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Summary 

The paper deals with an analysis of optimal battery state-of-charge (SoC) trajectory profile for plug-in 

hybrid electric vehicles (PHEV). The case of blended operating regime is considered, where hybrid driving 

mode is enabled during the whole trip. The analysis relates to a SoC trajectory length minimization pattern 

observed in optimal SoC trajectories obtained by using dynamic programming-based optimisation of PHEV 

powertrain control variables. The emphasis is on analytical interpretation of the optimal SoC trajectory 

pattern from the perspectives of simplified battery-only system and the whole PHEV powertrain. Also, the 

impact of engine specific fuel consumption characteristic on the optimal SoC trajectory solution is 

analysed. 

Keywords: Plug-in hybrid electric vehicle, battery state of charge, powertrain, efficiency, optimisation, 

power management. 

1 Introduction 

Plug-in hybrid electric vehicles (PHEV) are proven to be viable transition technology towards fully electric 

vehicles (EV), as they overcome main deficiencies of EVs such as high prices and short range, while 

allowing recharging from power grid. PHEVs typically operate in charge depleting (CD) and charge 

sustaining (CS) regimes, where pure electric (CD) driving is active until the battery is discharged to a 

predefined lower-limit level, when hybrid driving (CS) is activated in order to sustain the battery state-of-

charge (SoC). In the case of knowing a trip length in advance, it is possible to discharge the battery more 

gradually under blended regime (BLND) and thus further reduce fuel consumption [1, 2, 3] (typically from 

2% to 5% when compared to the CD/CS regime [1]). The optimal SoC trajectory (expressed with respect to 

travelled distance) tends to have a nearly-linear minimum-length shape for the zero road grade case [1, 2, 

3], while it can significantly deviate from the linear trend in the presence of variable road grade [1, 3], low 

emission zones [4], and different driving patterns on different route segments [2]. 

This paper deals with an analysis of optimal SoC trajectory profiles obtained by using dynamic 

programming (DP) optimisation of PHEV control variables in the blended regime. A convex analysis of the 

relevant powertrain functions is conducted to explain the observed optimal SoC trajectory patterns, in order 

to further gain insights into the optimal powertrain operation for different operating conditions. 
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The main contributions of the paper include: (i) proposing a method of generating optimal SoC trajectories 

of different length and conducting correlation analyses of obtained results, (ii) clarifying the cause and 

conditions under which the optimal SoC trajectory has a minimum-length linear pattern, and (iii) analytical 

proof of optimal SoC trajectory pattern for the simplified scenarios of battery-only discharging system. 

2 Modelling of PHEV Powertrain  

Fig. 1a illustrates the parallel PHEV configuration of a city bus powertrain considered herein for the 

purpose of analysis. The powertrain consists of internal combustion engine (ICE), electric machine (M/G), 

lithium-ion battery and automated manual transmission with 12 gears [5]. When being switched off, the 

engine can be disconnected from the powertrain by using a clutch, thus enabling electric-only driving. The 

PHEV powertrain is modelled in the backward-looking manner, where the engine i.e. M/G machine 

rotational speed ωe = ωMG is calculated from the vehicle velocity vv: 

𝜔𝑒 = 𝜔𝑀𝐺 = 𝑖𝑜ℎ𝜔𝑤 = 𝑖𝑜ℎ
𝑣𝑣
𝑟𝑤
, (1) 

while the total engine and M/G machine torque is obtained from the demanded torque at wheels τw while 

accounting from the drivetrain losses: 

𝜏𝑒 + 𝜏𝑀𝐺 =
𝜏𝑐𝑑
𝑖𝑜ℎ

=
(

𝜏𝑤
𝜂𝑡𝑟(𝜏𝑤)

+
𝑃0(𝜔𝑤)
𝜔𝑤

)

𝑖𝑜ℎ
. 

