
32nd Electric Vehicle Symposium (EVS32)
Lyon, France, May 19-22, 2019

Model-Predictive Eco-Driving for Electrified Connected and
Automated Vehicles

Dominik Karbowski, Jongryeol Jeong, Koen Elands, Iulian Dobrovolschi
Argonne National Laboratory, IL, United States, dkarbowski@anl.gov

Abstract

Automation and connectivity present a unique opportunity to improve transportation energy efficiency
by optimizing the way vehicles drive, based on deep knowledge of the surrounding environment and
communications between traffic agents. Vehicles can save energy through eco-driving, where the longi-
tudinal speed is controlled in a way to minimize energy consumption. In this paper, we present a flexible
control method to achieve eco-driving in electric vehicles (EV) and hybrid-electric vehicles (HEV). The
method is based on model predictive control (MPC), in which the vehicle speed is optimized at each time
step over a receding horizon, and at the following step, the horizon moves and optimization is run again,
allowing a state feedback loop. The MPC algorithm presented here is easily adaptable to both EVs and
HEVs, and is implemented in a novel Simulink-based simulation environment designed for eco-driving
research. As a result, the algorithm interacts with models with complex dynamics, making it easier to
implement in real-world systems. We present the performance of the algorithm in several real-world
scenarios, and demonstrate approximately 7% energy savings in both vehicle cases.

Keywords: EV, HEV, connected, automated, optimization

1 Introduction
Sensors, as well as connectivity between a vehicle and other vehicles (V2V) or the infrastructure (V2I),
provide information to the vehicle about its environment and future driving conditions. A vehicle with
automated driving then uses that information to perform its mission and accomplish various objectives:
improved safety, increased mobility, greater comfort, better use of travel time, increased road capacity
(e.g., platooning), and others.

Automation and connectivity can also be used for eco-driving, which consists of adjusting vehicle speed
to minimize energy consumption, for example, coasting to a red light or anticipating slopes. Eco-driving
can be systemtically implemented in a connected and automated vehicle (CAV), thanks to the active
velocity control and environmental awareness from sensors and V2X. There are various approaches to
eco-driving for CAVs — Vahidi and Sciaretta provide an extensive state-of-the art review in [1] on how
CAV technology can be used for energy saving. The eco-driving approach we propose in this paper
controls the speed of an electrified vehicle in order to minimize the battery energy use of the controlled
vehicle; no collaborative or centralized control is assumed.

A key requirement for the controller is for it to adapt to a changing environment and to the response of the
vehicle itself, accounting for the imperfection of models assumed during optimization and the uncertainty

EVS32 1

of the environment. Model-predictive control (MPC) is a technique that accomplishes this requirement
and is at the heart of the proposed eco-driving method. MPC uses the concept of receding horizon: at
each time step, MPC computes the optimal command and state trajectories over an entire finite horizon
(e.g., the next 20 seconds), but only applies the first step of the optimization. In the following time
step, the horizon window moves one step further and the optimization is performed again. As a result,
MPC performs the optimization at each time step with the most recent information about the state of the
system, which creates a feedback loop that is critical to the stability of the system. The MPC concept
is illustrated in figure 1. MPC is a well-established approach and is particularly well suited for linear
and quadratic systems; in such cases, the optimization method applied at each time step is quadratic
programming (QP), which is relatively fast and simple to implement. However, the linearity condition
limits the number of control variables QP can optimize, and therefore leads to suboptimal results.

Figure 1: Concept of the MPC algorithm

Several examples of MPC applied to eco-driving exist in the literature [2, 3, 4, 5, 6]. We add several
contributions to this body of work. First, we characterize the energy cost function as a function of
wheel torque and vehicle speed, making the algorithm powertrain-independent, while demonstrating a
simulation-based calibration method. Secondly, we strove to make the algorithm as implementable as
possible, embedding it in a Simulink controller integrated with a high-fidelity dynamic model of the
vehicle, and achieving a reasonable speed of execution. Thirdly, it is being integrated into RoadRunner
[7, 8], a toolkit that allows us to run a broad range of realistic scenarios. Lastly, this control is designed to
work for all “normal” driving situations: cruising, intersection approach and departure and car-following.
We will introduce the latter functionality in future works.

In this paper, we first describe the MPC approach applied to eco-driving. We then introduce the sim-
ulation framework used to demonstrate the MPC controller, which is based on Autonomie [9] and on
RoadRunner. Finally, we present the results of a case study.

