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Summary

Model-based system optimization has been applied to find an optimal fuel cell powertrain system for three
commercial vehicle types: commercial van, truck, and coach bus. System requirements for each vehicle are
studied in terms of maximum performance, driving range, gradeability, and other performance targets. Two
system architectures, namely hybrid and range-extender, and two fuel cell types—proton exchange
membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC)—are considered. The best system architecture
and fuel cell type are selected based on global optimization results that consider both hydrogen and fuel cell

cost.
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1 Introduction

The passenger vehicle sector has invested in zero emission technology due to environmental concerns and
legislative pressure. The commercial vehicle sector, which emits disproportionately large amounts of CO2,
evidently also requires zero emission vehicle solutions. Notably, despite representing merely 4% of the
European on-road vehicle fleet, heavy duty vehicles alone accounted for 27.4% of the on-road CO2 emissions
in 2015 [1]—and this share could rise to 37-41% in 2030 in part due to increasing freight activity [2].

Challenges for low-carbon commercial vehicles include long-distance travel requirements, minimal
downtime for refueling, payload mass and volume constraints, limited technology availability and economies
of scale. The lack of refueling or recharging infrastructure could be mitigated, because many applications are
operated in limited regional areas or between specific hubs. Additionally, vehicle operators seek to minimize
vehicle lifetime costs.

The two primary zero-emission commercial vehicle (ZECV) technologies are battery electric vehicles (BEV)
and fuel cell electric vehicles (FCEV). FCEVs offer advantages over BEVs such as longer range and fast
refueling owing to their high energy density. On the other hand, BEV's have merit in terms of lower operating
costs and benefit from a more mature and lower cost charging infrastructure — especially compared to
conventional hydrogen FCEV with a demanding requirement for handling, transporting and storing
hydrogen. Other fuel cell alternatives such as solid oxide fuel cell (SOFC) or direct methanol fuel cell
(DMFC) could, however, largely eliminate these issues.

Commercial vehicle requirements do not clearly favor either BEV or FCEV. Yet the industry has mainly
focused on a binary choice between the two. Existing BEV solutions include electric buses and vans from
OEMs including BYD, Volvo, Nissan, Renault, Citroen and Iveco, as well as BEV Heavy Goods Vehicles
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(HGVs) following highly publicized announcements by Tesla and Daimler. HGV fuel cell vehicles are also
currently developed by companies like Scania, Toyota and Nikola. There have, however been few public
attempts combining the two technologies to maximize benefits of each in a single application. New types of
FCEV — BEV hybrid powertrains could accelerate ZECV technology adoption by introducing new solutions
that offer range, low operating costs, convenient refueling and zero emissions.

The aim of this research is to combine advantages of BEVs with those of FCEVs in order to compensate for
disadvantages of either type in a commercial vehicle application. Two alternative powertrain concepts have
been identified — a plug-in “fuel cell range-extender” (FCREX) and a non-plugin “fuel cell hybrid” electric
vehicle (FCHEV). Two fuel cell types—proton exchange membrane fuel cells (PEMFC) and solid oxide fuel
cells (SOFC) are considered for three different commercial vehicle types, namely vans, buses and trucks.
This results in 12 different combinations that require individual optimization. The time required for properly
developing such a high number of powertrains and control strategies is greatly reduced by utilizing advanced
optimization in the form of dynamic programming (DP). The model-based system optimization is used by
combining the usage of advanced optimization techniques with vehicle modeling and system boundary
estimation based on system requirements.

2 Methodology

System engineering for hybrid powertrains is more challenging than that for conventional powertrains. This
is because it involves a greater combination of systems and components, all which significantly impact the
vehicle’s performance attributes. In order to find an optimal system and component selection, i.e. system
optimization, model-based engineering, as adopted in this study provides a systematic quantitative
framework [3]. Model-Based System Engineering (MBSE) is a brand of model-based engineering, which
formalizes application of modelling to support system requirements, design, analysis, verification and
validation from the conceptual design to production [4]. MBSE is especially useful at the beginning of
product development as a model can replace hardware until a time when the actual hardware is available for
the test.