(2) 

In Eqs. (1) and (2) h and io denote the transmission gear ratio and the final drive ratio, respectively, ωw is 

the wheel speed, rw is the effective tire radius, ηtr is the transmission efficiency, while P0 denotes the idle-

mode power losses (see Figs. 1b and 1c). The demanded power can then be defined as 

𝑃𝑑 = 𝜔𝑤𝜏𝑐𝑑 =
𝜔𝑤𝜏𝑤
𝜂𝑡𝑟(𝜏𝑤)

+ 𝑃0(𝜔𝑤) (3) 

 
Figure 1: Parallel PHEV powertrain configuration (a), transmission idle-mode power loss map (b), and mechanical 

efficiency map (c). 

The engine specific fuel consumption and M/G machine efficiency are modelled by means of 2D maps, 

while the corresponding maximum torque characteristics are modelled by 1D maps (Fig. 2). The specific 

fuel consumption map (Aek), expressed in g/kWh unit, can readily be transformed to the fuel consumption 

rate map (ṁf; expressed in g/s unit) by using the following expression: 

𝑚̇𝑓 = 𝐴𝑒𝑘(𝜏𝑒, 𝜔𝑒)
𝜏𝑒𝜔𝑒

3.6 · 106
 . (4) 
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Figure 2: Engine specific fuel consumption map (a), and M/G machine efficiency map (b), given along with maximum 

torque lines (denoted in blue). 

The battery is modelled as a charge storage by an equivalent electrical circuit (Fig. 3a), where the open 

circuit voltage Uoc and internal resistance R are set to be dependent on the battery state-of-charge (SoC) 

(Fig. 3b). Finally, the battery model is represented by the following state equation [6] 

𝑆𝑜𝐶̇ =
√𝑈𝑜𝑐2 (𝑆𝑜𝐶) − 4𝑅(𝑆𝑜𝐶)𝑃𝑏𝑎𝑡𝑡 − 𝑈𝑜𝑐(𝑆𝑜𝐶)

2𝑄𝑚𝑎𝑥𝑅(𝑆𝑜𝐶)
, (5) 

where Qmax is the battery charge capacity, while Pbatt is the battery power which is determined by M/G 

machine power PMG as 

𝑃𝑏𝑎𝑡𝑡 = 𝜂𝑀𝐺
𝑘 𝜏𝑀𝐺𝜔𝑀𝐺⏟    

𝑃𝑀𝐺

, 
(6) 

where ηMG denotes M/G machine efficiency (see Fig. 2b), and k is equal to 1 for the case of battery 

charging (Pbatt<0) and −1 for the case of battery discharging (Pbatt>0). 

 
Figure 3: Battery equivalent circuit (a), and open-circuit voltage and internal battery resistance dependences on battery 

SoC for considered lithium iron phosphate battery (b). 

3 Optimisation of PHEV Control Variables 

This section deals with DP optimisation of PHEV control variables for the blended regime, which is aimed 

at finding optimal SoC trajectories for different driving cycles and conditions. More details on the 

optimisation approach can be found in [1, 7] and references given therein. 

3.1 Optimal Problem Formulation 

The optimisation problem is to find the PHEV control variables in each discrete time step in order to 

minimise the cumulative fuel consumption, while satisfying the state- and control variables-related 

constraints, as well as a requirement on the value of state variable in the final time step. By introducing the 

substitutions for the state variable x, control vector u and external input vector v: 
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𝑥 = 𝑆𝑜𝐶, 𝐮 = [𝜏𝑒  ℎ]
𝑇, 𝐯 = [𝜏𝑤 𝜔𝑤]

𝑇, (7) 

the following discrete-time cost function including cumulative fuel consumption is set: 

𝐽 =  ∑𝐹(𝑥𝑘, 𝐮𝑘 , 𝐯𝑘 , 𝑘),

𝑁

𝑘=1

 (8) 

