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Executive Summary

The paper aims at studying the relationship between the roll out of the charging infrastructure and the
electric vehicle adoption in Brussels. This is modeled using an agent based model approach that inte-
grates consumer agents and a charge point operator, enabling to observe the evolution of the infrastruc-
ture and adoption until 2030. This approach will facilitate future research on infrastructure policies and
compare their efficiency.

1 Introduction

Climate change is often cited as being one of the biggest challenges of the 21st century. Greenhouse
gas emissions, and carbon dioxide CO2 especially, are one of the causes of climate change. Therefore,
the European Union set carbon reduction targets for 2050. In order to achieve these targets, road trans-
portation should heavily reduce its emissions, since it is responsible for about 20% of the European
greenhouse gas emissions [1] and that personal transport by car is responsible for 12% of the European
COs emissions [2]. Shifting to a fleet of electric vehicles (EVs) could reduce the amount of emissions in
Europe. The Clean Power for Transport directive adopted in 2014 by the European Parliament - currently
in the process of being updated - aims at facilitating the uptake of such alternative technology. However,
the adoption of electric vehicles is still not taking up in all European member states. In Brussels, the
capital region of Belgium, the number of public charging facilities is still low with 149 charging points
[3], even if the market share of electric vehicles has reached 2% of the new purchased vehicles in 2017
(1.645 EVs sold on a total of 75.368 cars)[4]. Public charging stations are even more needed since a big
increase in numbers of EVs sold has been observed in Belgium in 2018 [5] with an annual growth of
41,1% for battery electric vehicles (BEVs), of 39% for gasoline hybrid EVs and of 9,8 % for diesel hybrid
EVs. This accounts for a total of 9.244 BEVs, 81.107 gasoline hybrid EVs and 5.905 diesel hybrid EVs.
An influential factor for EV adoption is the availability of charging infrastructure [6, 7]. In Norway,
access to charging infrastructure showed to be the incentive with the highest predictive power of BEVs
sales on regional level, whereas financial incentives were more effective on municipal level [8]. Further,
the installation of charging infrastructure is according to [9] a stronger predictor of EV adoption than
financial incentives. Even awareness of the existence of charging stations has a positive impact on the
EV uptake. People that noticed charging infrastructure are more likely to have interest in EV's than people
that never noticed its existence [10]. Therefore, implementing a comprehensive charging infrastructure
network would help improving the EV adoption in Brussels. This research aims at investigating the
relationship between the increase of number of charging stations and the EV adoption in Brussels. This
is accomplished by developing an agent based model (ABM) that simulates the interactions between the
use and increase of the public charging infrastructure network and the EV uptake. In this paper, a proof
of concept is presented analysing a small subset of the agent’s population.

Next section reviews the literature on ABM simulations focusing on EV adoption. Section 3 details the
ABM. The agents’ initialization and routines, as well as the discrete choice model that is the basis of the
vehicle choice, are described in this section. Section 4 reports the results of the proof of concept ABM.
Finally, section 5 concludes this paper and presents the next development and research tracks.
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2 Literature review

According to Bonabeau [11] an ABM system is “system modeled as a collection of autonomous decision-
making entities called agents”, where “each agent individually assesses its situation and makes decisions
on the basis of a set of rules”. In other words, an ABM is a complex multi-agent system where agents
are individual entities that possess a state, attributes and a set of actions. The agent interacts with its
environment or with other agents given its predefined set of actions. These interactions are only dictated
by the agent’s actual state and attributes. Therefore, the investigated complex system emerges from these
local uncoordinated interactions and is not determined by a centralized decision system.

Table 1 shows a short review of the literature on ABM that simulate EV adoption. Although the scope
and the time frame of the selected studies differ, four distinct kinds of agents were identified. All studies
implemented a consumer agent. That agent is central to the studies and is the agent that takes the decision
of shifting from conventional vehicles to EVs. Almost all studies implement a government agent or
scenario that aims at stimulating EV adoption. Some studies also implemented more specific agents
such as the car manufacturer, the vehicle [12, 13] or charge point operator (CPO) agent [14, 15]. The car
manufacturer and vehicle agents decide what the specifications of the vehicles sold are, based on a metric
(for example profit) [12]. The CPO agent determines where new charging stations should be installed
during the simulation. This decision could be based on the use of the charging infrastructure at a certain
point in time during the simulation and/or on the infrastructure’s disposition [15].

