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Executive Summary

Battery electric vehicles (BEVSs) are expected to be a pathway towards meeting greenhouse and criteria
pollutant gas reductions in the current and future transportation sector. However, BEV technologies are still
evolving, including efficiency optimization and enhancement. Emerging connected and automated vehicle
(CAV) technologies provide an in-depth insight for developing innovative applications and systems to
leverage BEV energy efficiency and substantially transform transportation systems. Therefore, we present
simulation studies of various BEV types and compare the performance between measured, real-world drive
cycles and highly optimized eco-driving cycles that are representative of trajectory modifications using
advanced CAV technologies. The investigated vehicles include a compact car and a Class 7 delivery truck.
The results demonstrate that eco-driving has a high potential to reduce energy consumption for the BEVs
considered. As part of the study, a comprehensive EV powertrain model was developed to account for key
EV components and powertrain configurations. The impact of eco-driving was further evaluated for

conventional vehicles with characteristics that are comparable to the modeled BEVs.

Keywords: electric vehicle, eco-driving, component efficiency, powertrain modeling

1 Introduction

US Transportation is responsible for over 3 trillion vehicle-miles driven annually, 11 billion tons of freight
transported, and 70% of the nation’s petroleum consumption. The transportation sector also significantly
impacts air pollution and climate change [1]. Consequently, battery electric vehicles (BEVs) are considered
to be a critical pathway towards achieving energy independence and greenhouse and criteria pollutant gas
reduction goals for both current and future transportation [2]. To enhance the energy efficiency and market
penetration of BEVs, extensive work has been carried out, particularly for BEV components, powertrain
control and energy management [3]. On the other hand, innovative technologies for automation and
connectivity are becoming more and more attractive for integration with the control strategy of BEVs. In
particular, connectivity, automation, and electrification are considered as three major pillars supporting a
more efficient future transportation system and cleaner environment. Therefore, it is desirable to adopt
connected and automated vehicle (CAV) technologies for optimized BEV performance via eco-driving
functions, particularly for boosting BEV energy efficiency, driving range and market adoption [3].
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One effective eco-driving technology is the eco-Approach and Departure (EAD) application, which uses
traffic signal phase and timing (SPaT) information from upcoming traffic signals along with information
about the equipped vehicle and preceding traffic to determine the most energy efficient speed trajectory to
pass through an intersection [4-6]. Real-road tests have shown that EAD is expected to significantly reduce
or eliminate braking, as well as yielding benefits in traffic throughput. In 2010, the NHTSA performed a
preliminary analysis on the benefits of SPaT and EAD, showing a 90% reduction in red light violations and
up to 35% in energy savings for light-duty (LD) vehicles [7]. The University of California Riverside utilized
a 2008 Nissan Altima to test an EAD application in Real-World Traffic, indicating 6% energy savings for trip
segments under light traffic conditions, as well as substantial CO/HC/NOx emissions reduction [4].
Meanwhile, substantial simulations confirm the benefits of the EAD application. For example, a simulated
eco-driving system for an isolated signalized intersection enabled engine-powered LD vehicles to achieve
from 2.02% to 58.01% in fuel savings and from 1.97% to 33.26% in CO, emissions reduction [8]; Heavy-
duty (HD) truck EAD algorithms for a signalized intersection have also been explored, showing up to 16%
fuel saving [5]. All these reported results are based on vehicles powered by conventional combustion engines.
For BEVs, similar studies have been conducted to evaluate battery energy savings under EAD driving modes.
Qi et.al evaluated the energy synergies of combining vehicle connectivity, automation and electrification, by
simulating an EAD system for BEVs with real-road driving data [9]. Zhang and Yao [10] simulated that
BEVs following an eco-driving strategy at signalized intersections achieved at least 8.01% in energy savings
relative to normal driving conditions, which was assessed using a microscopic, driving parameters-based
energy consumption model based on chassis dynamometer testing data. Flehmig et al. [11] reported an
adaptive cruise control (ACC) simulation for estimating a BEV’s energy-optimal trajectory when following
another vehicle in traffic, and the result showed a 2-4% saving compared to regular traffic conditions.
However, none of the studies available in the public domain address how eco-driving impacts BEV
component performance and efficiencies. There is currently inadequate information to further improve BEV
component and powertrain performance under eco-driving conditions. Nonetheless, these are particularly
important and attractive considerations for OEMs and automotive Tier 1 suppliers in designing and
optimizing BEV components and powertrain systems for future BEVs.