𝐹(𝑥𝑘, 𝐮𝑘 , 𝐯𝑘, 𝑘) =  𝑚̇𝑓∆𝑇 + 𝐾𝑔{𝐻
−(𝑥𝑘 − 𝑆𝑜𝐶𝑚𝑖𝑛) + 𝐻

−(𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑥𝑘)}

+ 𝐾𝑔{𝐻
−(𝑃𝑏𝑎𝑡𝑡

𝑚𝑎𝑥 − 𝑃𝑏𝑎𝑡𝑡,𝑘) + 𝐻
−(𝑃𝑏𝑎𝑡𝑡,𝑘 − 𝑃𝑏𝑎𝑡𝑡

𝑚𝑖𝑛)}

+ 𝐾𝑔{𝐻
−(𝜏𝑒,𝑘 − 𝜏𝑒

𝑚𝑖𝑛) + 𝐻−(𝜏𝑒
𝑚𝑎𝑥 − 𝜏𝑒,𝑘)}

+ 𝐾𝑔{𝐻
−(𝜔𝑒,𝑘 −𝜔𝑒

𝑖𝑑𝑙𝑒) + 𝐻−(𝜔𝑒
𝑚𝑎𝑥 −𝜔𝑒,𝑘)}

+ 𝐾𝑔{𝐻
−(𝜏𝑀𝐺,𝑘 − 𝜏𝑀𝐺

𝑚𝑖𝑛) + 𝐻−(𝜏𝑀𝐺
𝑚𝑎𝑥 − 𝜏𝑀𝐺,𝑘)}

+ 𝐾𝑔{𝐻
−(𝜔𝑀𝐺,𝑘 −𝜔𝑀𝐺

𝑖𝑑𝑙𝑒) + 𝐻−(𝜔𝑀𝐺
𝑚𝑎𝑥 −𝜔𝑀𝐺,𝑘)}, 

(9) 

where k denotes the discrete time step, N is the total number of discrete time steps, and ∆T is the 

discretisation time step. Apart from the fuel consumption within discrete time step, ṁf ∆T, additional terms 

aimed to penalise violation of different constraints are included into Eq. (9). The function H−(.) represents 

the inverted Heaviside function which is equal to 1 when its argument is negative, while otherwise it equals 

0. The factor Kg is weighting factor which is set to a relatively large value (here Kg = 1012) in order to avoid 

constraints violation. The state equation given by Eq. (5) can be discretized in time to assume difference 

equation form: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝐮𝑘 , 𝐯𝑘 , 𝑘), 𝑘 = 0,1,… ,𝑁 − 1 (10) 

The initial state variable at k = 0 and final state variable at k = N are defined as 

𝑥0 = 𝑆𝑜𝐶𝑖,     𝑥𝑓 = 𝑆𝑜𝐶𝑓. (11) 

An additional term Jf penalising the deviation of the final SoC from the target value SoCf is included in the 

cost function (8), so that the final optimisation problem reads 

min
𝐮𝑘
(𝐽𝑓 +∑𝐹(𝑥𝑘, 𝐮𝑘 , 𝐯𝑘, 𝑘)

𝑁

𝑘=1

), (12) 

  𝐽𝑓 = 𝐾𝑓(𝑆𝑜𝐶𝑓 − 𝑥𝑁)
2
= 𝐾𝑓 (𝑆𝑜𝐶𝑓 − 𝑓(𝑥𝑁−1, 𝐮𝑁−1, 𝐯𝑁−1))

2
, (13) 

where Kf denotes a weighting factor (here Kf = 106). 

The above-formulated optimisation problem is solved by using a dynamic programming (DP), which 

provides globally optimal results for given discretisation resolution of the state and control variables (set as 

a trade-off between computational efficiency and the optimisation accuracy). 

3.2 Optimisation Results 

DP optimisations of PHEV control variables are conducted for the blended regime and different repeating 

driving cycles defined in Fig. 4, where DUB1 driving cycle is considered both for zero and varying road 

grade. The driving cycles are repeated three times to provide discharging the battery to its minimum 

allowable SoC level which is set here to 30%. The optimised SoC trajectories given in dependence of 

distance travelled (blue colour plots in Fig. 5) are close to linear profile, which represents the minimum 
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length between two SoC boundary points. This is confirmed by the values of correlation index K (also 

given in Fig. 5 and obtained by using Matlab function corrcoef(.)), which are close to 1. The linear trend is 

slightly deteriorated in the case when the road grade is introduced (Fig. 5a), which is also reflected in 

somewhat reduced correlation index. In this case low frequency oscillations appear in the SoC trajectory, 

which are caused by the battery recharging during regenerative braking on negative slopes. 