MBSE has been used for hybrid vehicle system research as it is applicable to various system architectures
and component sizes. Plug-in hybrid vehicles, for example, can have a selection of system architectures such
as power split, output split and series output. Following MBSE, these architectures could be simulated and
optimized using an optimization algorithm [5]. Hybrid system with one or two planetary gears as well as
clutch elements is also an interesting subject for system optimization with modelling. Zhang [6] has studied
power-split hybrid vehicles with a single planetary gear set by using MBSE to achieve best fuel economy,
and L. Jinming [7] has researched two planetary gear split hybrid vehicles with similar approach. MBSE is
necessary to find the best system architecture for two planetary gear split hybrid vehicle as there are more
than thousand possible system architectures.

Vehicle

Simulation
System

‘ Optimization
Design Space P

System

Requirement

Input Selection

(e.g. Target Vehicle)

Figure 1: Model-based System Engineering

Fuel cell hybrid powertrain systems for commercial vehicles also require application of MBSE at the
beginning of their development due to a wide range of system configurations and components range. In this
study, the first step is selecting target vehicle since there are several variants of van, bus and truck. Here, the
specific vehicle type is selected based on market share and fuel cell benefit. System requirements are defined

EVS32 2



based on the assumption that the fuel cell vehicle would have similar vehicle requirements in terms of driving
range, maximum acceleration, maximum speed, cost, and weight. Based on those requirements, a range of
fuel cell and battery sizes is calculated in order to reduce computation time for system optimization. Once
fuel cell type, hybrid architecture and components sizing are optimally selected, fuel consumption and
acceleration performance are simulated in vehicle simulation model. A high-level step-wise description of
the overall MBSE design process is shown in Fig. 1. The rest of the paper describes the depicted steps in
greater detail.

3 Input Selection

One of the challenges of commercial vehicles selection is the plethora of variants. In order to meet different
customer needs sub-categories exist for each vehicle type, which often requires different powertrain
specifications. For example, a delivery van it is categorized by vehicle weight and highest weight class. In
this study, delivery van class N1-is selected based on its sale in the UK [8]. For coach bus and truck, not only
sales but also fuel cell technology benefit are considered. To explain why, a city bus, for example, is expected
to have less benefit with fuel cell compared to BEV technology since it requires short driving range per
charge and therefore the limited battery range is not an issue. A Coach bus, on the other hand, requires longer
driving range and therefore frequent battery charging could be problematic. For the truck, the same rationale
as with the coach bus is applied and a long-distance truck with 3-axle semi-trailer is selected.

In this study, two different fuel types are considered: the proton exchange membrane fuel cell (PEMFC) and
solid oxide fuel cell (SOFC). While the PEMFC is widely used for automotive applications in the market due
to its high efficiency and technology maturity, the SOFC has an advantage of high energy density with
different input energy sources. The SOFC is considered over a Direct Methanol Fuel Cell (DMFC) because
it has a higher efficiency and can be used with diesel, a commonly available fuel for commercial vehicles
(see Table 1). Therefore, the SOFC requires less infrastructure investment for commercial vehicles since
conventional trucks and buses have easy access to a diesel fuel station. The main disadvantage of the SOFC
is its high operating temperature and consequently longer warm-up time, which are both taken into account
in system optimization. Additionally, ethanol is considered for SOFC instead of diesel due to its high
efficiency and low greenhouse gases.

Tablel: Fuel Cell Comparison

PEMFC SOFC DMEC

Electrolyte Polymer membrane Solid oxide or Ceramic Polymer membrane

Hydrogen, Diesel,

Fuel Hydrogen Gasoline, Ethanol, Methanol
Methanol etc.

40-50% (with Ethanol)

Efficiency 45-65% 30-40% (with diesel) 20-30%
Operating 65-90 °C 500-1000 °C 90-120 °C
Temperature
High energy density, No
Pros High power density metal catalyst, Tolerant to High energy density
CO poisoning
Sensitive to fuel impurities
Cons Expensive platinum Longer warm-up time Low power density
catalyst
Application Automotive / Mobile Stationary application Mid-sized application (e.g.

mobile & laptop)

Fuel cell powertrain systems can be categorized as full fuel cell hybrid and fuel cell range-extender vehicle
based on the power ratio of battery to fuel cell and the existence of external charging system (see Fig. 2).
Fuel cell hybrid vehicles are not new in the passenger fuel cell vehicle market. Notable examples are the
Toyota Mirai and Hyundai NEXO, where a small capacity battery is used mainly to capture regeneration
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energy, support EV mode, and to assist when fuel cell efficiency is low. Fuel cell range extender vehicles on
the other hand have a large battery capacity, which can provide enough EV range such that when state of
charge (SOC) of battery is low, the fuel cell can provide power to propel the vehicle and to charge the battery
at the same time. Such a range-extender fuel cell van has been developed by Renault [9].

