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Executive Summary 

This paper describes the development of a methodology for precise modeling of a plug-in hybrid electric 

vehicle without having access to any OEC-specific knowledge. The only requirement to apply the 

methodology is to have the vehicle at hand. As a starting point, an object-oriented physical vehicle model, 

based on approaches described in the literature, is implemented in the modeling language Modelica. This 

vehicle model consists of separate sub-models for the vehicle components interfacing each other. Secondly, 

driving data is recorded using a diagnostic software that accesses the vehicle’s sensors via the data link 

connector (DLC). There is no need to install additional external sensors. The recorded data is used to 

parameterize all sub-models. As a final step, the sub-models are merged together into an overall vehicle 

model. The validation of this model is carried out with measurement data from a certified dynamometer. It 

is shown that this approach leads to an accurate model with a maximal discrepancy of well below 5 % in 

relevant vehicle parameters. The validated model can then be used for various applications, for example the 

evaluation of thermal management concepts for hybrid electric vehicles.  

1 Introduction 

The goal of this study is to develop a methodology to model the longitudinal dynamics of a plug-in hybrid 

electric vehicle based on data logging. In previous work, components were modeled using maps [1] or 

physical models [2,3], but not validated on the basis of real measurement data. Alternatively, in other 

publications [4,5], additional sensors for validation were installed at great expense. This publication shows 

that the vehicle sensors can be used to obtain the parameters for the modelling as well as to validate the 

generated model.  

The developed approach only requires the vehicle at hand. The methodology comprises the model building 

described in Sec. 2 based on various approaches detailed in the literature, the acquisition of driving data (Sec. 

3) used for the parameterization of the model, and validation (Sec. 4) using measurement data from a certified 

roller dynamometer. The last section shows an example application of the validated model.  

1.1 Vehicle 

The AUDI A3 e-tron has been chosen as a reference vehicle. It is a parallel hybrid electric vehicle which is 

able to draw power from the electric motor (EV mode) or from the electric motor (EM) and the internal 

combustion engine (ICE) at the same time (hold mode) or to recharge the battery by load point shifting using 
the ICE (charge mode). The ICE is a direct-injection 1.4-liter four-cylinder gasoline engine with a peak power 
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of 110kW. The electric motor is a permanently-excited synchronous machine with a peak power of 75 kW. 

The transmission features an automated 6-speed-dual clutch gearbox. The traction battery consists of 

prismatic NMC (nickel manganese cobalt oxide) lithium ion cells [6]. It is a series connection of 96 cells, 

each with a capacity of 25 Ah. This results in a total energy of 8.8 kWh (gross). The electric range is certified 

to 50 km in the New European Driving Cycle (NEDC). 

Table 1: Relevant vehicle parameters. 

Parameter Value 

Battery capacity 8.8 kWh 

Battery configuration 96s 

Electric motor power 75 kW 

ICE power 110 kW 

Electric range 

Mass m  

40 km 

1850 kg 

Drag coefficient cw 

Frontal Area A 

0,32 

2,13 m2 

2 Vehicle Model 

The vehicle model was implemented in the modeling language Modelica, which allows the creation of 

physical multi-domain models in an object-oriented manner. Each vehicle component is modeled in a sub-

model with generic electric, thermal, mechanical and informational interfaces. The sub-models can be 

assembled together according to the topology of the vehicle being tested. The relevant sub-models are 

described in the following.  

2.1 Battery 

The loss mechanisms of Li-ion cells are divided into ohmic losses, transition resistances, electronic and ionic 

transport in the electrodes, charge transfer losses and diffusion losses [7]. According to the state of the art, a 

series connection of voltage source, resistor and two RC elements is used to model a battery cell. Extensive 

tests (e.g. impedance spectroscopy) are necessary to obtain data to parameterize the RC elements, especially 

if low temperatures are also considered. Consequently, no RC elements are used.  

