user types in the system. Partic-
ularly in metropolitan areas the EV user population is a melting pot of residents, commuters, taxis, car
sharing vehicles and other possible modalities [24,58,70]. Each user type is expected to have a specific
set of charging behavior properties, inherited from a generic type based on its modality. In addition, each
user type in the population 1s expected to have a different type of adaptation pattern to the interactions
with another user type.

Non-linearity applies to the EV system, since scaling effects of number of CPs and Number of EV users
determine part of the emergent behavior in the system. For instance, if both numbers are equal like in
private charging only, then there is no competition as emergent behavior and limited interaction between
EV users. Yet, in the case of public charging infrastructure there are many more EV users of poten-
tially different user types that using the same charging stations [23,66—68]. As the load on the system
increases, emergent patterns of competition between EV users for CPs, adaptation of charging strategies
and collaboration between users may appear. These patterns affect the relation between perceived con-
venience and the ratio between CPs and EV users.

As the density of charging infrastructure increases the number of relevant alternatives within walking
distance to a CP increases as well which leads to a network of alternative charging points, see Figure
1 [18]. Having more than one relevant alternative may lead to non linearity in economies of scale and a
lower required ratio of CPs per EV user. A negative effect of a charging network may be the increased
effect of perturbations due to the network. The concept of robustness and vulnerability of charging in-
frastrl,éllcture has been researched in relation with the convenience for EV users [18] and will be elaborated
onin4.1.

Feedback loops are based on EV user experience and interactions during their use of charging infras-
tructure. EV users may adapt their behavior to a changing environment or due to past experiences of
interactions. Given the expected adoption of EVs it is well expected that the number CPs will increase
as well, resulting in an increased density of the charging network. It is therefore expected that due to
the growth EV users shift preferences due to potentially better alternative CPs for reasons of distance
between CP and end destination or experienced occupancy. The change of charging preferences is ex-
pected to be a user specific gradual process of testing and evaluation.

Experience of interactions are related to emerging patterns competition and collaboration with other EV
users. It is assumed that EV users strive for the best convenience of charging and therewith adapt their
behavior. Negative experiences due to occupancy of preferred CPs may thus lead to shifting behavior in
when time and space where. Due to competition an EV user may decide to arrive earlier at a CP in order
to increase the probability of occupying the CP. Or an EV user may reroute to different CPs that have a
lower occupancy rate.

Next the feedback loop within the system there is an external feedback loop as well, since the existence
of CI has found attract new EV users [?]. An increase of EV users will result in an nonlinear increase
of interactions and hence affect the other feedback loops. On the other hand, negative experiences may
result in EV users to sell their EV.

Interactions between users may lead to emerging patterns of collaboration or competition in the system.
Particularly in densely pO{)ulated areas with scarce resources EV users may form communities that share
charging points. Data analysis of public charging infrastructure has shown that there is significant differ-
ence between the connection duration and charging time of a charging session [23, 60, 69], which allows
for sharing CPs without decreasing the effective charging time of a session. Patterns of competition may
be revealed by agent based models as they reveal the unsuccessful connection attempts of an EV user to
a CP. A deeper analysis of first and subsequent unsuccessful connection attempts of an EV user to an CP
within is set for relevant alternatives may reveal where pressure in on the system leads to inconvenience
for EV users, see Figure 6 as illustration. By definition this number of failed sessions is not part of
charging data, since this only contains the successful transactions.

Earlier research on vulnerability of charging infrastructure has shown that a disturbance in the system,
either a malfunctioning or an unexpected occupied charging station, can cause a cascade of failures in
the system [18]. Simulation models on EV user charging behavior have learned that the number of failed
connection attempts EV system is sensitive to changes in the number users for a given number of size of
the infrastructure under relaxed circumstances (limited users and without noise) [?]. Moreover, in this
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research an accelerated increase of system inconveinence was found when adding irregular users [?].
Particularly in metropolitan areas nearby POIs there is a high probability of irregular use of CPs [23].
Next, from practice it is known that next to full occupation of CPs, there are several types of perturbations
that can cause an unsuccessful connection attempt: (1) a malfunctioning CP, (2) roadblocks (e.g. due to
events or repairs) (3) parking spot occupied by ICE vehicle (being ICED). In these cases we assume that
EV users change their destination to a new chosen CP in their vicinity. As the charging infrastructure
density increases, the network density of relevant alternatives increases as well. On one hand this may
lead to an increased robustness of charging infrastructure, since alternative CPs are able to accommodate
perturbations. On the other hand in areas with high occupation rates this may lead to a vulnerable system,
since a perturbation in the system may lead to a large cascades perturbed CPs in the system.

