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Summary 

The impact of different charging rates on an EV battery has been investigated in this article. Taking into 

consideration the battery temperature and the charging profile, it has been shown that the charging rate has a 

considerable influence on battery lifespan. This issue, already known in the fast charging environment due 

to the chemical limitations of the battery, has been satisfactory reproduced by the battery ageing model in the 

paper. Simulation studies have been carried out based on a battery aging model which has been validated 

with laboratory tests. Results indicate that fast charging requires an appropriate cooling system in order to 

ensure the temperature control for avoiding the premature ageing of the battery. 
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1 Introduction 

It is well known that transportation has a huge effect on greenhouse gases linked to global climate change. 

According to the US Environmental Protection Agency (EPA), transportation sector generates the largest 

share of greenhouse gas emissions, nearly 28.5% [1]. Besides, passenger cars and light-duty trucks account 

for over half of the emissions from the transportation sector. Due to this situation, reducing transportation 

emissions has become one of the key issues for Governments. For instance, Horizon2020 European research 

program accounts for several goals related with diminish passenger cars emissions, and various types of clean 

energy transportation systems such as Battery Electric Vehicles (BEV) or Plugin Hybrid Electric Vehicles 

(PHEVs) have been developed [2]. 

In recent years, high energy lithium ion batteries integrated in a battery pack have caught attention for the 

applications on electrical vehicles (EVs) and hybrid electrical vehicles which demand a high-energy and 

high-power energy storage system [3]. However, energy storage systems (ESSs) are still the critical issue for 

electric transportation since it suffers from various stress factors such as high charging and discharging 

current rates or extreme operating temperatures [4]. Battery ageing while discharging depends highly on the 

driver profile, so ageing while charging becomes critical since it is a standardized process where EV owner 

does not intervene. Due to battery importance and high cost, there is a need for a comprehensive study of the 

ageing phenomena in the battery when charging with different rates, so the aging during that common process 

is minimized and the battery lifespan can be extended as much as possible. 
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Lithium-ion batteries aging process has already been studied, and different models have been developed 

accounting for various aging processes: parasitic side reactions, electrolyte interface formation, and 

resistance increase [5-7]. Versatile models that consider several of these effects are as well published in [8-

9]. 

This paper aims to validate a modified ageing model through experimental simulation and study the influence 

of different charging rates on a Li-ion battery lifespan.  

2 Methodology 

The mathematical battery model used for simulation analysis is described next, as well as the laboratory 

facilities and the test procedure to validate the aging model. 

2.1  Battery model 

2.1.1 Voltage-Current Performance and Runtime Model 

The lithium-ion battery model used in this paper is a modification of the Mathworks model in the SimPower 

toolbox from MATLAB Simulink, which has been previously published in [8] and [9]. The equivalent circuit 

is based on the Shepherd model [10], which was developed and validated in [11] and [12]. Although more 

accurate and complete equivalent circuits have been proposed [13], this model keeps error between 1 and 5% 

and does not require to test the battery to obtain parameters, since it is sufficient with the datasheet 

information. In this paper, the battery model is based on the one described in [12], including thermal 

dependencies and modelling the internal resistance as two different resistances, ohmic and polarization 

resistance, the latter being dependent on the State of Charge (𝑆𝑜𝐶) (Figure 1).  

 

Figure 1: Battery equivalent circuit [1] 

The model behaves as follows: 

𝐸 = 𝑓(𝑆𝑜𝐶) = 𝐸0 − 𝐾 · 𝑄𝑀𝐴𝑋 (
100
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where 𝑢 is the battery instantaneous voltage [V], 𝑖 is the battery current [A] (𝑖 > 0 discharging; 𝑖 < 0 

charging), 𝑆𝑜𝐶 is battery state of charge [%], 𝐼𝑆𝐸𝐿𝐹 is the self-discharge current [A], 𝑅𝑂𝐻𝑀 is the ohmic 

internal resistance [Ω], 𝑅𝑃𝑂𝐿 is the polarization internal resistance [Ω], 𝐶𝑃𝑂𝐿 is the polarization capacitor [F], 

𝐸 is the open-circuit nonlinear voltage [V], 𝐸0 is the open-circuit constant voltage [V], 𝐾 is the polarization 

constant [Ω], 𝑄𝑀𝐴𝑋 is the maximum capacity [Ah], 𝐴 is the exponential voltage constant [V], and 𝐵 is the 

exponential capacity constant [Ah-1]. 
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2.1.2 Thermal Model 

The thermal model implemented comprises two parts: a heat generation model, and a heat evacuation model, 

the former published in [14]: 