2 Eco-driving with Model-Predictive Control (MPC)

2.1 Dynamic vehicle model
MPC uses a model to describe the dynamics of the system and to allow prediction of its future states. In
this case, we use the standard dynamic vehicle model for longitudinal motion, including slope:∑

F = m
dv

dt
= Ft − Frr − FD − Fg − Fb (1)

where m is the mass of the vehicle, v is the linear speed, Ft, Frr, FD, Fg and Fb are respectively the
traction force, rolling resistance force, air drag force, gravitational force and braking force. This leads to
the following equation:

dv

dt
=

1

m
(

1

Rw
Tw −

1

2
ρAfCDv

2 −mg(Crr0 + Crr1v + sin(α))− 1

Rw
Tb) (2)

EVS32 2

where Tw is the torque at the wheels, Rw is the radius of the wheel, g is the gravitational constant, Crr0

and Crr1 are static and dynamic rolling resistance coefficients respectively, ρ is the air density, Af is the
frontal surface of the car , CD is the air drag coefficient of the car, α is the slope and Tb is the braking
torque. Since (2) is not linear, we linearize it to:

dv

dt
= Av(t) +Bu(t) + Eα(t) + f (3)

where u is the command signal consisting of the torque at the wheels and the torque while braking
(u = [Tw, Tb]

>. A, B, E and f are constants that are function of v0, the speed around which the
linearization is performed. In order to make the simulation suitable for numerical evaluation on an
on-board computer the continuous-time state space representation (3) is converted to a discrete-time
representation. This is done with the following equations:

v(k + 1) = Adv(k) +Bdu(k) + Edα(k) + fd (4)

2.2 Energy consumption model
The main objective in our proposed optimization approach is to minimize the energy consumed by the
vehicle. In the case of an EV, this is simply the battery energy. In the case of an HEV, there are two
sources of power of different natures, electric Pe and chemical (fuel) Pf . We combine both powers into
an equivalent Peq = λPe + Pf accounting for the significantly higher motor energy efficiency with an
equivalence factor λ for the electric power. λ=2.5 based on the analysis of efficiency maps of the engine
and electric motor.

The energy consumed Etot is the sum over time of the battery power Ptot:

Etot(Tw, v) =

∫ tf

t0

Ptot(Tw, v)dt (5)

We assume that instantaneous power can be expressed in the form of a quadratic function of the wheel
demand torque Tw, and v:

Etot(Tw, v) =

∫ tf

0

(
k1T

2
w + k2Tw + k3Twv + k4v + k0

)
ds (6)

where k0, ..., k4 are constants depending the shape of the polynomial fit of the main instantaneous power
(battery power for an EV and equivalent power for an HEV). We estimate these coefficients using Au-
tonomie simulations of each vehicle over a large number of drive cycles. Figure 2 shows the contour
plots of the polynomial fit functions for both EV and HEV. The accuracy of the second order polynomial
fit is respectively 91% and 97%.

Figure 2: Power contour plot of the EV (left) and HEV (right)

EVS32 3

2.3 Model reformulation with horizon
In the MPC framework, we assume the knowledge of a certain horizon discretized over N steps. The
slope information and the speed limits over that timeframe are known, and a reference trajectory for that
horizon is also known (detailed later). In MPC, we solve an optimal control problem (OCP) for that
horizon. Let v(k) be the state and u(k) be the input at time instant k. Then the predicted state and input
at time i is defined as xi|k and ui|k based on measured state at time k. The predicted state at time i + 1
is derived using (3) and leads to the following equations:

vi+1|k = Advi|k +Bdtotui|k + Edαi|k, ∀i = 0, ..., N − 1 (7)

For a horizon length N , the predicted states are derived as:

v1|k = Adv0|k +Bdu0|k + Edα0|k

v2|k = Adv1|k +Bdu1|k + Edα1|k

v3|k = Adv2|k +Bdu2|k + Edα2|k
...

vN |k = AdvN−1|k +BduN−1|k + EdαN−1|k

(8)

We can group the future states and predicted inputs over the prediction horizon into vectors Xk and Uk

Xk = [x1|k, x2|k, . . . , xN |k]> (9)

Uk = [u0|k, u1|k, . . . , uN−1|k]> (10)
By combining all the equations in (8), the future state Xk an be expressed as a function of the current
state v(k), and the predicted inputs Uk :

Xk = Φv(k) + ΓUk + ∆Θk (11)
where Φ, Γ and ∆ are matrices derived from Ad, Bd, Ed. Φ and Γ are the prediction matrices for
calculating the predicted sequence of states and inputs respectively and ∆ is the matrix for calculating
the influence of the grade (Θk) horizon on the predicted state sequence. Equation (11) forms the dynamic
equation for the OCP that we are going to solve at each time step.