Path dependency relates to the fact that the EV system is currently evolving and interacting components
like EVs, CPs, stakeholders on different levels play an important role in the future state of the system
[?]. For example, worldwide we see different versions of initial conditions due to the local context:
in metropolitan areas a strong focus on public AC charging, whereas areas with more private parking
location focus on DC and private charging. The final optimal mix in charging infrastructure technology
is likely to be dependent on the initial roll-out strategy [23] and subsequent developments. It may be
very difficult for policy makers to change the local EV system from pure AC public charging to DC only
charging and vice versa due to all the interactions of charging infrastructure with users and other systems.

3.1 Future developments affecting the complex EV system

It is expected that the complexity of the EV system will increase with its maturity. Not only will the
number of EVs and charging points grow in the near future, also an increase in complexity is expected
due to a behavioral change is expected for four reasons.

First, the improved range of new EVs is expected to influence the behavior of users, as high battery Full
Electric EVs (FEV) are expected to show a different behavioral pattern than Plugin Hybrid EVs (PHEVs)
[20,63,63]. Second, the ongoing increase of EV users will lead new types of user groups adopting the
EVs as primary transport. While during the first years, EV adoption was particularly attributed to early
innovation adopters curious for new technologies and driven by environmental consciousness, the new
growth is expected to contain the early majority as well. Given that this new user group will have different
behaviors and expectations, this sets new requirements to charging infrastructure. This corresponds to
the idea that technology maturity affects usage behavior, as seen in other fields of innovation [5, 15, 16].
Noteworthy to mention is that OEMs are actively focusing on the early majority adopters as well. A
third reason is that not only user groups will differ but also other types of modalities adopting electric
drive-trains as well [31,36,40,48,57]. And fourth, an increased number of users will inevitably lead to
an increased number of user-user interactions in the system as well. Moreover, an increased number of
different groups and modalities is expected to lead to non-trivial patterns of behavior in the system.
This leads to the idea that charging infrastructure should be regarded as a growing complex system in
which the behavior is constantly changing and adapting. While not currently present, phase transitions
in the system due to changes in the EV user poE)ulation are expected in the coming years. This not only
requires policies aimed at a continued large scale deployment of public charging infrastructure [28], but
it also a holistic and user central approach for deployment of resources [52].

4 Illustrations of Charging Infrastructure as Complex System

In this section we illustrate the potential of applying the complex systems approach to charging infras-
tructure based on ongoing research. While results are therefore preliminary (not yet published), the
concepts and thoughts have been proven meaningful illustrations.

4.1 Vulnerability of Charging Networks

Recent published research on charging infrastructure vulnerability revealed effects of perturbations at
charging stations on the perceived EV user convenience [18]. The convenience of charging infrastruc-
ture can not directly be measured from charging transactions, since non successful connection attempts
are by definition not part of charging data. In [18] two vulnerability metrics were defined service vulner-
ability and inconvenience vulnerability. The service vulnerability refers to a disturbance in the system at
a node that cannot be accommodated by any alternative CP. The inconvenience vulnerability refers to the
length of the cascade of charging points aff}e,:cted by the disturbance of the perturbed charging station.

In this research the charging infrastructure was treated as a complex network in which the CPs repre-
sented the nodes and the connections between nodes were based on the existence of a appropriate walking
distance (450-750meter) between two nodes, see Fig 1. The method of this research was to perturb one
charging station by removing it from the system and then for each charging session in the data at this
charging station search for an alternative outlet within the network. The nearest charging station that
could accommodate the session was chosen as the alternative. Thereafter, given this new accommodated
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charging session a recursion function was run to check on cascading effects.

Figure 1: Complex network of alternative Charging Points from the City of Amsterdam, source: [18]

Results based on data of December 2015 for the largest 4 cities in the Netherlands show that inconve-
nience vulnerability was particularly present in the city centers where the network degree is high while
service vulnerability was particularly present in the outskirts of the cities [18]. Cascade lengths up to
14 were found. The implications for policy makers drawn from this research were that roll-out should
strategies should not only focus on general performance metrics but also take into account the potential
vulnerabilities of the network.