𝐻 = (𝐸0 − 𝐸)𝑖 + 𝑇
𝑑𝐸

𝑑𝑇
𝑖 + (𝑅𝑂𝐻𝑀 + 𝑅𝑃𝑂𝐿)𝑖

2 (4) 

where 𝐻 is the heat generated [W], 𝑇 [K] is the temperature and 𝑑𝐸/𝑑𝑇 ≷ 0 is the change of the equilibrium 

potential with temperature, which is dependent on the 𝑆𝑜𝐶 [15]. As aforementioned, parameters from 

equations (1), (2) and (3) are temperature dependent: 

𝐸0(𝑇) = 𝐸0(𝑇0) +
𝑑𝐸

𝑑𝑇
(𝑇 − 𝑇0) (5) 

𝑄𝑀𝐴𝑋(𝑇) = 𝑄𝑀𝐴𝑋(𝑇0) +
𝑑𝑄

𝑑𝑇
(𝑇 − 𝑇0) (6) 

𝐾(𝑇) = 𝐾(𝑇0) · 𝑒

𝛼(
1
𝑇
−
1
𝑇0
)

 
(7) 

𝑅𝑂𝐻𝑀(𝑇) = 𝑅𝑂𝐻𝑀(𝑇0) · 𝑒
𝛽(

1
𝑇
−
1
𝑇0
)
 (8) 

The heat evacuation model, which was published in [16], assumes that the only heat transfer to be modelled 

is that from the cell surface to the ambient. Therefore, the temperature variation for a single cell can be 

obtained as follows: 

𝐻 ≈ 𝑚 · 𝑐𝑝
𝑑𝑇

𝑑𝑡
+

1

𝑅𝑂𝑈𝑇
(𝑇 − 𝑇0) + 𝐸 · 𝜎 · (𝑇4 − 𝑇0

4) ⇒ 𝑅𝑂𝑈𝑇 =
1

ℎ · 𝐴𝑟
 (9) 

𝑇(𝑠) =
𝐻 · 𝑅𝑂𝑈𝑇 + 𝑇0

1 +𝑚 · 𝑐𝑝 · 𝑅𝑂𝑈𝑇 · 𝑠
=
𝐻 · 𝑅𝑂𝑈𝑇 + 𝑇0
1 + 𝑡𝑡ℎ · 𝑠

 (10) 

where 𝑚 and 𝑐𝑝 [𝐽 · 𝑘𝑔−1 · 𝐾−1] are the mass and the specific heat capacity of the cell, ℎ [𝑊 ·𝑚−2 · 𝐾−1] is 

the convective heat transfer coefficient, 𝐴𝑟 is the external surface area of one cell, 𝑇0 is the ambient 

temperature, 𝜎 is the Stefan-Boltzmann constant, and 𝑡𝑡ℎ [s] is the thermal time constant. 

2.1.3 Aging Model 

Battery aging has also been included in the model developed during this work for cycle life estimation 

purposes, neglecting calendar aging [17]. Lithium-ion batteries aging models are strongly dependent on the 

cathode chemistry, i.e., they are not valid for every type of lithium-ion battery but for a specific one. As 

explained in the next subsection, the lithium-ion batteries tested in this paper are of LiNixCoyMnzO2 

chemistry. An aging model for this chemistry was developed in [18], based on experimental results. The 

capacity loss can be calculated as follows: 

𝑄𝑙𝑜𝑠𝑠 = (𝑎𝑇2 + 𝑏𝑇 + 𝑐) ∙ 𝑒(𝑑∙𝑇+𝑒)𝐶𝑟𝑎𝑡𝑒 ∙ 𝐴ℎ (11) 

where 𝑄𝑙𝑜𝑠𝑠 is the lost capacity [Ah], 𝐶𝑟𝑎𝑡𝑒 is the charge/discharge current with respect to the nominal 

capacity, and 𝐴ℎ is the capacity that has been extracted and/or injected into the battery. 

The rest of the parameters are calculated based on experimental results and can be obtained from [18]. 

Besides, the temperature can be calculated as stated in equation (10). 
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The model has been validated in [18] for constant discharge current and for a single cell. Laboratory tests 

described in the next subsection aim to validate the aging model for different charging rates, and for a battery 

pack which is composed by 14 cells. 

2.2 Laboratory test 

The power system of the test bench used for the laboratory tests is shown in Figure 2 [19-20]. It consists of 

the LiNixCoyMnzO2 battery, a DC/DC power electronic converter, a DC/AC power electronic converter, and 

a transformer connected to the 400 V grid. This topology allows to exchange power between the grid and the 

batteries. 