Two different approaches were identified as decision function for the consumer agent who needs to
choose the best alternative between different vehicles. Some studies opt for desirability functions,
whereas most prefer to rely on discrete choice models. Discrete choice models [16, 17] estimate choices
between two or more alternatives. Every alternative is defined as a combination of attributes. The con-
sumer agent will choose the alternative with the highest utility. Desirability functions are mathematical
expressions that combine attributes affecting the desirability of the alternatives. Examples of desirabil-
ity functions are a cost-benefit analysis [18] or a minimization of the costs related to the purchase of a
new vehicle [14]. In addition to the decision function, some studies implement a social mechanism that
influences the choice between the alternatives. Examples are a network of social contacts [18, 14] and
word-of-mouth communication between the agents [12, 19, 13].

The literature discusses mostly the adoption of electric vehicles without taking the impact of the charging
infrastructure into account, or the growth of charging infrastructure without taking the EV adoption into
account. In this paper, the relationship between these two components and how they influence each other
are investigated using a discrete choice model and social interactions. Only one study to our knowledge
analyzed the same relationship [15], but has different characteristics and context than this paper:

e the use of desirability functions instead of a discrete choice model.

o the charging stations are located in zones instead of using a GIS based-system with exact coordi-
nates.

e it is a country-wide study, whereas this paper has an urban city context, with few places to charge
at homes.

Table 1: Literature review of electric vehicle adoption ABM

Journal article Consumer Government Car manufacturer/ | CPO | Desirability Discrete Social
agent agent/scenarios vehicle agent agent function choice model | influence

Zhang et al., 2011 [12] X X X X X

Noori et al., 2016 [13] X X X X X

Sweda & Klabjan, 2014 [14] X X X X

Gnann, 2015 [15] X X X X

Eppstein et al., 2011 [18] X X X X

Querini & Benetto, 2014 [19] X X X X

Mueller & de Paan, 2009 [20] X X X

Shafiei et al., 2012 [21] X X X

Hoekstra & Hovegeen, 2017 [22] X X X X X

Vermeulen et al., 2018 [23] X X

3 Methodology

This section discusses the development of an ABM model in MATSim [24]. The scope of the model
is the capital region of Belgium, Brussels until 2030. As described in section 2, the basic agent in EV
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adoption literature is the consumer agent. This agent is also the main agent of this paper and is modeled
as a Brussels household. Each consumer agent has a vehicle assigned to it. During the simulation, each
consumer agent has the choice to change its vehicle. The decision of which vehicle the agent buys next
is based on a discrete choice model. The decision is based on the vehicle’s attributes such as driving
range, purchase cost, refueling time or density of charging/refueling stations. Finally, the CPO manages
the charging infrastructure and extends the existing infrastructure with new charging stations based on
Lheﬁocations where charging event most frequently occur and where the EV demand is predicted to be
igher.

3.1 Initialization of the agent and model data

This section describes the initialization of the model with the agents and the data. Two types of agents are
used in the model, namely, agents owning internal combustion engine vehicles (ICE) and agents owning
plug-in electric vehicles (PEV).

3.1.1 Data

MATSim uses a street network file to simulate the city traffic. This file was obtained from Open-
StreetMaps [25] and prepared using JOSM [26]. Socio-demographic information about the neighbour-
hoods such as number of households was gathered on the BISA website [27]. Currently simulations
are run with neighbourhood populations of 1% of the households, resulting in a population size of 5351
agents. In the proof of concept simulation discussed in section 4, the total agent population is equal to
483 agents. Each agent is initialized with a residence and a working place. The coordinates of those kind
of locations were obtained from UrblS [28]. The movement flows between the different neighbourhoods
were used for initializing the traffic flow in the street network. This dataset was obtained through Brussel
Mobiliteit [29]. The charging locations were obtained during a field study conducted in 2015. This list
of charging infrastructure can be found on the website of Open Data Brussels and is still the last official
updated list for charging infrastructure in Brussels [3]. This list consists of 67 charging locations with
149 charging points. Finally, agents were assigned PEV vehicles proportionally to the number of EVs
present in their neighbourhoods in 2015.