Results from our ongoing research on this subject with charging data from 2017 to 2019 suggest that
charging infrastructure may reach a critical point, as the distribution of cascade lengths seems to fit the
power law distribution. These preliminary results show many short cascade lengths (0-10). incidental
larger cascades (10-40) and a few extreme cascades up to length 144. It is suggested that the transition
towards a power law regime may be attributed to the increased density of the network and the increased
load on the network. For policy makers this implies that notice should be taken not only to the system
metrics as in [53], but also systemic metrics that focus on the interaction in the system.

4.2 Nudging EV users’ behavior to avoid

While complex systems typically lack a central steering mechanism, the results of [18] raise the question
whether more centralized steering would be beneficial in terms of cascade reduction and therewith system
convenience. Moreover, in [18] the selection of charging points was based on distance and availability,
while specific user preferences were not taken into account. From this the question is raised whether the
rerouting of charging sessions can be achieved to generate less impact on the total system meaning that
an alternative rerouting scheme per CP is used. In ongoing research three new agproaches are explored
to gain insight in the effect of nudging users towards alternative CPs, see Figure 2.

In Figure 2 on the left side a map is sketched of one perturbed CP (the red cross) surrounded by 6
other CPs of which 2(number 1 and 5) are fully occupied and the others are available. The dashed line
represents the boundary between 2 parking zones. On the right side of Figure 2 2 tables are shown. The
upper table displays Ist to 4th preferred CP per user. The lower table shows the length of the cascade
given each sessions present in the data. In this table N/A implies that the CP is occupied and this not
available. Three ap}groaches to rerouting EV users from the perturbed CP to another are researched.

In the first approach rerouting could be aimed to minimize the impact on the system, which means that
service vulnerability is avoided and inconvenience vulnerability is minimized. This requires that for
each alternative CP the effect of rerouting is calculated before rerouting, see table right under corner in
Fig 2. A result of this rerouting could be that while less users are rerouted, the average path length of
the detour may be larger than using the previous method. In a second approach, the rerouting could be
performed by using the preferences of each individual user, which means that there is no central steering
mechanism. In this method the users are assumed not to have real-time knowledge on the occupancy of
charging points. A third approach involves a random rerouting mechanism from the CP to any alternative
within range. This implies that for each session the user is rerouted to a random CP nearby regardless of
whether this CP is occupied or not. Rerouting to an already occupied CP will lead to an iteration of the
simulation from that point and to an increase of the inconvenience value.
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Figure 3: Hypothesized effect of system configuration on system convenience

Prelminary results of research suggest that the three perspectives result in different distributions of cas-
cade lengths which can be related to different levels of convenience given the ratio of EV users and CPs
as shown in Fig3. Moverover, the results of the first perspective generated a set that contains for each
charging transaction at a specific CP the best alternative CP given its impact on the system. From this,
a network of optimal alternatives may be setup with the CPs as nodes and the directions to another CP.
If certain CPs consistently point at other CPs as best alternative, then a standardized reroute may be
implemented in practice. This allows policy makers and CPOs to improve on system performance with
simple nudging of users.

4.3 Competition between EV users for charging points

Recent advances on agent based modeling of charging infrastructure revealed dynamics of competition
in the EV system that could not be examined using data analysis. An agent based model (SEVA) was
created of which the behavioral rules were extracted from charging data. Rules contained start connec-
tion time, location, connection duration and distance in time and space between current session en next
session. By scaling up the number of users with a constant number of charging points a relation between
the growth an user convenience can be found.

In this research user convenience was related to the successful attempt of an EV user to charge their EV
at their most preferred charging station at time of arrival.

In this research inconvenience was defined as an unsuccessful attempt of an EV user to connect to a
specific preferred CP. This may be caused by an occupied charging station or a malfunctioning charging
station. The EV user needs to divert to a second, less preferred CP. If a subsequent attempt is also unsuc-
cessful the path of diversion increases as well.

Scaling up the number of EV users resulted in a non linear growth in used CPs versus the number of

EVS32 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium



EVs per CP in the simulation, see Fig 4. While the number of EVs per CPs (blue line) increases linearly,
the number of CPs used shows a change in the slope of the line around 500. This may point at a regime
change from a with a surplus of CPs to towards a system with a deficit of CPs and therewith competition.
ghis maybalso relate to economies of scale due do the increased network density and therewith alternative
Ps nearby.