The observed, approximately linear optimal pattern of SoC trajectory can serve as a basis for synthesis of 

SoC reference trajectory applied within a powertrain control strategy for the blended regime and the case 

when a trip distance is known in advance [1, 6]. 

 
Figure 4: City bus driving cycle including vehicle velocity (vv), road grade (δr) and passenger mass (mpass) time profiles 

recorded in the city of Dubrovnik (DUB1) (a), and velocity time profile for heavy duty UDDS driving cycle 

(HDUDDS) which assumes zero road grade and no passengers (b). 

 
Figure 5: Optimal SoC trajectories obtained by DP algorithm in blended regime and repeating driving cycles from Fig. 

4 (DUB1 cycle is considered with varying road grade and zero grade, with the same passenger mass profile in both 

cases). 

3.3 Generation and analysis of SoC trajectories of different length 

Based on the results presented in Fig. 5 it can be hypothesised that the optimality is closely related to the 

SoC trajectory length, i.e. that the shortest-length trajectory is optimal. In order to test this hypothesis, the 

optimal SoC trajectories of different length are generated by introducing the following additional SoC soft 

constraint to the cost function included in Eq. (12) 

𝐽𝑆𝑜𝐶,𝑎𝑑𝑑 =∑(𝑆𝑜𝐶𝑐𝑜𝑛𝑠𝑡𝑟,𝑗 − 𝑥𝑗)
2

𝑁𝑗

𝑗=1

=∑𝐾𝑆𝑜𝐶 (𝑆𝑜𝐶𝑐𝑜𝑛𝑠𝑡𝑟,𝑗 − 𝑓(𝑥𝑗−1, 𝐮𝑗−1, 𝐯𝑗−1))
2

𝑁𝑗

𝑗=1

, (14) 
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which penalises the deviation of SoC from several (Nj) prescribed values SoCconstr,j in the jth discrete time 

steps (the weighting factor KSoC is set to 5·105). 

Apart from the total fuel consumption Vf, the total electric energy losses EEL,loss consisting of battery losses 

Ebatt,loss and M/G machine losses EM/G,loss are also considered in this analysis: 

𝐸𝐸𝐿,𝑙𝑜𝑠𝑠 = 𝐸𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠 + 𝐸𝑀/𝐺,𝑙𝑜𝑠𝑠 . (15) 

The battery losses are dissipated as a heat on its internal resistance R and have quadratic dependence with 

respect to battery current Ibatt (i.e. ∫ibatt
2Rdt), while the M/G machine losses depend on the efficiency ηMG 

(see Fig. 2b). 

The normalised SoC trajectory length is calculated as 

𝐿𝑆𝑜𝐶,𝑛𝑜𝑟𝑚 =∑√∆𝑆𝑜𝐶𝑘
2 + (

∆𝑠𝑘
𝑠𝑓
)

2𝑁

𝑘=1

, (16) 

where ∆SoCk and ∆sk represent the difference of SoC and travelled distance between two consecutive time 

steps (i.e. ∆SoCk = SoCk −SoCk−1, ∆sk = sk −sk−1), respectively, while sf denotes the total travelled distance. 

Fig. 6a shows SoC trajectories obtained by DP optimisations for different randomly chosen SoC constraints 

given by Eq. (14) and the case of 3xDUB1 w/o road grade (see Fig. 5b). The same plot also includes some 

characteristic SoC trajectories, which are explained in what follows. The SoC trajectory denoted as BLND 

corresponds to the case where no additional SoC constraint is included in the cost function in Eq. (12), and 

this trajectory corresponds to the one shown in Fig. 5b. In the case of CD/CS trajectory, the battery is first 

depleted under whenever-possible electric driving (CD) until the predefined low level of SoC is reached, 

which is then sustained by means of hybrid driving (CS). In the case of CS/CD trajectory the order of CD 

and CS regimes is reversed. The SoC trajectory of maximum length is denoted by max LSoC,norm label. 