2.4 Cost function over the horizon
Two cost functions are present in this optimal control problem: the cost function that penalizes the error
between state and input reference signal Jx and the cost function of the energy consumption over the
horizon Je. Adding these cost functions together will give:

Jtot = Jx + Je (12)

The cost function Jx is given with

Jx = (v(k)− r(k))>Q(v(k)− r(k)) + (Xk −Rk)>Ω(Xk −Rk) + U>k ΨUk (13)

where r(k) is the current reference speed signal, Q is the penalty on the difference between state and
reference, Ω is the penalty matrix of the difference between predicted states and sequence of reference
signalsRk and Ψ is the matrix that penalizes relatively big differences in input signals. After substituting
(11) into (13) the cost function for the energy is written in a quadratic problem statement:

Jx =
1

2
U>k GxUk + U>k (Fxv(k) +Hx∆k + VxRk) (14)

We similarly reformulate the energy cost function, combining (6) and (11):

Je =
1

2
U>k GeUk + U>k (Fev(k) +HeΘk + VeRk + Γ>K4 +K2) (15)

At each time step, the MPC algorithm will find the input/state Uk and Xk trajectories over the predicted
horizon that that minimizes the cost function Jtot (12, 14, 15), while Uk and Xk are linked by dynamic
equation (11).

EVS32 4

2.5 Reference speed
As mentioned previously, one of the objectives of the MPC algorithm is to follow a state (speed) tra-
jectory, which is generated through a rule-based logic. In cruising situations, the reference speed is the
speed limit. For intersections with traffic lights, the logic is presented below.

2.5.1 Traffic light situations

The objective of the algorithm is to drive the vehicle at the highest possible velocity that will lead to
crossing the intersection with a green traffic light. When the traffic light intersection is in range of the
horizon the light can send information about its state and cycle to the vehicle (V2I communication). The
algorithm calculates the state of the traffic light when the vehicle crosses the intersection while driving
at the current speed. When it notices that the state of the light is red when crossing at that velocity, a
reference signal will be made that will calculate the speed at which the car needs to drive in order to cross
the intersection with green light. This is done every iteration for the whole horizon. First, the distance
and time to intersection are calculated as shown below.

Tisc =
Disc −Dveh

v
(16)

where Disc is the distance to intersection, Dveh is the current position of the vehicle and Tisc is the time
to the intersection. The target velocity vtarget can be determined using timing and distance information
that the traffic light communicates to the car (V2I communication). This helps the vehicle avoid stopping
at a red light then accelerating when it turns green, which causes a high amount of energy consumption
as seen in [7]. The calculation of the target speed in several situations is computed as:

vtarget =


v − 2(Disc−Dveh)

tng
, red and Tisc ≤ tng

v − 2(Disc−Dveh)
tnr+tr

, green and Tisc ≥ tnr
vlim, pass & Disc < Dnxt lim

vnxt lim, pass & Disc > Dnxt lim

(17)

where tng is the time to the next green phase, tnr is the time to next red phase, tr is the red light duration,
vlim is the current speed limit, vnxt lim is the next speed limit and Dnxt lim is the position of the next
speed limit. For stopping scenarios, the control will be switched to the rule-based driving model in order
to brake and reach a 0 velocity at the desired position. This rule-based manner of braking is implemented
because the reference signal and the controller are distance-based instead of time-based.

2.6 Constraints
There are two types of constraints: on the state (speed) and on the input (demanded torques). Due to
the limited availability of quadratic programming solvers embeddable in Simulink that would take non-
constant state constraints (linear or quadratic), speed limits (upper and lower) are enforced through the
reference speed. If we could use state constraints, we would relax the penalty Q which would result in a
higher influence of the energy consumption the cost function Je.

For input constraints, the maximum torque at the wheels is determined using a lookup table dependent
on the current linear speed of the vehicle. The input constraints are given with:

Tw =
−Tm,max(ωm)γ

η

Tw ≤ Tw ≤ Tw(v)

0 ≤ Tb ≤ Tb

(18)

where Tm,max is the maximum torque the electric motor can deliver, dependent on the rotational velocity
of the motor ωm , η is the regenerative efficiency of the powertrain, and γ is the ratio between the torque
at the electric motor and the torque at the wheels.