It was alsg found that “7% of connection attempts were unsuccessful given the 2,000 agents, see Fig
5. Moreover, this figure shows an increasing number of failed connection attempts as the number of
users increases with a contact number of CPs. This is without perturbations in the system. Now, by
definition the number of failed sessions is not part of charging data, since this only contains the successful
transactions. This demonstrates that the system dynamics are more intricate and complex than simple
data analysis would suggest.

1600 Number of Agents Competition

@
1400 SRR 25 2 S
I
1200 .

1000 -

800 K M ® Number of CPs in Simulation
- Y ,i..f--i""- ®  Number of EVs per CP * 100
[ 8-
600 e te
0 09 n°
400 ¢ e

R I o
200 0-.9--®-®°

Number

0

PP LIPSO LEL SO SO

S’ PR R DD

PP TEEFPPEPLEEES
Number of Agents

)
»
>

D

%

Figure 4: The number of CPs in the simulation and the number of agents per CP in the simulation for various
numbers of agents in the simulation. Per value of the parameter the mean numbers with the 95% confidence
interval is displayed.

Selection Process Attempts

o o
= =
o A

o
(=]
@®

Percentage of Unsuccessful
First Selection Process Attempts
o o o
o o (=)
N B~ (o)}
——
——
—C—

0.00 = {

NIRRT I I A SR P S A S T I
AR PP PR PP TP D
PP R PR PR PP PP LS

Number of Agents

Figure 5: The percentage of failed attempts in the selection process. Per value of the number of users the mean
percentages with the 95% confidence interval are plotted.

A subsequent study focused on the effects of unhabitual users on the user convenience (presented at
EVS32 as well). EV users have found to be categorized into e.g. residents, commuters, visitors, taxis
and car sharing. A typical difference between these user types is their charging point volatility [24].
Charging point volatility is the strength of preference for a single charging point. While residents typi-
cally use a few charging points, car sharing cars float over a whole city. As such, an increase of a user
type may affect the vulnerability of the system and the unsuccessful connection attempts of EV users.
Particularly, we found that the unhabitual users and visitors with semi-random patterns of start and end
connection times and semi random across space have large influence on the user convenience.
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Figure 6: effect of unhabitual users on the user convenience [source Gorka]

In this ongoing study charging sessions were simulated with a different population compositions each
an increasing number of ration of unhabitual users and visitors to regular users. From simulations it ap-
pears that the influence of unhabitual users appears high on the total number of unsuccessful connection
attempts. The figure 6 below shows the boxplots. The box edges are boundaries of the 1st and 3rd 25%
of the data and the bar in the box is the mean. It can be seen that as the number of unhabitual users
increases that the distribution broadens and it increases steeply and outliers increase sharply. With this
knowledge in mind, the question is raised, how to roll-out charging infrastructure in a way that focuses
on user convenience and robustness rather than traditional key performance indicators. This implies that
that the addition of unhabitual users has a non-linear increasing effect on the perceived convenience of
EV users, which may lead to unexpected adaptation of charging behavior.

4.4 Non linear performance of CI due to tranformation of PHEV to FEV

Recent advances in market developments have shown a shift in EV technology from PHEV to FEV from
2018 onwards. This is opposite to the first EVs on the market from 2013 onward which were mostly
PHEVs. Note that many of the lease contract of early EVs are ending in 2018/2019. Yet, most public
charging infrastructure deployed has been done so to accommodate for many PHEVs and only a small
share of FEVs. This leads to the question of whether the current public charging infrastructure is capable
of accommodating the new composition of the EV fleet. To answer this question a module in an existing
simulation model that incorporates the differences in charging behavior between small and large bat-
tery sized vehicles was developed. Within this simulation model the effects on charging behavior when
switching from PHEV to FEV were simulated using real world data. In order to do so, a behavior transi-
tion equation had been developed to transform any PHEV user type to an equivalent FEV user based on
the significant feature difference of PHEV and FEV users.