To address the issues identified above, we present a simulation study for selected LD/HD BEV types and
compare their performance when driving on typical real-road drive cycles to that when following optimized
eco-driving cycles that comprise CAV-based eco-driving technologies such as EAD. The BEVs considered
include a compact vehicle and a Class 7 delivery truck. The type of driving evaluated includes city conditions
for the compact vehicle and mixed highway driving conditions for the trucks. In addition, the results are
compared to those of comparable conventional vehicles in order to fully understand the impact of eco-driving
on vehicle component and powertrain system performance. As part of the study, a BEV powertrain model
was established to account for key BEV components and powertrain configurations. The BEV powertrain
model employs data and models available from the public domain, as well as some existing ORNL
component models, measurement data, and models adapted from Autonomie software [12].

2 Methodology and assumptions

2.1 BEYV powertrain model

A comprehensive BEV model has been developed to describe key BEV components that impact driving
efficiency: battery, motor, final drive, wheel, chassis, and accessory loads. A schematic of the model structure

is presented in Fig. 1.
P

Figurel. The powertrain model configuration accounting for key BEV components.
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2.1.1 Tractive force methodology

To evaluate the impact of acceleration, aerodynamic loss, rolling resistance and road grade on vehicle energy
consumption, the tractive force required at any time is given as follows [13-14]:

thct=m-%+%p-€d-Af-VZ+m-g-Crr-c059+m-g-sin6 (1)

where F;,.,. is the required vehicle tractive force; Vis vehicle velocity; p is air density; Cy is the aerodynamic
drag coefficient; C,, is the rolling resistance coefficient; A is the projected frontal area; 6 is the road grade;

and m is the vehicle mass. g is gravity; ¢ is time. The evaluation of aerodynamic drag, rolling resistance, and
road grade on the EV tractive force demand is addressed in the chassis and wheel component modules shown
in Figure 1.

2.1.2 Electric motor and inverter model

A map-based performance model was used to account for the energy consumption of the electric motor and inverter
over the entire motor operating conditions [3]. The map-based model adopts the efficiency maps of motors and
inverters, which were generated from experimental data measured under steady-state conditions over a pre-defined
matrix of speed and torque combinations. Figure 2 shows the combined efficiency of the Nissan Leaf’s motor and
inverter. In the map-based model, the motor’s output mechanical power is estimated based on motor speed and
torque; the inverter’s input electrical power are estimated using the motor’s output mechanical power devided by
combined motor and inverter efficiency. The inverter input electrical power is assumed to be equivalent to the
battery power output. The curve for the motor torque boundary shown in Figure 2 is Tt pos_pary, and the motor
regeneration torque boundary is assumed to be Tiotneg pary = —Tmot,pos_bary- In addition, the electric motor and
inverter model include a simple factor for scaling the power and torque outputs of simulated motors and inverters
based on maintaining the equivalent performance efficiency and speed range. This strategy allows scaling up or
down the available motor maps to approximate motor performance maps for larger or smaller motors, whose maps
may be not available, with reasonable accuracy.
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Figure 2: The combined efficiency map of Nissan leaf motor and inverter, rated at 280Nm torque and 80 kW power,
which was tested at ORNL under 375V DC-link voltage and 65°C steady-state cooling temperature [15].

2.1.3 Li-ion battery model

The battery package is modeled based on an equivalent circuit of multiple serial and parallel battery cells,
each of which is assumed to have the same performance. In the single battery cell modeling, an RC-based
equivalent-circuit battery cell dynamic model was considered to account for key transient response physics
using electrical circuit analog components based on the electrical network consisting of a series resistor and
two RC parallel networks, as shown in Fig. 3. The RC parallel networks represent short- and long-time step
responses. On the basis of experimental results, the use of two RC networks, as opposed to one or three,
provides the best tradeoff between accuracy and complexity [3]. The considered components include voltage
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sources, variable resistors, and capacitors. The equivalent-circuit model accounts for open-circuit voltage,
ohmic resistances in the connector, electrodes and electrolyte, and two sets of parallel resistor-capacitor
combinations to reproduce the effects of mass transport and the electric double layer, respectively. In addition,
the impact of temperature and charging/discharging rate on battery SOC are also considered. The details are
described in Eqs. 2(a)-2(e). Based on the required overall battery package capacity and voltage, an
appropriate combination of series and parallel connections is determined to simulate the complete vehicle
battery module, as shows in Figure 3 and Egs. 2(f)-2(g).