— Fuel Cell Hybrid Vehicle ~ Fuel Cell Range-Extender Vehicle [N

Electrical Path

...... " weess, Electrical Path
- ................. . Mechanical Path R Mechanlical Path

Figure 2: Fuel Cell Vehicle System

4 System Requirements

To select an optimal powertrain system architecture and fuel cell type, and to define the best combination of
battery and fuel cell, system requirements need to first be defined for each vehicle application. System
requirement specification is especially critical for commercial vehicle applications since requirements may
vary depending on vehicle type and usage. For the three commercial vehicle types selected in the previous
section, the requirements differ in target driving cycle and target performance attributes.

Regarding the target driving cycle, a homologation cycle is used for system optimization and vehicle
simulation. For a van, the Worldwide harmonized Light vehicle Test Cycle (WLTC) is used. For coach bus
and truck, homologation cycles from the Vehicle Energy Consumption calculation Tool (VECTO) are used
[10]. Figure 3 describes the cycles used for the van, coach bus and truck.

D&‘Q{:—‘ WLTC VECTO Coach Cycle VECTO Long-haul Cycle
J ;Js;czofr?sr homologation of van < . Ej:d for homologation of Coach . Used for homologation of Truck
bezeladan | Time-based speed profile + Distance-based speed profile : VD\;i‘ithani:é?::fd speed profile
No gradient +  With gradient 9
Total 23 km 275 km 100 km
Distance
- Van cycle (WLTP) ‘ Coach cycle e Long haul cycle.
- = I = T
Neran 'R M |
270 AJ,.‘;"‘\.‘{\_.F ‘I‘ul‘l\\'j;'l\j i I s l] [t | E n A
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?]z %w I PI ! % ;rll“""y"‘"‘""‘L‘-""'ﬂ"*'l‘I‘""."\ '-"\'VWJ\"P”‘““‘-"’““'B\*
i 3 oMyl i 5 |

-1 - 0 20 a 60 80 100 120
0 02 04 06 08 1 12 14 16 18 ] 50 100 200 250 300 Distance k]

150
Time [s] Distance (km]

Figure 3: Target Driving Cycle

Regarding performance targets, it is assumed that fuel cell vehicle should provide similar performance as a
conventional powertrain vehicle. Key target performance data is collected in Table 2; specifically, distance-
to-empty, maximum vehicle speed, 0-100km/h acceleration time and gradeability. It is important to estimate
fuel cell vehicle weight since it makes an impact on vehicle performance. By using weight data of fuel cell,
battery and hydrogen tank, fuel cell vehicle weight is calculated starting from the conventional vehicle
weight. As cost is also an important aspect in system selection, component cost projection for 2020 is used
to estimate fuel cell vehicle cost.
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Table2: Performance Target

Attribute Units Delivery Van Coach Bus Truck
Distance-to-Empty [km] 400 700 1000
Maximum Speed [km/h] 150 110 100
0-100km/h

Acceleration [sec] 12 30 14
Gradeability [%] 30 25 25

5 Model-Based System Optimization

The purpose of system optimization is to find the best combination of components that provide a cost-
effective solution for a given component set and constraints. It is a time-consuming process running the
simulation for each and every component size variation for a given vehicle. The search is therefore automated
following a model-based approach. The first step of system optimization in this study is to define a design
space to check fuel cell and battery power/size range meeting the performance targets. Then, to compute fuel
consumption, a control strategy is required. It is not possible to design and optimize a real-time control
strategy for each combination. Dynamic Programming (DP) is used to estimate optimal fuel consumption
since it guarantees an optimal control strategy for a given drive cycle. Based on fuel consumption, fuel cell
vehicle running cost (i.e. fuel cost in dollars) is estimated, and powertrain cost can also be estimated with
predicted powertrain component cost in 2020. Optimal system, fuel cell type and component size is selected
for each vehicle type based on total cost from running cost and powertrain cost.