Based on behavioral properties on charging data, three types of EV-types were distilled from the data:
(1) PHEYV, (2) small battery FEV (low FEV) and (3) large battery FEV (high FEV). The differences
in charging behavior were made eXFlicit for modeling by drawing distributions on connection and dis-
connection to charging points and location-based behavior. From analysis it was found that the most
significant differences were present in the time between sessions, meaning the large battery FEV users
tend to skip a day, and the number of locations that were used. Intuitively this is logical since (1) the
arrival patterns are known to be related to traveling patterns, (2) skipping a day or a session could imply
skipping opportunity charging at non-regular locations. A Factor Transform (FT) function was developed
to apply the EV transition to the time between sessions. This FT was run on all agents in the simulation
model to enable modeling their transition to large batteries (70-100 kWh). Experiments were performed
to simulate the effect of the transition of the EV population from current models to large battery FEVs
using a varying probability.

In order to test how the EV system would react on the transition several performance indicators were
analyzed from the simulation results; (1) Average connection duration per CP per week; (2) Average
number of unique users per CP per week; (3) Average number of charging transactions per CP per week;
(4) Average kWh charged per CP per week. Results of this case study showed that a significant drop in
connection times per CP, while the kWh charged at those same poles increases. This indicates that, as
a transition to higher batteries takes place, first the efficiency of charging infrastructure increases, and
second less charging infrastructure would be needed to facilitate the EV population. The number of
unique users per CP and the decrease in connection times would also be positive for EV users, as this
implies that the CPs are available more often. the perceived inconvenience was not measured since this
case particularly focused on performance accommodation. The results of these experiments show that
the effects on performance indicators were not trivial, nor could be gained from extrapolating current
data. The complex systems approach accommodates on the non trivial effects of system scaling.
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S Results and Implications

5.1 Implications for policy makers

In this paper we have made a case that complex systems may add to better understanding of the perfor-
mance of charging infrastructure and may support policy makers in making more robust solutions for
the anticipated, exponential growth of EVs. Until now, most deployment strategies were either based on
actual demand of EV users or based on expected demand at strategic locations near points of interests
(POIs). This approach has proven to be successful during this first phase of deployment, yet for the
future growth of the system this approach may not be the most optimal. For example, economies of scale
may arise due to network density or user interaction may lead to new kinds of competition for charging
oints.

go for deployment of resources during times of exponential growth of multitudes of user types, munic-
ipalities and other stakeholders struggle how to optimize the deployment out charging points and how
to optimize the use of the current charging points [22]. The reason for this struggle is the fact that the
stakeholders (such as municipalities, CPOs, DSOs) of the CI have limited insight in (1) structural per-
formance measurement of the CI, (2) how typical behavior influences the performance of the system, (3)
factors determine the user convenience the system and (4) the effect of interventions on the performance
of the system [25]. Regarding these issues, this research contains several learnings.

First, due to the complex behavior in the system, policy makers should look beyond the typical key
performance metrics of charging infrastructure to gain a better understanding of the interactions between
users in the system. Traditionally, Key Performance Indicators (KPIs) for charging infrastructure focus
on CP utilization [?,22]. Based on a complex network approach it is found that it is interesting to measure
the interactions between EV users as well, since this may provide insight in emerging interaction patterns
and system dynamics. Having a focus on these dynamics helps to keep track of non-linear behavior. This
helps policy makers to be better prepared in the typical unsuspected behavior that complex systems tend
to display. The bipartite network metrics may provide insight in the following dynamics of the system :

e Basic graph properties over time (diameter, degree distribution, number of connected components,
average path length) may provide in the expected growth of the infrastructure versus the actual use
of the infrastructure

e Bipartite graph properties related to stability of the network may provide policy maker insight in
where to deploy new CPs in order to minimize user inconvenience [6,47,54]

e Competition between users on similar users using the user-to-user-projection of the graph

e Competition between cliques of users or resources access points may provide insight in which
areas to decrease competition by adding new CPs [19]

e Supply side network robustness and vulnerability based on resource-projection of the bipartite
graph as described in section 4.1

e Resource allocation and resource adoption patterns may provide insight in the differences between
expected adoption and actual placement of CPs. This answers the questions are the CPs deployed
for specific users really used by these users or do they swarm around other CPs as well [30,46].