3.1.2 Agent’s daily plan pattern

Three different types of agents are created during the initialization phase. These three types are based on
charging patterns identified in [30].

Resident 1: is an agent publicly charging overnight nearby its residence. It starts the charging activity
after arriving home around 18 ’o clock and stops charging the day after around 8 o clock when
leaving for work.

Resident 2: is also an agent that publicly charges overnight near its residence, but starts its job several
hours later and arrives later in the evening. It starts the charging activity around 20 ’o clock and
stops charging the day after around 10 *o clock.

Visitor: is an agent publicly charging during the day nearby its working place. It arrives at its working
location around 9 o clock and start the charging activity. When leaving in the afternoon, around
17 *o clock, it stops the charging activity.

The population exists of 80% of resident 1 type agents, 15% of resident 2 type agents and 5% of visitor
type agents.

Since the MATSim framework works with daily plans, each agent is initialized with standard daily plans
that consist of activities and trips from one activity to another. The resident I and resident 2 agents
are initialized with three plans, namely a normal plan that consist of a home-work-home tripchain, a
start charging plan that consists of a home-work-startCharge-home trip chain and a end charge plan that
consists of a home-endCharge-work-home plan. The visitor agents consist of two plans, the normal
plan as resident 1 and resident 2 agents and a visitor plan that consists of a home-startCharge-work-
endCharge-home tripchain.

3.1.3 Agent’s attributes

The attributes of an agent are specific to the owned vehicle. An agent owning an ICE has two at-
tributes: an ICE vehicle and the vehicle’s ownership duration. The duration is initialized with a mean
of 9 years(Belgian average [4]) and a standard deviation of 3 years. An agent owning a PEV has 5 at-
tributes: a PEV vehicle, the vehicle’s ownership duration, the capacity of the battery, the current state of
charge and the energy consumption rate of the electric motor. The ownership duration of a PEV owner
is initialized with a mean of 4 years and a standard deviation of 1 year. The reasoning behind the lower
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average is that electric vehicles uptake is starting now. The battery capacity is equal to 40 kWh at the
start of the simulation and evolves up to 60 kWh in 2020 and later. The energy consumption rate per
kilometer equal to 0,16 kWh/km.

3.2 Discrete choice function

Simulating the adoption of PEVs is achieved by using a discrete choice function. To estimate the utilities
of the discrete choice function, a choice based conjoint analysis has been conducted for Brussels con-
sumers. The survey consisted of a series of 10 experiments where the respondent had to chose between
3 alternatives described by the attributes referenced in table 2. The resulting utilities per attribute are
denoted in the table as well as their values for both ICEs and PEVs from 2018 until 2025 and later. The
PEV values are mainly based on a battery electric vehicle’s values, where the ICE values are more based
on those of diesel vehicles since Belgium has a large share of these vehicles in its fleet. The cost values
of PEV vehicles decrease over time while they increase for the ICE and the range and refueling time
attributes’ values increase for PEVs denoting a technological increase for this type of vehicles.

Table 2: Values of discrete choice attributes from 2018 to 2030 for ICEs and PEVs

Attributes Utilities 2018 2020 2025

ICE | PEV ICE | PEV ICE | PEV
Purchase cost (€) -4.15e-06 | 20000 | 30000 | 22500 | 25000 | 30000 | 22500
Yearly cost (€) -2.15e-05 | 2000 | 1000 { 3000 | 1000 | 5000 | 1000
Driving cost (€/100km) -0.015 8 4 8 4 10 4
Range (km) 0.000112 800 240 800 400 800 600
Refueling stations (%) 0.0884 | 100% ratio | 100% ratio | 100% ratio
Refueling time (min) -4.25e-05 5 480 5 240 5 240
Ecoscore (0 to 100) -0.000137 60 80 60 80 60 80
Acceleration (sec to 100 km) 0.0146 12 6 12 6 12 6
Brand & image (1 to 5) -0.0112 3 3 3 3 3 3

Purchase cost: comprises the purchase price vehicle, the VAT and the registration tax.