Different metrics for each of the SoC trajectories from Fig. 6a are shown in Figs. 6b-6d. 

 

Figure 6: Set of optimal DP-based SoC trajectories of different length obtained by imposing additional SoC 

constraint (14) (a); and corresponding total fuel consumption Vf  shown versus normalised SoC trajectory length 

LSoC,norm (b), mean engine specific fuel consumption Aek,mean (c), and total electric energy losses EEL,loss (d) (3xDUB1 

w/o road grade driving cycle is used).  
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Fig. 6b reveals that the total fuel consumption Vf highly correlates with the SoC trajectory length LSoC,norm 

(i.e. larger LSoC,norm corresponds to larger Vf). Since all SoC trajectories end up in the same value (SoCf = 

0.3), the observed variations in the fuel consumption for different SoC trajectories may be caused by: (i) 

different distribution of operating points in the engine specific fuel consumption map, and (ii) different total 

electrical losses (15). In order to understand these causes better, the total fuel consumptions Vf are shown 

versus the mean engine specific fuel consumptions Aek,mean in Fig. 6c, and versus the total electrical losses 

EEL,loss in Fig. 6d. The results shown in Fig. 6c reveal that the cause (i) may be discarded since the larger 

total fuel consumption often corresponds to lower mean specific fuel consumption. On the other hand, Fig. 

6d confirms that the increased fuel consumption is predominantly caused by the increased total electrical 

losses (the correlation index is very close to 1). BLND-case SoC trajectory has minimum length and results 

in minimum fuel consumption, while max LSoC,norm-case SoC trajectory (obtained for Nj = 2 in Eq. (14)) has 

the maximum length and results in maximum fuel consumption (Fig. 6b). 

Based on the presented analysis it can be concluded that the observed optimal pattern related to SoC 

trajectory length minimization (i.e. linear-like trend) is closely related to minimisation of the electrical 

losses. More detailed analyses are presented in the following section. 

4 Analysis of Optimal SoC Trajectory Patterns 

This section is aimed to further explain the observed DP-based optimal SoC trajectory patterns, starting by 

an analysis of the optimal operation of a battery-only system and following by an analysis of the whole 

powertrain including the engine, M/G machine and battery. 

4.1 Simplified Case of Minimizing Solely Battery Energy Losses 

First, the problem of discharging battery from the initial SoC value SoCi (here SoCi = 0.9) to some 

predefined final value SoCf (here SoCf = 0.3) with the aim of maximising energy drawn from the battery is 

considered. The useful energy drawn is maximised if the internal battery energy losses Ebatt,loss are 

minimised: 

min𝐸𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠 = min∫ 𝑃𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠𝑑𝑡 = 𝑚𝑖𝑛

𝑡𝑓

0

∫
𝑃𝑏𝑎𝑡𝑡,𝑙𝑜𝑠𝑠
𝑣𝑣

𝑠𝑓

0

𝑑𝑠, s. t.∫ 𝑆𝑜𝐶̇ 𝑑𝑡 = 𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖

𝑡𝑓

0

 (17) 

Similarly, the derivative of SoC with respect to travelled distance is expressed as 

𝑑𝑆𝑜𝐶

𝑑𝑠
=  −

𝐼𝑏𝑎𝑡𝑡(𝑡)

𝑄𝑚𝑎𝑥

1

𝑣𝑣
, (18) 

The battery power losses equal Pbatt,loss = Ibatt
2R(SoC), which when combining with Eqs. (17) and (18) gives 

the following optimisation problem expressed through the argument dSoC/ds: 

min
𝐼𝑏𝑎𝑡𝑡

∫
𝐼𝑏𝑎𝑡𝑡
2 𝑅(𝑆𝑜𝐶)

𝑣𝑣

𝑠𝑓

0

𝑑𝑠 = min
𝑑𝑆𝑜𝐶
𝑑𝑠

∫ 𝑄𝑚𝑎𝑥
2 𝑅(𝑆𝑜𝐶) (

𝑑𝑆𝑜𝐶

𝑑𝑠
)
2

𝑣𝑣𝑑𝑠

𝑠𝑓

0

,   s. t.∫ 𝑆𝑜𝐶̇ 𝑑𝑡 = 𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖

𝑡𝑓

0

 