 

Figure 2: Test bench scheme [11] 

The control hardware comprises both electrical and thermal measurements, a digital signal processor (DSP) 

and a computer that acts as a Human-Machine interface. The DC/DC converter is responsible for controlling 

the current in the battery through a PWM current control strategy with a constant switching frequency of 5 

kHz. The DC/AC converter is controlled as a conventional grid-tie inverter with reactive power control 

capability. This converter is responsible for controlling both the DC voltage in the DC link and the reactive 

power exchanged with the grid (direct-sequence control), although this reactive power capability is not 

relevant for the aging studies presented in this paper. The DC/AC converter control strategy is a SVPWM 

current control with a constant switching frequency of 5 kHz. In order to guarantee a proper behaviour of the 

test bench, the rated voltage of the batteries must be comprised between 12 and 96 V. The rated power of the 

two electronic converters is 15 kV, and the batteries are located inside a safety room. 

The battery pack used both for simulations and test consist of 14 Li-polymer cells connected in series, where 

each cell has a rated capacity of 55 Ah and a nominal voltage of 3.7 V [21]. Hence, the battery pack nominal 

voltage equals 51.8 V. Scenarios shown in Table 1 have been defined to validate the model for different 

charging rates, both for simulation and experimental test. Cycling should be performed from 80% to 20% 

𝑆𝑜𝐶 for each charging mode while keeping the discharge current rate constant, so results related to different 

charging modes can be extracted. Ambient temperature is kept between 23±3ºC. Since battery cycling and 

capacity fade tests are time demanding, only 100 slow charging cycles have been performed by the time this 

paper is published. In order to fully validate the aging model, semi-fast and fast cycling tests need to be 

performed once the slow cycling is finished. Moreover, different temperatures should be taken into 

consideration as well. At last, non-constant charging/discharging patterns will be tested. 

Table1: Charging rate scenarios 

 Discharge (C) Charge (C) 𝑆𝑜𝐶 range Ambient temperature 

Slow 1 0.5   

Semi-fast 

Fast 

1 

1 

1.5 

3 

20% - 80% 23±3ºC 

3 Aging model experimental validation 

Figure 3 shows capacity fade evolution after 100 cycles with slow charge (1C discharge and 0.5C charge), 

from 20% to 80% 𝑆𝑜𝐶. Capacity tests were performed at 50 and 100 cycles, three times at each number of 

cycles for sake of repeatability. As stated by the battery manufacturer in [21], a capacity test is completed 

when the battery is discharged at C/3 from the fully charged open circuit voltage to cut-off voltage. Aging 

model simulations were carried out in the environment of MATLAB Simulink SimPowerSystems.  
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Figure 3: Capacity fade after 100 cycles between 20% and 80 % 𝑆𝑜𝐶, charging at 0.5C and discharging at 1C. 

The model predicts a capacity fade of 0.26%, while the tendency line of the laboratory test reaches 0.27 % 

after 100 cycles. The relative error is less than 5%. As aforementioned, laboratory test with different charging 

rates, at different temperatures and with different discharging profiles need to be performed in order to fully 

validate the aging model. Nevertheless, [22] and [23] suggest that the validation performed in [18] can be 

extended to a battery pack and for different charging rates. 

4 Influence of charging rate in battery lifespan 

Once the ageing model of the battery has been validated accurately enough with the experimental set of 

batteries, the next analysis will be accomplished using the model. 

In order to study the influence of different charging rates on the battery lifespan, simulation studies have been 

carried out comparing slow, semi-fast and fast charging rates. The discharge current is kept constant and 

equal to 1C for every simulation, so its aging effect should be the same in all cases. Simulation scenarios 

have been defined based on two variables: temperature and charging profile. 

Regarding temperature, the absence or presence of a cooling system in the battery is taken into consideration. 

On the one hand, if the battery accounts for a high-performance cooling system the battery temperature is 

assumed to be constant and equal to ambient temperature (23ºC). On the other hand, if there is no cooling 

system or the cooling system is not able to assume the temperature increase of high current charge, the battery 

temperature will vary based on the thermal model previously described. Regarding the charging profile, 

constant current/constant voltage (CC/CV) and constant current (CC) charging profiles have been considered. 

When charging with CC/CV type, charging is performed at the corresponding current (C-rate from Table 1) 

until 𝑆𝑜𝐶 reaches 80%, and then the current decreases while keeping the voltage constant until the battery is 

fully charged. CC charging profile keeps charging the battery at the same rate until 𝑆𝑜𝐶 equals 100%%, 

producing negative thermal effects in the battery when charging with high current levels. Based on the 

absence or presence of a cooling system and the charging profile, the following four scenarios have been 

defined: 

Table2: Simulation scenarios 

 Cooling system Charging profile 

Scenario I No CC/CV 

Scenario II 

Scenario III 

Scenario IV 

Yes 

No 

Yes 

CC/CV 

CC 

CC 
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Figure 4 shows battery aging, presented as capacity fade in % after 1000 cycles, for the four selected 

scenarios, considering in each case the three charging rates (slow, semi-fast and fast). 