Yearly cost: comprises insurance, maintenance and road taxes.

Driving cost: comprises fuel costs (ICE) and electricity costs (PEV).

Range: denotes the amount of km the vehicle can reach on a full tank/battery.

Refueling stations: denotes the ratio between actual coverage and optimal coverage. The ratio for PEV
charging stations is not fixed, since the model adds new charging infrastructure depending on the

PEV adoption rate. Therefore, this value is update every time new infrastructure is added at new
locations.

Refueling time: denotes the time in minutes needed to refuel/recharge the vehicle.

Ecoscore: is a metric that rates how environmentally friendly a vehicle is. The higher the score, the
more environmental friendly.

Acceleration: denotes the time it takes for a vehicle to reach 100km/hour.

Brand & image: is the visual aspect and perception of the brand and quality of the vehicle.

Currently, all agents share the same discrete choice function. In the future, each agent will have an
individualized discrete choice function combined with its socio-demographic data. Also, the choice of
vehicles is still very limited. Only two different vehicles are modelled, namely, ICE and PEV. This will
be more elaborated in the future with different vehicle segments and more specific vehicle technologies.

3.3 An agent’s routine

In the next sections, two behaviors of the agents are described, namely, how an agent chooses its new
vehicle and how an agent with a PEV does decide to charge its vehicle.
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3.3.1 Vehicle choice routine

Every month, each agent has the opportunity to change its vehicle. This probability of changing from
vehicle is calculated based on the cumulative probability distribution of the ownership attribute. This
means the longer a vehicle is owned by the agent, the more probable it will change its vehicle.

A summed utility value, denoting the preference of the agents for the vehicle, will be obtained by sum-
ming the product of the utilities with the values of the attributes, for a specific year, for a specific type of
vehicle. These utilities and attribute values are referenced in table 2. The agent will choose the vehicle
that has the highest summed utility value of the two vehicle types.

A next development step will be to add social influence to the model to simulate i.e. word-of-mouth,
social networks, ...

3.3.2 Charging routine

Agents owning a PEV regularly need to recharge their vehicle. Charging events occur when an agent
has a state of charge below 20%. The agent will decide to change its behavior for the coming day and
will choose a plan that includes the start of a charging event (the start charging plan for resident I and
resident 2 and the visitor plan for the visitor agents). After the charging event occurred the next day, the
agent decides again to change plans to a plan including the end of his charging event, except if it was a
visitor agent since the end charging event happens during the same day.

In case all the charging points of the agent’s preferred charging location are occupied by other agents,
the agent will report the charging to another day and change its preferred charging location to the nearest
other charging location. This procedure is applied until the agent can charge its PEV.

3.4 A charge point operator’s routine

The role of the CPO is to manage the Brussels’ charging infrastructure. In our model, it only has to
decide where to place new infrastructure. In some models, removal of infrastructure does also happen.
This behavior is not implemented in this model.

Every month, the CPO assess the coverage of the charging infrastructure. If a charging location denoted
saturation (meaning one or more agents could not charge at this location during previous month), then
a new charging location in a radius of 350 meters is identified. The candidate locations for the new
charging station are building blocks. Each building block has a predefined demand score that is based on
the income, housing surface and household size in the neighbourhood [31]. The block with the highest
demand score is identified as the location where the new charging station will be added. If no charging
location is found (in the case there are already charging stations at the blocks in the radius), than the
radius is extended by 100 meters until a new location is found or a threshold of 1 kilometer is reached.
Extra charging points are added to the existing location, if there is still no new location identified.