  

(19) 

Discretisation of Eq. (19) results in the problem of determining optimal ∆SoCr on rth route segment with 

length ∆sr 

min
∆𝑆𝑜𝐶𝑟
∆𝑠𝑟

∑𝑅(𝑆𝑜𝐶𝑟)

𝑁𝑅

𝑟=1

(
∆𝑆𝑜𝐶𝑟
∆𝑠𝑟

)
2

𝑣𝑣,𝑟∆𝑠𝑟 , s. t.∑∆𝑆𝑜𝐶𝑟

𝑁𝑅

𝑟=1

= 𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖 , (20) 
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Figure 7: SoC trajectories obtained by constant discharging rate (SoClin) and DP optimisation (a) and 

corresponding discharging rates (b), where DP results correspond to cases of constant and SoC-dependent battery 

parameters. 

 

where Qmax is omitted since it is constant and does not have impact on the optimisation problem solution. 

Next, the following substitution can be introduced 

𝑦𝑟
2 = 𝑅(𝑆𝑜𝐶𝑟) (

∆𝑆𝑜𝐶𝑟
∆𝑠𝑟

)
2

𝑣𝑣,𝑟∆𝑠𝑟 , (21) 

leading to 

min
𝑦𝑟
∑𝑦𝑟

2

𝑁𝑅

𝑟=1

. (22) 

Since the quadratic function (.)2 is convex, the following expression based on Jensen’s inequality can be 

established 

∑ 𝑦𝑟
2𝑁𝑅

𝑟=1

𝑁𝑅
≥ (

∑ 𝑦𝑟
𝑁𝑅
𝑟=1

𝑁𝑅
)

2

, (23) 

where the numerator on the left-hand side of Eq. (23) corresponds to the cost function of the optimisation 

problem (22). Now, the minimum of the left-hand side of Eq. (23) (corresponding to equality of the left-

hand side and right-hand side terms) is achieved for the constant value of yr for all route segments. By 

combining the equality constraint from Eq. (20) (i.e. ∑ ∆𝑆𝑜𝐶𝑟
𝑁𝑅
𝑟=1 = 𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖) related to the SoC 

boundary values and posing yr to be constant, the following expression for the optimal SoC depletion on rth 

route segment can be obtained 

∆𝑆𝑜𝐶𝑟
∆𝑠𝑟

=
𝑆𝑜𝐶𝑓 − 𝑆𝑜𝐶𝑖

√𝑅(𝑆𝑜𝐶)𝑣𝑣,𝑟∆𝑠𝑟 ∑
∆𝑠𝑗

√𝑅(𝑆𝑜𝐶𝑗)𝑣𝑣,𝑗∆𝑠𝑗

𝑁𝑅
𝑗=1

. 
(24) 

By assuming constant vehicle velocity vv, constant internal resistance R, and constant length of each route 

segment ∆s, the expression (24) leads to ∆SoCr/∆sr = (SoCf – SoCi)/sf, where sf represents the total travelled 

distance. In that case the optimal operation would be to discharge the battery with constant SoC depletion 

rate, i.e. the SoC trajectory would follow the linear trend and have the minimum length. 

The same battery discharging problem is further analysed numerically by using DP algorithm to study the 

impact of varying battery parameters on SoC trajectory shape. Fig. 7 shows SoC trajectories obtained by 

constant SoC depletion rate (SoClin) and by DP optimisations for: (i) the constant battery parameters (the 

mean values from Fig. 3b are used), and (ii) the SoC-dependent battery parameters (Fig. 3b). In the case of 
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constant battery parameters, the optimal operation is related to a constant SoC depletion rate (Fig. 7b; slight 

deviation from the constant value in the case of DP occurs due to discretisation effects and the requirement 

on the final SoC value). It can be observed from Fig. 7a that the impact of variable battery parameters on 

the optimal SoC trajectory shape is negligible. The slight deviation from the constant SoC depletion rate in 

the case of variable battery parameters (Fig. 7b) is caused by the SoC dependence of internal battery 

resistance R; namely, slightly lower absolute values of dSoC/dt are observed until SoC falls around 75%, 

because the resistance R has somewhat larger values for SoC > 75% than in the range from 30% to 65% 

(see Fig. 3b). 