EVS32 5

3 Simulation Framework

3.1 Powertrain model from Autonomie
We use Autonomie powertrain models to accurately simulate the energy consumption of the vehicle.
Autonomie is a vehicle energy consumption and acceleration performance simulation tool developed at
Argonne National Laboratory [9]. The powertrain models are written in Simulink language, and are
forward-looking: a driver model computes acceleration and brake pedal commands based on a target
speed (drive cycle) and current speed, which are then interpreted by controllers. Each plant subsystem
follows an effort and flow structure, propagating efforts (e.g. torque, voltage) forward, and flows (e.g.
speed, current) backwards.

Most subsystem models include test-based look-up tables that model the energy losses of the component,
as well as dynamics and constraint blocks. It is important to note that the simulation model is of higher
fidelity than the model used in the MPC controller.

3.2 Longitudinal dynamics simulation with RoadRunner
Predefined drive cycles are not well-suited to simulate CAVs, and our proposed control strategy in par-
ticular, as the vehicle itself dynamically decides its own speed based on its road environment and sur-
rounding vehicles. As a result, we use RoadRunner [7, 8], a recently developed framework that can
simulate multiple vehicles with full powertrain models and the interactions between vehicles and their
environment. RoadRunner uses powertrain models from Autonomie, but adds new capabilities, such as
multi-vehicle simulation, models of the road, causal models of human driving, V2X communications,
and sensors. Figure 3 illustrates the steps in a typical RoadRunner use case. The user first defines a
scenario: the route, the number of vehicles, the type of vehicles, and the type of CAV technology for
each vehicle. RoadRunner then automatically builds the Simulink diagram, runs the simulation, and
post-processes the results for the user to analyze.

Figure 3: Overview of RoadRunner

Figure 4 shows a Simulink diagram generated from RoadRunner, featuring multiple vehicles. At the top
level, an intersection block contains sub-blocks modeling each intersection along the simulated route:
stop signs, traffic lights, connected or not. Each simulated vehicle has its own block composed of the
vehicle itself as well as a signal router that propagates relevant information to the ego vehicle based
on its position. Within each vehicle, a sensor/communication block models the real-world sensors and
V2X communications by adding range, delays and other imperfections to the incoming “ideal” sensor
data. The control block contains the longitudinal control, either a baseline human driver or the MPC
controller presented in the previous sections. The controller interacts with the Autonomie powertrain in
a close-loop.

EVS32 6

Figure 4: Top level and vehicle view of the Simulink diagram generated through RoadRunner

4 Results

4.1 Vehicle description
We applied the MPC algorithm to two vehicles modelled in Autonomie, both midsize cars. The EV
was sized to deliver a 160 km driving range. The HEV is a power-split one mode HEV, very similar to
the Toyota Prius. In the HEV case, we use the baseline energy management, as the MPC only controls
the wheel torque demand. The engine on/off state, engine speed, power split and SOC management
are decided through a rule-based controller validated on experimental data. The main specifications and
architecture of both powertrains are shown in Table 1 and in Figure 5 below.

Figure 5: Electric vehicle (left) and HEV configuration (right) in Autonomie

4.2 Scenarios
We selected several scenarios to evaluate the performance of the eco-driving controller in RoadRunner.
Figure 6 shows one of the selected routes for illustration purposes. The road attributes shown on the
figure are extracted from HERE REST API. Table 2 summarizes the main features of each one of the
routes. The routes include a significant amount of highway driving, in which the algorithm works as
eco-cruise control. In each case, we simulate one vehicle featuring the MPC controller in an “open road”
situation, i.e. without preceding vehicles that would constrain its speed. Inclusion of other such vehicles

EVS32 7

Table 1: Main vehicle specifications

EV HEV
Mass 1784 kg 1669 kg
Aero/tire CDAf=0.74 m2, Crr=0.08 CDAf=0.74 m2, Crr=0.08
Elec. Acc 460 W 240 W
Battery Li-ion, 29 kWh, 156 kW Ni-Mh, 1.4 kWh, 33 kW
Motor(s) 124 kW, η=90% 67 kW (M1), 52 kW (M2) η=90%
Engine 90 kW, η=38%

will be the subject of follow-up studies. In the baseline scenario, we use a driving model that drives at
the speed limit and makes smooth transitions when speed limit changes and when arriving and leaving a
stopping situation (due to a traffic light or a stop sign).