O
Rn Rtransizm,s Rtransizm,L 1
L )
2 <
Vsoc clransiznl,s clransizm,L Vcell |:: . 8’
: =

2

K]}

Figure 3. An equivalent-circuit battery cell dynamic model for simulating a battery package comprised of multiple
serial and parallel battery cells. (a) single battery cell configuration; (b) battery package configuration.

thran,L — Icell _ Vtran,L (23)
dt Ctran,L Rtran,L'Ctran,L
thran,S — Icell _ Vtran,S (2b)
dt Ctran,s Rtran,S'Ctran,S
Veerr = Vsoc = Leen " Ro — Virant — Viranss + Ae(Teey) (2¢)
chell _ VtranL Vtzran,s
mcellC cell™ ;. Icell R +— R + R - hA(Tcell - Tamb) (2d)
tran,L tran,S
S0C = fa(lcell).g(Tcell)Icelldt (2e)
Voatt = Nseries “Veen (29
Ipate = Mparallel “leen (2g)

where Vo is the open circuit voltage which is a nonlinear function of SOC and normally measured as the
steady-state open circuit terminal voltage at various SOC points; Viyq, s and Viqy ;, are voltages of short-
and long-time step responses of RC networks, respectively; Ryrans, Reranrt> Cerans, and Cppgn  represent
short- and long-time constants of the step response of RC networks; R, is a series resistor; V,y; and I, are
the battery cell output voltage and current; V. and I, are the modeling voltage and current of the overall
battery package with N5 battery cells in series and My, qrq1¢; battery cells in parallel; Ae is a temperature-
dependent potential-correction term for the battery; a(I.e;;) is a charging/discharging rate factor; 8(Teey) is
a temperature factor; Tcey; and Ty, are battery cell and ambient temperature; My Cpeey and hA are battery
cell mass capacity and heat transfer rate, respectively.

VSOC: Rtran,s > Rtran,L: Ctran,S: and Ctran,La as well as Ae (Tcell) > a(lcell)a and ﬂ (Tcell)a depend on individual
battery type, design, and fabrication. Vsoc, Rerans, Rerani> Ctrans> and Cirgpn are functions of SOC.
Ae(Teery) , a(Icerr), and B(T,ey) are impacted by the battery cell current and temperature. All of them can be
derived from battery test data.

2.1.4 Driver, drivetrain components and control model

A driver model was used to control vehicle operation. A proportional-integral (PI) control methodology was
used to manage the gap between the real and targeted vehicle speeds. The driver’s wheel torque demand is
calculated based on Eq. 3.

Twhdrv = FiractRwn + Kp - AV + K - fAth 3)
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In Eq. 3, Ty grp 18 driver wheel torque demand; the values of K, and K are constants for the PI speed control
and depend on the driver behavior and the simulated vehicle system; R, is the effective wheel rolling
radius; AV = Vigrger — Varvs Viarger and Vg, are the targeted and simulated driving vehicle speeds,
respectively.

Then, T,,p 4, is used to determine motor and braking torque demand, Torama and Tpyk,ama. respectively.
However, at vehicle acceleration, the motor torque demand is determined by not only driver acceleration
demand a4, but also is limited by the operating boundary of the motors and batteries. The motor torque
demand is thus defined by the boundary constraints of motor acceleration and battery power output.

Twh,drv Wbatt,dischg_bdry_Wacc,elec

Tmot,dmd = min( 'Tmot,accel_bdry) V(Twh,drv > 0) (43')

RecRfq ’ Wmot

Similarly at vehicle braking, the braking torque and motor regenerative torque demands are dependent on the
constraints of the regenerative conditions, as well as motor and battery operation boundaries, as given below.
Both the motor regenerative and braking torque demands are negative during vehicle braking.

_ Twh,drv"sspd"sdec Whatt,chg bdry—Wacc,elec
Tmot,dmd = max( RecRra ’ Omot » Tmot,regen_bdry V(Twh,drv < 0) (4b)
and
Thricamd = MAX(Twhdry = Tmot,dmd * Rec " Rra» 0) V(Twnary < 0) (4¢)

Therefore, the forward-looking driving speed of the simulated vehicle is described using the equation below.