As an example, we provide in the figure below 7 the diameter (the largest connected set of competitive
RFIDs) against the order (the total number of RFIDs) is shown over time for the charging infrastructure of
Amsterdam between 205 and 2017. Each dot represents the value measured in a week. The diameter may
be seen as the longest path of competition and with that potentially sensitivity for perturbations. The red
dots show the daytime charging users, the green dot shots the overnight charging users and the blue dots
represent the total network regardless of time. It can be seen that the dynamics of the different types of
charging sessions have different interaction. The daytime network contains more RFIDS with about the
same order as the overnight network. This means that the longest path of competition is relatively smaller
for the daytime network than the overnight network. Moreover, it can be seen that the total network, has
a much larger diameter. This may implay that (1) daytime and nighttime users have different interactions
and (2) competition may occur in the transition time between both types of charging. For instance, EV
users leaving office around 18:00 hours while others arrive at that time.

Second learning is that policy makers should embrace the use of simulation models next to using tradi-
tional data analysis. Simulations help to reveal dynamics that are not present in the data such as interac-
tions between users. Moreover, simulation models allow testing of interventions and roll-out strategies.
Particularly, simulation models allow focus on user convenience in roll-out strategies next to traditional
KPIs. Results from vulnerability analysis and agent based model simulations have shown that different
roll-out strategies have different effects on KPIs and user convenience and should be balanced carefully
when making future deployment policies.

Third learning is that while actual individual decision making self organization may not be changed,
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Figure 7: Diameter (the largest connected set) vs order (number of items) of graph for RFID projection of Amster-
dam area based on time filter for daytime and overnight charging

nudging EV users’ charging behavior may optimize the total performance of the EV system. As such,
policy makers could benefit by testing different kinds of nudges in both in simulations as well as in the
field. Interventions may contain, incentives to cooperate, rerouting options on CPs, apps that allow com-
munications between EV users, or implementation of car sharing schemes.

Being conscious of learning effects and feedback loops of EV users may be key to accommodate roll-out
strategies to local circumstances. For instance, based on charging data analysis policy makers may find
patterns of EV user adaptation to local competition or collaboration.

Fourth learning is that Robustness and vulnerability are essential elements of complex systems and in
the context of charging infrastructure they relate to convenience of EV users [18]. From literature it
is known that the higher utilization of a system leads to higher tension and to higher criticality of the
system. While policy makers tend to optimize on performance in terms of utilization of charging points,
a balance between performance and robustness may lead to a higher total system convenience. Roll-out
strategies specifically pointed at decreasing the network vulnerability may lead to an increased conve-
nience for EV users while having marginal impact on efficiency.

Finally, while it is difficult to generalize learnings on path dependency, it is still an important factor that
policy makers should be aware of. Both in research as well as in practice there seem to be two mutual
exclusive paradigms for charging point technologies AC level 2 charging or DC fast charging. Technol-
ogy developments of charging both on charging point and EOM are following rapidly, which results in a
changing favo for each paradigm. Deploying charging infrastructure as a portfolio of several technolo-
gies may avoid that certain l;1>aths of developments become excluded. To the best or our knowledge Path
dependency of charging technologies has not been researched so far.

5.2 Implications for researchers

In this paper we advocate the use of the complex systems approach to charging infrastructure researchers
and policy makers. Until now, scientific literature seems to lack the relation between complex systems
and charging infrastructure. As as result, limited attention has been paid to the concepts described in this
research. Though, some tools like agent based models typically relate to CST have been used to gain
insight in deployment strategies [56]. Given the complexity of behavior in the system, we believe that
these tools are closer to real behavior than the often found Operation Research models.

We believe it would be beneficial to put research questions commonly found in complex systems theory
in the context of EV charging. For example, an interesting scientific challenge would be to spot early
warning signals of regime changed in charging behavior. Moreover, information theory may reveal
insights into the factors that largely influence Self Organized Criticality or regime changes. From these
insights interventions may be simulated that help to avoid sudden regime changes.

Since it has been found that agent based models are difficult to reproduce based upon paper writings, it
would be beneficial to share ABM code and documentation online (e.g. Github) for research purposes
[10]. Particularly data driven agent rules may be of interest for research worldwide, since EV maturity
tenﬁs to differ. Sharing the rules themselves rather than the underlying data may avoid privacy issues as
well.

Regarding complex network analysis of charging infrastructure it would be scientifically interesting to
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compare the complex CP networks of metropolitan areas worldwide in relation to performance, user
behavior and perceived user convenience. This may also help to gain a better understanding of path
dependency in the context of charging infrastructure. Research in path dependency able to create a
set of generalized insights based upon different contexts of metropolitan areas would provide a better
understanding of the complex tasks of deploying any new kind of infrastructure.
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