0 5 10 15 20 25 30 35 40

Distance (km)

-1000

-500

0

500

1000
Slope and Elevation

Elev. [m-106]
Slope [% x100]

0 5 10 15 20 25 30 35 40

Distance (km)

0

50

100

150
Road Attributes

Spd Limit [km/h]
Traffic Spd [km/h]
Base Spd [km/h]
F. Class [x10]
T.Lght

Figure 6: Overview of Route 1, Berkeley to Concord, California

Table 2: Route summary

Distance
(km)

Avg spd
lim (km/h)

Traffic
lights

Stop signs Elev. gain
(m)

Elev. loss
(m)

Elev. net
change (m)

Route 1 33.6 99.2 2 0 399 398 1
Route 2 46.8 82.2 17 0 257 216 41

4.3 Simulation results
Figure 7 shows a comparison of the speed profile between the baseline control and the MPC controller
in the EV case for the route shown in Figure 6. The MPC controller anticipates changes in the speed
limit and in the grade. As a result, we notice smoother accelerations and decelerations, as well as more
fluctuations of the speed in the MPC case.

Tables 3 and 4 show the performance of the controller in terms of travel time and energy consumption for
the EV and HEV. It is indeed important to compare these two often-competing metrics: energy savings
cannot excessively penalize travel time, as this would likely lead to low use rates by drivers. This trade-
off can be adjusted by tuning some of the MPC parameters, such as the terms penalizing deviation from
the reference. For the routes simulated here, we notice a very marginal increase in travel time (2% or
less) and significant energy savings (approximately 7%) for the EV. In the HEV case, the energy savings
(6.5%) come at the cost of increased travel time (4 to 6 %).

EVS32 8

0 5 10 15 20 25 30

Distance [km]

0

5

10

15

20

25

30

35

V
e
lo

c
it
y
 [
m

/s
]

-10

-5

0

5

10

15

20

25

30

S
lo

p
e
 [
%

]

MPC

Human

Speed Limit

Road slope

Figure 7: MPC vs baseline on the Route 1 scenario

Table 3: Travel times and energy consumption (EV)

Travel time Energy cons. (Wh/km)
base MPC % diff base MPC % diff

Route 1 21m19s 21m45s 2.0% 139.1 128.5 -7.6%
Route 2 36m38s 36m39s 0.0% 120.9 112.8 -6.7%

Table 4: Travel times and energy consumption (HEV)

Travel time Fuel cons. (L/100km) ∆ SOC (%)
base MPC % diff base MPC % diff base MPC

Route 1 21min26 22min50 6.5 4.13 3.87 -6.3 -11.8 -11.7
Route 2 36min41s 38min19s 4.4 4.15 3.878 -6.6 -3.1 -4.1

Tables 5 and 6 shed some light on the reasons behind such energy savings. In these tables, “brake energy”
is the total braking energy at the wheels, including both regenerative braking and friction braking. The
“regen recovery” is the percentage of the total braking energy that is recovered by the battery through
regenerative braking. The most noticeable impact of the MPC controller is on the braking energy, which
is decreased quite significantly. The MPC controller limits braking because braking, even regenerative,
wastes kinetic energy either through friction or powertrain losses (especially motor losses). In addition,
the MPC controller increases the regen recovery rate and reduces friction braking. We can also notice
that it reduces the RMS current to and from the battery, which may have a beneficial impact on the
battery’s life.

Table 5: EV operating conditions

Brake energy (Wh/km) Motor efficiency (%) Regen recovery (%) RMS current (A)
base MPC base MPC base MPC base MPC

Route1 30.4 18.2 86 85.2 76.2 80 204 187
Route2 20.5 11.1 83.7 83.10 75.6 74.4 212 195

Table 6: HEV operating conditions

Prop. energy (Wh/km) Brake energy (Wh/km) ICE efficiency (%) Regen recovery (%)
base MPC base MPC base MPC base MPC

Route1 114.2 98.5 26.8 16.3 36.9 35.8 56.3 65
Route2 93 79.3 18 8 35.1 34.2 50.5 61

EVS32 9

5 Conclusion
We have presented in this paper an eco-driving algorithm based on MPC and applied it to two CAVs,
an EV and an HEV. We have demonstrated the effectiveness of the controller on simulated real-world
routes, leading to 7% energy savings. The algorithm uses a universal energy model of the powertrain, a
quadratic representation of the power source (fuel, battery, etc.) as a function of wheel torque and vehicle
speed. Such model is a simplified one for most powertrains, which means that it does not necessarily lead
to optimal results, but it also allows for easier implementation across a broad range of vehicles. This,
coupled with the large number of powertrain models in Autonomie and the CAV scenario capabilities of
RoadRunner, will enable to evaluate the energy benefits of eco-driving at a large scale. Future work will
focus on adding more driving scenarios, including preceding vehicles, exploring calibration trade-offs
and simulation with more powertrains and vehicle classes. We will also explore alternative solvers to
better deal with state constraints.