4.2 More Realistic Case of Minimizing Fuel Consumption 

The analysis is extended here to the overall powertrain, which includes the engine, M/G machine, 

transmission, and battery (see Fig. 1a). In order to study the optimal SoC trajectory with respect to fuel 

consumption minimization while discharging the battery (i.e. from 90% to 30%), the fuel consumption rate 

ṁf is expressed in dependence on SoC depletion rate 𝑆𝑜𝐶̇  for different values of the battery SoC, power 

demand Pd, and the engine speed ωe: 

𝑚̇𝑓 = 𝑔 (
𝑑𝑆𝑜𝐶

𝑑𝑡
, 𝑆𝑜𝐶, 𝑃𝑑 , 𝜔𝑒). (25) 

The optimal solution for 𝑆𝑜𝐶̇  which minimises the fuel consumption can be found analytically if the 

function g in Eq. (25) is convex, under assumption of constant values of Pd, SoC, and ωe (i.e. constant 

vehicle velocity). It can be shown that the optimality is achieved if 𝑆𝑜𝐶̇  is kept constant during whole 

driving cycle and set to the value which would discharge the battery to the predefined minimum value (the 

same reasoning as in the case of deriving optimal SoC depletion in Eq. (24)). The analysis is given here in 

the time domain, and it is equivalent to the travelled distance domain considered in previous sections 

because of the constant vehicle velocity assumption considered here. 

Fig. 8a shows the graphical representation of the function (25) for several Pd values and for SoC = 50%. 

The corresponding second derivatives are positive over the whole range thus confirming the convexity of 

the analysed functions (Fig. 8b). This convexity analysis is also conducted for a wide set of Pd and ωe 

values, and the results are shown in Fig. 9 (the function is categorised as non-convex if its second 

derivative is not strictly positive). According to the results from Fig. 9, the function g in Eq. (25) is convex 

for a majority of Pd and ωe values. 

 

Figure 8: Fuel consumption rate 𝑚𝑓̇  vs. SoC depletion rate 𝑆𝑜𝐶𝑓̇  (a), and 2nd derivative of 𝑚𝑓̇  vs. 𝑆𝑜𝐶𝑓̇  curve (b), given 

for several values of demanded power (Pd), and engine speed ωe = 184 rad/s and SoC = 50%. 
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Figure 9: Character of 𝑚𝑓̇  vs. 𝑆𝑜𝐶̇  dependence (convex or non-convex) for a wide range of engine speeds ωe and 

driver power demands Pd for the case of SoC = 0.5. 

These effects are further illustrated and analysed for the particular ωe and Pd values for two engine fuel 

consumption characteristics (g/s): (i) the original one (obtained from Fig. 2a by using Eq. (4)) resulting in 

the function (25) to be convex, and (ii) the modified one resulting in the function (25) to be concave (see 

Fig. 10). 

 
Figure 10: Illustration of original (convex) and modified (concave) engine fuel consumption rate 𝑚𝑓̇  with respect to 

SoC depletion rate 𝑆𝑜𝐶̇  (a), and the corresponding 2nd derivatives (b) for the case of SoC = 50%, vv = 86 km/h, ωe = 

ωMG = 184 rad/s, Pd = 79.7 kW. 

Three different scenarios of battery discharging to the predefined low value are considered (see the related 

operating points and profiles in Fig. 11): 

(i) OP1 – power demand Pd is partly satisfied by the engine and partly by the electric machine 

M/G (operating points are kept constant during the whole operation; constant 𝑆𝑜𝐶̇ < 0), 

(ii) OP2 – Phase 1: power demand Pd is completely satisfied by the engine (𝑆𝑜𝐶̇ = 0), Phase 2: 

power demand Pd is completely satisfied by the electric machine M/G (constant 𝑆𝑜𝐶̇ < 0) 

(iii) OP3 – Phase 1: power demand Pd is completely satisfied by the engine which also provides 

additional power to recharge the battery (constant 𝑆𝑜𝐶̇ > 0), Phase 2: power demand Pd is 

completely satisfied by the electric machine M/G (constant 𝑆𝑜𝐶̇ < 0). 