5.1 Design Space

A design space is calculated before system optimization in order to reduce computation effort for dynamic
programming. Reducing design space upfront enables more effective use of computation time — eliminating
infeasible component combinations in advance and therefore unnecessary DP optimization at these
combinations. At the beginning, a minimum and maximum of battery and fuel cell size [i.e. maximum power]
are selected. System requirements are then defined as described in Section 4, with cost, weight and volume
considered to narrow the design space.

A

Battery
size

. “'n,v Excessive cost / weight / volume

. "u‘n'
° L :
o O
' e O
Application requirements . : Sizing

not satisfied ' combinations to be
™ : evaluated

Fuel cell size

Figure 4: Design Space

Evaluation of vehicle performance in terms of maximum speed, acceleration and gradeability is conducted
by using a simple vehicle model, which defined the lower boundary of design space. The other criteria to be
considered are powertrain cost, weight and volume, all which are related to component size. Indeed, cost,
weight and volume limit the upper boundary of design space (see Fig. 4).

EVS32 5



5.2 Dynamic Programming

Dynamic Programming is used to find an optimal control strategy in terms of component power and to obtain
best fuel consumption. For system engineering of hybrid powertrains DP is widely used in order to find best
system architecture and components size [6, 7]. Although there are other optimization algorithms such as
Pontryagin’s minimum principle (PMP) and convex programming, DP is chosen as it guarantees global
optimal solution and provides flexibility to take into account additional attributes like component
degradation.

DP is a powerful tool to compute global optimal solution based on Bellman’s optimality principle [10].
Bellman has proposed a method to transform the complex problem to a series of sub-problems. A discrete-
time vehicle model can be described as in Eq. (1):

x(k +1) = f(x(k), u(k)] (1)

where, x(k) is the state vehicle of the system and u(k) is the control vector. For fuel cell hybrid system, x(k)
is battery SOC and u(k) is power split ratio between battery and fuel cell.

A cost function to be minimised must be defined. Whereas for conventional hybrid vehicles the cost function
is normally fuel consumption, hydrogen consumption constitutes the cost function for fuel cell hybrid
vehicles. To calculate hydrogen consumption, a backward-facing vehicle model is used as described in Eq.

2
Pyor = Pgat + Prc ()

Where, Py, is motor power demand, Pg,; is battery power, P is fuel cell power. Motor power demand
can be calculated with known vehicle specifications and known vehicle speed.

The optimal solution can be calculated by finding minimum of cost function based on Bellman’s optimality
principle. In general, the following minimisation problem is solved

Jima = min [L(x(N = 1),u(N = D)] 3)

where, L is cost function defined for given problem. It is solved backward from N-1 to 0 with vehicle model
and cost function defined.

5.3 System Optimization

The goal of system optimization is to identify fuel cell system architecture and component sizing, which can
provide minimum total cost combining powertrain and operating cost while meeting system performance
requirements. Based on optimal fuel consumption calculated with DP, vehicle operating cost can be obtained
combining with assuming annual mileage as shown in Eq. (4)

Annual Running Cost [USD] = Fuel Consumption [:—i] X Annual Mileage [km] X

Fuel Cost ("k—sj) (4)

In DP it is important to set a final SOC, especially for the range-extender hybrid since this vehicle can have
significant pure electric driving range, or charging depleting (CD) mode. In order to take into account
charging depleting distance ratio over total trip distance, European Commission defines Utility Factor (UF)
based on real world data analysis [12]. The UF of a specific vehicle depends on the charging depleting range
and different vehicle type like bus and truck, needs different UF factor. Since UF for bus and truck is not
defined yet in this study UF of Van is scaled based on annual mileage.
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Figure 5: Utility Factor (UF)

From DP, fuel consumption of charging sustaining (CS) mode can be calculated. Figure 5 shows hydrogen
fuel consumption results for Van with discrete design space defined in Section 5.1. In terms of battery size
the smaller battery the less regeneration energy and consequently fuel consumption is degrading. As battery
size increased fuel consumption improves until battery weigh deteriorate fuel consumption more than
regeneration benefit. In terms of fuel cell size optimal power for Van is fairly low as request wheel power of
WLTP is small. However, decreasing fuel cell beyond a certain point starts to degrade fuel consumption. This
is because operating fuel cell at high efficiency area requires charging and discharging battery. Bus and truck
show similar trend as van.
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Figure 6: DP Results for Van

From fuel consumption of DP vehicle running cost can be calculated and powertrain cost can be obtained
with components cost depending on component sizing. Total cost is summation of running cost and
powertrain cost and is dominated by powertrain cost since fuel consumption differences are relatively small
and its mileage is not long enough to make up for higher powertrain cost.