4 Results

The results from the proof of concept simulation are discussed in this section. The proof of concept
consisted of a small population of agents (483 agents) simulated during 50 iterations. Each year consisted
of four days (iterations). The agents assess their vehicle choice every two days, as do the CPO with
respect to the state of the charging infrastructure. Since the simulation is sped up, an agent charges
almost every day (depending on the type of agent). The structure of the results is as follows. Firstly,
the PEV uptake is discussec% Second%,y, the charging events are detailed. Finally, the extension of the
charging infrastructure is examined.

4.1 PEV uptake

Figure 1 shows the adoption rate of PEVs. There is a clear shift towards PEVs starting from 2025. Up
until then, PEVs are never chosen as preferred alternative. This results from the discrete choice function
used to make the decision. Because one global function is used, there is no versatility in behavior and
all agents maximize the same utilities. Since, ICEs are financially more interesting (lower purchase cost)
than PEVs up until 2025 and that the technological characteristics such as the range and the number
refueling stations are not near the values for ICEs, agents never choose the PEV option and even trade
their vehicle in for ICEs. Once the year 2025 is reached, the reverse happens and all the agents start
trading their ICE in for a PEV. This reveals that the ABM in combination with the current discrete choice
function favors the purchase price, since no infrastructure will be installed until 2025 when the purchase
price for PEVs is lower than for ICEs. In an next development step, scenario’s with proactive charging
infrastructure installation will be tested for assessing the impact of the charging infrastructure coverage
on the PEV adoption rate.
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Figure 1: Evolution of the percentage PEVs in the agents’ vehicle fleet

4.2 Charging events and infrastructure

The charging events match the evolution of the PEV fleet quite well, as plotted in figure 2. It increases as
the PEV share increases. The reason behind the small delay in with respect to the PEV uptake is because
of the small iteration count. In a larger example, this would not be noticed as hard as in theses examples.
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Figure 2: Evolution of the number of charging sessions

As the number of charging events start to increase, charging infrastructure gets installed by the CPO.
Figure 3a shows the evolution of the number of locations where infrastructure is installed in Brussels.
The process is a bit delayed since there is already sufficient charging infrastructure in 2025 when PEVs
start to take up and the CPO is only going to install new locations once saturation occurs at some charging
points. Currently, there is not much distinction between figures 3a and 3b, this is because of the small
population size. When a larger population size will be used, some locations will need to have an increased
number of charging points and figure 3b will know a steeper increase at some point in time.
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5 Conclusion

In this paper an ABM is presented that aims at simulating the EV adoption, charging infrastructure use
and growth for the case study of Brussels until 2030. ABM are multi-agent systems that typically show a
macro-behavior that is hard to explain but that emerges from predefined, simple, individual interactions
of the agents with their environment and other agents. This method has often been used in the literature
and is very suitable to such kind of complex problems. The defined model comprises three types of agents
that simulate the adoption of EVs. The vehicle choice is based on a discrete choice function that is the
same for all agents. The CPO adds infrastructure when there is too much charging demand and identifies
new locations based on a predefined EV demand score in the neighbourhood of charging infrastructure
that experienced saturation. The proof of concept results revealed that the uptake would not take place
before the purchase price of the PEVs would be lower than for an ICE, even with lesser infrastructure
coverage. Scenario’s where CPO’s act proactively will be applied in the future to investigate if a sufficient
coverage incentivises the agents to adopt PEV even with a higher cost.

A limitation of the study is the number of different agents. Currently, only a proof of concept is simulated.
Simulations with a large population size will be more representative of the speed of adoption past 2025.
Another limitation is related to the discrete choice function. This function is shared amongst all agents.
In the future there could be different discrete choice functions for different type of agents (i.e. based on
socio-demographic information).

Future research tracks are the application of different government policies or changing the sensitivity of
system parameters, such as the projected purchase price of EVs in the future, enabling to study their effect
on the PEV adoption rate and the evolution of the charging network in Brussels. A final research track
could be the integration of new charging- or vehicle technologies for studying the impact of alternative
charging behaviors.
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