From the standpoint of lower engine specific fuel consumption and regardless of type of engine fuel 

consumption characteristic (original or modified), Scenario OP2 is preferable over Scenario OP1, and 

Scenario OP3 is preferable over Scenario OP2 (see Figs. 11a and 11b). However, from the standpoint of 

overall powertrain fuel consumption, Scenario OP1 related to linear SoC trajectory should be optimal if the 

function ṁf vs. SoĊ  is convex (as it is the case with the original characteristic in Fig. 10a), while it should 

be suboptimal in the case of non-convex function (modified characteristic in Fig. 10a). This is confirmed 

by the results presented in Fig. 12, where the comparative fuel consumption time profiles are shown for 

different scenarios. This finding can be explained by the fact that it is advantageous to place the engine 

operating point to somewhat larger specific engine fuel consumption (OP1 vs. OP2 and OP3) in the case of 
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original engine characteristic (see Fig. 11a), and thus avoid relatively large total electrical losses whose 

increase is progressive with the M/G and battery power (Fig. 11c). In this case the optimal SoC trajectory is 

that of minimum length. However, in the case of modified engine characteristic, where the difference in the 

specific fuel consumption between OP2 vs. OP1 and OP3 vs. OP2 is more significant than in the original 

case (Fig. 11a), it is advantageous to move the engine operating point in reduced specific fuel consumption 

region (OP3 and OP2; see Fig. 11a and also Fig. 11b) despite the increased electrical losses in Phase 2 (Fig. 

11c). 

The above analysis contributes to understanding of the tendency of optimal SoC trajectories to be of 

minimum length (as observed in Fig. 5), taking into account that the function g in Eq. (25) is originally 

convex in a great majority of (typical) operating region (Fig. 9). Certain deviations of the SoC trajectories 

in Fig. 5 from the minimum length may be explained by the fact that the assumption on operating 

parameters (i.e. constant Pd, SoC, and ωe) is not satisfied for realistic driving cycles. 

 
Figure 11: Illustration of three different operating scenarios (the same operating conditions as in Fig. 10: SoC = 50%, 

vv = 86 km/h, ωe = ωMG = 184 rad/s, Pd = 79.7 kW). 

 
Figure 12: Comparative cumulative fuel consumption time profiles for different operating scenarios for original (a) and 

modified engine fuel consumption characteristic (b). 

5 Conclusion 

The paper has dealt with analysis of the optimal battery state-of-charge (SoC) trajectory for the blended 

operating regime of a parallel plug-in hybrid electric vehicle (PHEV). The analysis is based on optimal 

control results obtained by using dynamic programming optimisations for various driving cycles and based 

on a backward-looking powertrain model. It has been found that the optimal SoC trajectories (when 

expressed with respect to distance travelled) tend to have nearly-linear shape for different driving cycles, 

which corresponds to the minimum SoC trajectory length. The minimum SoC trajectory length has been 
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proven to be optimal both analytically and numerically for a simplified battery-only system based on 

battery power loss minimisation. The analysis has been extended to the whole powertrain including the 

engine, electric machine and battery, where the main aim was to minimise the total fuel consumption. It has 

been shown that the linear SoC trajectory is also optimal for the whole powertrain in the actual case of 

convex shape of fuel mass flow vs. SoC depletion rate characteristic. 

The linear SoC trajectory is optimal because of its feature to minimise the total electrical losses and 

because of flexibility in setting the engine operating points due to a relatively flat engine specific fuel 

consumption vs. engine power characteristic in a wide range. It has also been demonstrated that when 

modifying the engine specific fuel consumption characteristic to some extent, the optimal SoC trajectory 

can have significantly different pattern than the minimum-length linear one. 
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