Acknowledgments
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a DOE Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the
Government.

This report and the work described were sponsored by the U.S. Department of Energy (DOE) Vehicle
Technologies Office (VTO) under the Systems and Modeling for Accelerated Research in Transporta-
tion (SMART) Mobility Laboratory Consortium, an initiative of the Energy Efficient Mobility Systems
(EEMS) Program. DOE Office of Energy Efficiency and Renewable Energy (EERE) manager David
Anderson played important roles in establishing the project concept, advancing implementation, and
providing ongoing guidance.

References
[1] Ardalan Vahidi and Antonio Sciarretta. Energy saving potentials of connected and automated vehi-

cles. Transportation Research Part C: Emerging Technologies, 95:822 – 843, 2018.

[2] Erik Hellstrom, Jan Åslund, and Lars Nielsen. Design of an efficient algorithm for fuel-optimal look-
ahead control. Control Engineering Practice (Special Issue on Automotive Control Applications,
2008 IFAC World Congress), 18(11):1318–1327, 2010.

[3] E. Kural and B. Aksun Güvenç. Model predictive adaptive cruise control. In 2010 IEEE International
Conference on Systems Man and Cybernetics (SMC), page 1455–1461, Oct 2010.

[4] Marcus Kalabis and Prof Dr-Ing Steffen Müller. A Model Predictive Approach for a Fuel Efficient
Cruise Control System, page 201–211. Gabler Verlag, 2012.

[5] Junbo Jing. Vehicle Fuel Consumption Optimization using Model Predictive Control based on V2V
communication. PhD thesis, The Ohio State University, 2014.

[6] T. Schwickart, H. Voos, J. R. Hadji-Minaglou, and M. Darouach. A novel model-predictive cruise
controller for electric vehicles and energy-efficient driving. In 2014 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, page 1067–1072, Jul 2014.

[7] N. Kim, D. Karbowski, and A. Rousseau. A modeling framework for connectivity and automation
co-simulation. April 2018.

[8] N. Kim, D. Karbowski, J. Jeong, and A. Rousseau. Simulation of heavy-duty vehicles in platooning
scenarios. 2018.

EVS32 10

[9] N. Kim, D. Karbowski, A. Rousseau, S. Halbach, and L. Michaels. Electric drive vehicle develop-
ment and evaluation using system simulation. 47(3):7886–7891, August 2014.

Authors
Dominik Karbowski is Technical Manager of Intelligent Eco-Mobility at Argonne National Lab-
oratory, leading Argonne’s research on energy-efficient connected and automated vehicles. His re-
search interests include automotive systems simulation, control theory, energy management, electri-
fied powertrain design and optimization, as well as driver behavior modeling. Dominik is a major
developer of simulation tools for energy-efficient vehicle research such as Autonomie and RoadRun-
ner. Dominik holds a master of science in engineering from Mines ParisTech (France).

Jongryeol Jeong Jongryeol Jeong received his Ph.D. in Mechanical Engineering from Seoul Na-
tional University in Seoul, Korea, in 2015. The main subject of his thesis was optimization of energy
management and supervisory control of plug-in hybrid electric vehicle considering thermal aspects
of vehicle components. He has been working in Argonne National Laboratory’s Vehicle Modeling
and Simulation Group since 2015. His research includes modeling various vehicle systems and com-
ponents, validating simulation models, developing vehicle supervisory controls, and optimization of
energy management.

Koen Elands is a graduate student in automotive technologies at the Eindhoven University of Tech-
nology, with a specialization in control systems. He is graduating a master’s in 2019. In 2018, Koen
worked as a Research Aide at Argonne National Laboratory to implement MPC for eco-driving.

Iulian Dobrovolschi received a master’s degree in electrical engineering from the Eindhoven Tech-
nical University (Netherlands) in 2017. In 2016, Iulian worked as a Research Aide at Argonne
National Laboratory. After graduation, Iulian joined TNO to work on energy market and energy
production optimization.

EVS32 11