Table3: Cost Results of Van PEMFC

Item Value Comments

Operating Cost $ 20k - 24k Assumption: 30,000 km/year, 10 year operation
Powertrain Cost $ 24k - 47k Based on components cost defined for 2020
Total Cost $ 39k - 60k Operating cost + Powertrain cost
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Figure 5: System Optimization Results for Van PEMFC

The same process is repeated for different fuel cell types, vehicles, and powertrain system types. The range-
extender system is commonly selected since it can provide longer EV driving range, which allow the owner
to save fuel consumption. With regards to fuel cell type PEMFC is selected for van and bus owing to its
higher efficiency compared to the SOFC, while SOFC is selected for truck as its weight could be smaller due
to high energy density of diesel compared to hydrogen, which is dominant to truck.

Table 4: System Optimization Results

Item Van Bus Truck
System Range-Extender Range-Extender Ranger-Extender
Fuel Cell Type PEMFC PEMFC SOFC

Fuel Cell Power 17 kW 160 kW 115 kW
Battery Power 98 kW 400 kW 320 kW
Total Cost (10 yrs) 25,870 731,300 392,200

6 Vehicle Simulation

The final vehicle selection in Table 3 is now simulated with a driver model in a forward-facing simulator to
assess fuel consumption. For such a simulator, DP energy management is inapplicable; therefore, a real-time
implementable control strategy for the vehicles’ energy management system (EMS) must first be developed.

A rule-based EMS is adopted here owing to its low computational demand and simplicity. The following
sections describe the development of the adopted rule-based EMS and subsequent vehicle simulation results.

6.1 Rule-Based Energy Management

By examining the fuel cell power profiles generated with DP in a backward facing simulation (see Fig. 6), it
is generally observed that the fuel cell supplies either a steady power or no power. This is because fuel cell
efficiency is constant depending on fuel cell power. This observation leads to the creation of the following
main rule for the EMS: when the fuel cell is active, a constant power request from the fuel cell is to be made.
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Figure 6: Fuel cell power profiles generated by DP.

The actual requested fuel cell power is set depending on the battery’s state of charge (SOC) and is defined
by the SOC modes depicted in Fig. 7. When battery is fully-charged battery energy is used at first unless the
request power is above battery maximum power like full acceleration. When SOC is reached the certain level
it enters charging sustaining (CS) mode, which mean the vehicle operates like hybrid vehicle to sustain SOC
while seeking higher system efficiency. If SOC is dropping due to high demand power or high auxiliary
power SOC mode switches to CS Low. In this mode the vehicle is considering system efficiency but battery
charging is high priority. If SOC is dropping further, battery charging is high priority over vehicle
performance by limiting request power or air conditioning power.

State of Charge (SOC) Mode Energy Management
soc | ~N
Charging Depleting - Battery-electric driving for light driving demands
- Fuel cell assist when requested power is above battery
(CD) y maximum power
.
4 (" ) - . . .
- Optimal hybrid system control (Fuel cell is required
Charging CS - Normal to operate at high efficiency. Battery charging efficiency
Sustaining | ) is also high, thus maximising regen potential)
 EE—
(CS) cS-L - Battery charging oriented power split while still
- Low
\_ L ) considering system efficiency
e N
SOC Low - Forced battery charging to CS-Normal SOC and limited
L ) vehicle performance.

Figure 7: SOC Modes and Energy Management.

6.2 Simulation Results

After creating energy management strategy and plant model, the simulation is conducted to assess fuel
consumption benefit. As baseline and fuel cell hybrid vehicle are using different input energy source it is
necessary to convert fuel consumption to same metrics like well-to-wheels CO2 and annual running cost.
The well-to-wheel analysis is subject to how to generate hydrogen and in the UK it is mainly coming from
steam methane reforming at the moment [13, 14]. In the future, if hydrogen can be produced from renewable
energy, its CO2 emission would be reduced dramatically. For annual running cost, the price of hydrogen is
assumed at $3.96/kg (projected price for the year 2020 [15]), while that of diesel is assumed at $1.75/L, and
ethanol at $2.25/L [16]. The annual mileage of the vehicles is 30,000 km for the van, 275,000 km for the bus
and 120,000 km for the truck. Simulation results and baseline comparison for the van, coach bus and truck
are provided in Table 5.