AViary _ Tmot,dmd'nfd'ntc'Rfd'th 1
dt (M+1tot/R2 1) R (m+1coc/R3,

1 2 i __ Thrkdmd
" (2 pCaAfVgy, + mgCy, cos 6 + mgsin 9) + (et Tooe/ B2 ) o 5)
In Egs. (9)-(5), Whattchg pary and Whairaischg bary are the battery charging and discharging power
boundary, respectively; Ry is the final drive ratio; Ry is the torque coupler ratio; 5,4 and &4, are factors
that consider the constraints during brake regeneration. The constraints are used to distinguish vehicle
emergency braking from regenerative kinetic energy and avoid very low kinetic energy regeneration. Wy ¢ ejecis
the electric accessory load, which is taken to be constant. I;,; addresses the total inertia of the powertrain.

2.2 BEV configurations and model validation

Two BEV powertrain configurations were specified to account for a LD compact car and HD delivery truck,
respectively. The LD electric car model was created based on a Nissan Leaf configuration, for which the
motor map was generated from measurements of a 2012 Nissan Leaf motor rated at 80 kW (see Figure 2).
The specification of the motor and battery for the HD E-truck model were estimated based on ORNL’s
commercial vehicle electrification evaluation tool (CVEET) [16-17] which is a framework tool for
commercial vehicle electrification. To confirm that the simulated vehicles reasonably reflect the performance
of electric vehicles, the LD BEV simulations were carried out using the current model and compared with
the chassis dyno data of a 2012 Nissan Leaf following the regular urban dynamometer driving schedule
(UDDS), as collected by Argonne National Laboratory. For the city drive cycle of 12 km and 1372s, the
predicted and measured battery energy consumption were 125.5 Wh/km and 129.8 Wh/km, respectively. The
simulation error is less than 4%. Furthermore, the predicted transient motor performance also matches very
well with the measurement of both motor speed and torque (see Figure 4). The results indicate that the
assumptions employed for the EV powertrain model were reasonable. We do not have appropriate
experimental data for the validation of the E-Truck model directly. Alternatively, simulation results from
Autonomie software were used to validate and compare with our models. Results indicated less than 5%
difference, implying that the E-Truck assumptions are also acceptable. The key parameters for the two BEVs
are listed in Table 1.
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Figure 4: Comparison of motor power, speed and battery SOC for the simulated LD BEV over the cold-start UDDS
cycle.

Table 1: Specifications of electrical vehicle components and key parameters.

Component Parameters LD BEV Electric Truck
Aerodynamic drag coeff. Cd 0.32 0.62
Rolling resistance coeff. Crr 0.007 0.009
Frontal Area A¢(m?) 2.01 9.0
. Wheel radius (m) 0.3125 0.53
Wheel tire -
Inertia (kg-m?) 0.25 1.0
. . Final ratio 7.94 7.94
Final drive - -
Inertia per wheel tire (kg-m?) <0.01 <0.01
TC ratio 1.01 1.6
Torque coupler -
Inertia (kg-m?) <0.01 <0.01
Max power (KW) 84 265
Motor Continuous power (kW) 42 132
Max torque (Nm) 280 874
Inertia (kg-m?) 0.03 0.08
Capacity (kWh) 24 265
Peak chg power (kW) 148 1500
Battery :
Peak dis power (kW) 140 1580
Normal Voltage (V) 374 581
Electric accessory Constant power (kW) 0.2 4.0
Vehicle mass Mass (kg) 1515 15434

2.3 Eco-driving methodology

A simplified eco-driving model was developed that provides similar speed profiles to an EAD application by
employing coasting at appropriate locations to minimize braking. The approach calculates an appropriate
coasting speed profile prior to the vehicle arriving at locations where braking is required at stops or traffic
signals. This coasting solution can be evaluated from any starting location and speed, but different end points
or times will of course be obtained for different starting locations. Details of the method are provided in [3].
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Two relevant driving cycles were selected based on on-road measurement data for a compact car and a
delivery truck. The passenger car case is a city driving cycle with a total length of 17.5 km. The regional
delivery cycle is a combined highway and city driving cycle that is 92.7 km long. The proposed eco-driving
methodology is used to create optimized eco-driving drive cycles which are used to estimate the potential

benefits of eco-cruise and traffic signal EAD applications using detailed powertrain simulations.
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Figure 5: Passenger car and delivery truck speed profiles with and without eco-driving, including elevation profile vs.
distance, speed profile vs. distance, and speed profile vs. time.