 

Figure 4: Simulation results for the selected scenarios and for the three charging rates (0.5C – 1.5C – 3C). 

As expected, the cycling aging is most severe with fast charging in all scenarios. Regarding temperature 

dependency, scenarios with no cooling system are represented in Figures 4(a) and 4(c), while scenarios 

equipped with refrigeration are displayed in Figures 4(b) and 4(d). It can be derived from these figures that 

fast charging is highly inconvenient for the battery lifespan when it does not account for an appropriate 

cooling system. For both scenarios I and III, the battery capacity reaches the end of life value of 80% at 561 

and 449 cycles respectively, while for scenarios II and IV the capacity fade is only 1.5% higher than the one 

achieved by the slow charge. Semi-fast charge can also be considered detrimental without refrigeration, since 

battery lifespan prognosis is close to 2000 cycles for both CCCV and CC charging profiles (Figures 4(a) and 

4(c)). On the other hand, capacity fade with slow charging and no cooling system is not critical, although 

improvements in capacity of 2% per 1000 cycles can be observed if the battery is refrigerated.  

Charging profile influence on battery lifespan is less significant than temperature. Capacity fade differences 

of less than 2% per 1000 cycles can be observed between scenarios with CCCV and CC charging profile, for 

the cycling pattern defined in this work. 

At last, fast charging simulations for the different scenarios are summarized in Figure 5. As expected, scenario 

II (cooling system and CCCV charging profile) reduces the capacity fade with respect to the rest of scenarios. 

It is clear that, when dealing with fast charges, refrigerating the battery becomes vital and necessary in order 

to extend as much as possible the battery life.  

Simulation results are summarized in Table 3. The charging method that most preserves the battery life consist 

of slow charge with a cooling system and CCCV charging profile. Nevertheless, semi-fast and fast charge 

for scenario II provide similar results, and they could be a better solution if user comfort and charging time 

are taken into consideration. 
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Figure 4: Simulation results when charging with 3C. 

 

Table3: Simulation results after 1000 cycles 

 Charging rate Capacity fade after 1000 cycles 

Scenario I 
No cooling 
CCCV 

Slow 

Semi-fast 

Fast 

94,8% 

91,0% 

80% at 561 cycles 

Scenario II 
Cooling 

CCCV 

Slow 

Semi-fast 

Fast 

96,6% 

95,9% 

95,4% 

Scenario III 
No cooling 

CC 

Slow 

Semi-fast 

Fast 

94,0% 

88,8% 

80% at 449 cycles 

Scenario IV 
Cooling 

CC 

Slow 

Semi-fast 

Fast 

95,8% 

94,9% 

94,3% 

5 Conclusions 

In this article, the impact of different charging rates on an EV battery has been investigated. Taking into 

consideration the battery temperature and the charging profile (CCCV or CC), it has been shown that, as 

expected, the charging rate has a considerable influence on battery lifespan. Simulation studies have been 

carried out based on a battery aging model which has been validated with laboratory tests. The battery pack 

used both for simulations and test consist of 14 Li-polymer cells connected in series, where each cell has a 

rated capacity of 55 Ah and a nominal voltage of 3.7 V. 

Results indicate that fast charging requires an appropriate cooling system in order to ensure the temperature 

control for avoiding the premature ageing of the battery. Moreover, it is highly recommended not to carry out 

the charge at constant current over the 80% of 𝑆𝑜𝐶. This issue, already known in the fast charging 

environment due to the chemical limitations of the battery, has been satisfactory reproduced by the battery 

ageing model in the paper. Among the two effects the temperature one becomes more relevant, since capacity 

fade when the cooling system is not suitable is extremely severe, reaching the end of life value (80%) in less 

than 600 cycles for fast charging. This effect can be observed with semi-fast charging as well, with a capacity 

fade difference of 6% when comparing scenarios that account for an appropriate cooling system with 
scenarios that lack of it. On the other hand, the importance of the charging profile is not severe, specially 
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when the cooling system is well designed. Capacity fade differences of 2% per 1000 cycles for fast-charging, 

1% for semi-fast charging, and 0.8% for slow charging when comparing CC charging profile scenarios with 

CCCV charging profile. As a conclusion, semi-fast and fast charging can be considered as non-critical 

charging strategies if the battery is properly cooled. 
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