The simulation results show that annual fuel cost and well-to-wheels CO2 emissions for a fuel cell hybrid of
van and bus is better than that for its conventional vehicle counterpart. When hydrogen price reaches to
$3.96/kg in 2020, an owner could save $1,770 and $81,376 every year for van and bus respectively. In terms
of well-to-wheels CO2 emission, fuel cell hybrid vehicle provides 10% and 18% improvement for van and
bus respectively. For truck, even though fuel consumption of fuel cell is better than that of baseline, its
running cost is equivalent due to its higher ethanol cost. Its well-to-wheels CO2 emissions, however, is much
lower than baseline as ethanol produces less CO2 while producing it.
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Table 5: Simulation Results

Bus Truck
i (WLTC) (VECTO Coach) (VECTO Long-haul)
em
Baseline Fuel Cell Hybrid Baseline Fuel Cell Hybrid Baseline Fuel Cell Hybrid
Fuel 7.32 L/100 km 1.74 kg/100 km 33.5L/100 km 7.33 kg/100 km 31.3 L/100 km 24.6 L/100 km
consumption (Diesel) (Hydrogen) (Diesel) (Hydrogen) (Diesel) (Ethanol)
Well-to- 1,017 CO2e
Wheels 238 CO2e g/km 214 CO2e glkm | 1088 CO2e g/lkm 903 CO2e g/km g/km 168 CO2e g/km
Annual $3,840 $2,070 $161,200 $79,824 $65,750 $66,310
running cost
Eng“clzlq Fuel 1 52L/114kW  17KWPEMEC | 128L/317kW 160 kWPEMFC | 125L/317kW  115kW SOFC
Battery N/A 98 kW N/A 400 kW N/A 320 kW
. Single-step Single-step Single-step
Transmission 6-speed manual Gearbox 12-speed AMT Gearbox 12-speed AMT Gearbox
Final drive 4.19 8.60 3.58 13.00 2.80 14.50
ratio
Test weight 2,270 kg 2,349 kg 17,028 kg 17,838 kg 27,400 kg 27,400 kg

7 Conclusion

Model-based system optimization for commercial fuel cell vehicles is proposed and applied to three different
vehicle types: van, coach bus and truck. For a vehicle with multiple energy sources, the optimal energy
management strategy depends on sizing of the powertrain components. Fair comparison of the fuel
consumption of different sizing of powertrain components requires modifying the control strategy for each
sizing. Adjusting the control strategy manually for all the combination of components sizing requires
tremendous amount of time and effort. In this study it is automated to compute optimal fuel consumption
with a global optimization algorithm, dynamic programming.

Based on literature review and market research for conventional commercial vehicles, a target conventional
vehicle’s attributes are matched to those of the fuel cell vehicle counterpart. A design space is then calculated
before running the DP algorithm in order to reduce computation time. Within the design space, a discrete
combination of battery and fuel cell component sizes is used. The DP algorithm is then run to obtain optimal
fuel consumption and a running cost (in currency US dollar) in the end. Powertrain cost is also estimated
based on component information searched from literature or market information. After combining operating
cost and powertrain cost, the powertrain combination with minimum total cost is selected.

Range extender hybrid system can provide more benefit than hybrid vehicle as its pure electric driving range
has better efficiency and low running than hybrid mode. Two charging for range extender hybrid system
could be problematic due to longer charging time of both hydrogen and electricity. In terms of fuel cell type
PEMFC is better for van and bus but SOFC is selected for truck.

Fuel consumption of baseline and fuel cell hybrid vehicle are compared in terms of annual running cost and
well-to-wheels CO2. For van and bus, annual running cost of fuel cell is almost half of that of baseline and
well-to-wheels CO2 of fuel cell has improved approximately10% and 20% respectively. For truck annual
running cost of fuel cell is as similar as that of baseline but well-to-wheels has improved significantly as the
process of generating ethanol emits less CO2 than that of hydrogen.

In conclusions, the model-based system optimization is proposed and applied to find a best fuel cell system
for a commercial vehicle application. This method is applicable to other system engineering for powertrain
system.
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