Figures 5 show the comparison of the original driving cycle and the eco-driving cycles. It is clear that the
three eco-driving cases representing the EAD application eliminate stops significantly. In the eco-driving
cycles, the braking tractive energy (the integral of all periods requiring braking power) is reduced by 65.4
and 70.8% for the passenger car and delivery truck, respectively; also, the propulsive tractive energy (integral
of all positive tractive powers) is reduced by 32.7% and 12.9%, respectively, for the passenger car and
delivery truck.

3 Results

3.1 BEV Simulations

In the simulated passenger BEV, the battery energy consumption with and without eco-driving was 107.0
Wh/km and 146.7 Wh/km, respectively. The eco-driving allows the simulated LD BEV to achieve 27%
battery energy savings. The detailed component energy losses are shown in Fig. 6, revealing that the key
component energy losses are aerodynamic drag, motor loss, rolling resistance, and drivetrain loss. Eco-
driving reduces the motor loss by 51%, as well as the aerodynamic drag loss by 20% and the drivetrain loss
by 50%, but eco-driving does not affect the rolling resistance loss. In addition, the eco-driving reduces the
frictional braking loss by 65% and the battery loss by 39%, although the magnitude of these actual energy
losses are relatively small compared to the four key component energy losses. There is a different mechanism
for the frictional braking losses between the cases with and without eco-driving. Eco-driving reduces
frictional braking loss by avoiding active decelerations using an appropriate speed control. The BEV without
eco-driving, however, also has very low frictional braking loss as a result of braking regeneration. The latter
transfers a portion of the regenerated kinetic energy to motor energy losses. Figure 6(b) confirms that the
eco-driving operation eliminates most braking regen, which becomes nearly zero. The BEV operation without
eco-driving regenerates braking energy, but the regeneration process effectively doubles the motor energy
losses (i.e. energy loss takes place during regeneration and propulsion) for the portion of power that is
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regenerated. This explains why the eco-driving enables a significant decrease in motor energy loss (see Figure
6(a) while boosting battery energy saving (see Figure 6(c)).
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Figure 6. Comparison of the LD passenger BEV energy losses (a) with and without eco-driving; (b) transient motor
power and (c) cumulative battery energy consumption

0.8
Ep7 - HD Truck without eco-driving
é ' & HD Truck with eco-driving
=06 1

20.5 -

§0.4 i

4-103 7

c

20.2 A %

20.1 1 %

Soo L A= Y= 72

Acc loss Cd_loss Crr_loss Brake loss FD loss Mot loss Ess_loss

(a) Comparison of HD E-truck component losses with vs. without eco-driving

400 140 -
300 120
g0 £100
=100 2
7] ‘; 80
2 60
5-100 i ]
1u
=-200 : P g0
-300 ' ---HD\Truck wo eco-Driving S 20 -=-HD truck wo eco-Driving
—HD TNruck w/ eco-Driving § —HD truck w/ eco-Driving
400 F L e LN o o o o o T
0 1000 2000 _ 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time (s) Time (s)
(c) Transient motor power (d) Battery energy consumption

Figure 7. Comparison of the HD E-Truck energy losses (a) with or without eco-driving; (b) transient motor power
and (c) cumulative battery energy consumption
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The truck case shows a slightly different scenario for which the eco-driving optimized drive cycle results in
an 8% battery energy savings (see figure 7). The battery energy consumption with and without eco-driving
are 1.25 kWh/km and 1.37 kWh/km, respectively. The smaller benefit in this case is mainly because the
delivery truck drives a significant distance on the highway (see the first 2000s shown in Figure 7), which
does not provide substantial braking reduction opportunities. In the simulation, truck platooning is not
considered. For the E-truck case, the top key component energy losses are aerodynamic drag, rolling
resistance, motor loss, and final drive loss. The eco-driving decreases the motor loss by 25%, as well as the
aerodynamic drag loss by 5% and the final drive loss by 25%, but eco-driving does not affect rolling
resistance loss either. In the E-truck simulations, the braking loss associated with the limited delivery stops
does not result in a substantial impact on the total energy consumption, since it represents less than 1% of the
overall energy consumption in the original drive cycle.

3.2 Conventional Powertrain Vehicles and Comparison with BEV's

The impact of eco-driving on conventional vehicles was also studied to compare with similarly configured
BEVs. Two conventional powertrain vehicle models were created using Autonomie [12] based on the basic
vehicle parameters listed in Table 1. These conventional vehicle powertrain models developed using
Autonomie have been described in detail in our previous studies [18-23]. The impact of eco-driving on the
conventional vehicles is summarized in Figure 8. Briefly, eco-driving enables a rather significant reduction
in the conventional vehicles’ braking energy losses. Frictional braking is reduced by 89% and 88% in the
conventional passenger car and HD truck on the eco-drive cycle, compared to 65% and 50% for the
comparable E-car and E-truck, respectively. The difference in the absolute levels of frictional braking energy
are also considerable since regenerative braking is not available for the conventional vehicles, hence their
frictional braking losses are much greater than in the corresponding BEV cases. For the LD cass, the brkaing
energy of conventional engine-powered vehicle and BEV is 43.2 Wh/km vs. 5.4 Wh/km without eco-driving
and 4.7 Wh/km vs. 1.9 Wh/km with eco-driving, respectively; For the HD cass, the brkaing energy of
conventional engine-powered truck and E-truck is 0.15 kWh/km vs. ~0.01 kWh/km without eco-driving and
0.02 kWh/km vs. >0.005 kWh/km with eco-driving, respectively.
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Figure 8: Energy consumption distribution of the (a)-(b) conventional passenger car and (c)-(d) delivery truck, with
and without eco-driving.

The results also show that eco-driving leads to frequent engine operation at low loads, which generally
corresponds to low efficiency. Figure 9 shows the detailed second-by-second fuel consumption and engine
efficiency profiles. The engine average efficiencies are 22.4% without eco-driving vs. 17.0% with eco-
driving for the conventional passenger car, and 37.4% without eco-driving vs. 36.9% with eco-driving for
the conventional truck. For the conventional passenger car, the maximum potential of fuel energy savings is
limited by low engine efficiency in spite of the greater reduction in mechanical energy output due to eco-
driving. Thus, a Start/Stop technology with an Integrated Starter and Generator (ISG) can offer significant
potential to boost the fuel energy savings in conventional engine-powered passenger cars with eco-driving.
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This Stop/Go system would shut down the engine when the vehicle coasts down and completely stops, and
then the ISG restarts the engine immediately when the driver pushes the accelerator. The conventional HD
truck, on the other hand, still seems able to maximize the potential of fuel energy savings and engine
mechanical energy output reduction simultaneously, although the benefits were found to be less than those
of the conventional passenger car due to the delivery truck’s driving pattern, which has much less-frequent
stops.
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Figure 9: Fuel consumption and engine efficiency profiles of conventional passenger car and delivery truck with and
without eco-driving; passenger car: stoichiometric gasoline engine; delivery truck: lean-burn diesel engine.

4  Summary

A general EV simulation model that addresses component and system performance was developed to evaluate
energy consumption and component performances of LD/HD battery electric vehicles. The simulations were
carried out to identify the potential benefits of eco-driving for electrified cars and E-trucks. The results
demonstrate that eco-driving boosts BEV energy savings and reduces motor component loss significantly.
Eco-driving enables BEVs to virtually eliminate braking, which boosts the motor component loss reduction
due to diminished regenerative braking. The dominant component losses of the EVs include aerodynamic
drag, rolling resistance and drivetrain loss, in addition to motor loss.While the other significant component
losses are reduced with eco-driving, it is noted that the optimized drive cycles do not impact the rolling
resistance loss. Low rolling resistance tire technology can therefore have a significant impact on the
efficiency of BEVs with eco-driving. The impact of eco-driving on conventional vehicles was also studied
and compared to BEVs with similar size and performance characteristics. The observations show that eco-
driving provides a much larger reduction in the conventional vehicles’ braking energy loss compared to the
comparable BEVs. However, eco-driving also leads to frequent engine operation at low loads, corresponding
to lower efficiency, at least for non-highway driving conditions. As a result, the reduction in the conventional
vehicle’s energy consumption due to eco-driving is notably lower for the LD vehicle than would be expected
from the mechanical energy reductions.
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