The battery model consists of an equivalent circuit with open circuit voltage (OCV) and internal resistance 

(Ri). The OCV curve is a function of the state of charge (SOC) and is represented by the following function 

[8]: 

𝑉𝑂𝐶𝑉 = 𝑎 + 𝑏 ∙ (− ln 𝑆𝑂𝐶)𝑚 + 𝑐 ∙ 𝑆𝑂𝐶 + 𝑑 ∙ 𝑒𝑛(𝑆𝑂𝐶−1), 0 ≤ SOC ≤ 1, m > 0 

Ri is a function of current (I), SOC and cell temperature (TCell) and is fitted to a three-dimensional function. 

The power loss is calculated as follows. 

𝑃𝑙𝑜𝑠𝑠
𝐶𝑒𝑙𝑙 = 𝑅𝑖(𝐼, 𝑆𝑂𝐶, 𝑇Cell)  ∙ 𝐼² 

Voltage, temperature and current limits are taken into account by the model to prevent damage to the battery 

(cf. lithium plating). A limitation of the maximum discharging current leads to a reduced acceleration and 

maximum velocity of the vehicle. A limitation of the maximum charging current decreases the electric range 

due to a lower maximum regenerative power.  

2.2 Power Electronics 

IGBTs and antiparallel diodes are used as power semiconductors for electrical traction systems. Losses are 

mainly divided into switching (sw) and pass-through (pt) losses. The total inverter losses are the result of the 

individual losses multiplied by the number of semiconductors [9]. Parameters are taken from manufacturer 

data sheets of comparable performance classes. 

𝑃𝑙𝑜𝑠𝑠
𝑃𝐸 = 6 (𝑃𝑙𝑜𝑠𝑠,𝑠𝑤

𝐼𝐺𝐵𝑇 + 𝑃𝑙𝑜𝑠𝑠,𝑠𝑤
𝐷𝑖𝑜𝑑𝑒 + 𝑃𝑙𝑜𝑠𝑠,𝑝𝑡

𝐼𝐺𝐵𝑇 + 𝑃𝑙𝑜𝑠𝑠,𝑝𝑡
𝐷𝑖𝑜𝑑𝑒 ) 
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Necessary parameters are: Switching frequency, forward voltage of the IGBT and diode, on-resistance of the  

IGBT and diode, turn-on and turn-off energy losses of the IGBTs, reverse recovery energy of the diode, rated 

current and rated voltage. 

2.3 Electric Motor 

The EM is a permanently-excited synchronous machine [10]. The losses of such an EM can be divided into 

copper losses (cu), iron losses (fe) (hysteresis, eddy current and excess) and friction losses (bearing (brg) 

and windage (wdge)). Mahmoudi et al. [11] have developed a methodology to approximate loss maps for 

different types of EMs. It is assumed that the power loss during optimal operation can be expressed as a 

polynomial function of torque and speed: 

𝑃𝑙𝑜𝑠𝑠
𝐸𝑀 (𝑇, 𝜔) ≈  ∑ 𝑘𝑚𝑛𝑇𝑚𝜔𝑛

𝑚,𝑛

 

The loss terms have been simplified to the following form for the constant torque (ct) region, see table 2. A 

quadratic dependence on the torque was additionally used in the constant power region. 

 

Table 2: Classification (kmn) of losses as a function of torque and speed in constant torque and constant power region. 

 Constant torque Constant power 

1 - fe/brg - wdge - brg fe wdge 

T - - - - - - - - 

T2 cu - - - cu - cu/fe - 

 1 ω ω2 ω3 1 ω ω2 ω 3 

 

The start of the field weakening range is derived from measurement data. The coefficients kmn are determined 

by solving the following minimization problem separately for the constant torque and constant power range. 

min
𝑘

∑ ||𝑃𝑙𝑜𝑠𝑠(𝑇, 𝜔) − 𝑃𝑙𝑜𝑠𝑠
𝑚𝑒𝑎𝑠(𝑇, 𝜔)||2

2

𝑚,𝑛

  

2.4 Internal Combustion Engine 

The fuel consumption 𝑚̇𝑓𝑐 is approximated by a polynomial approach as a function of the normalized 

effective torque Tnorm and the engine speed nnorm. 

𝑚̇𝑓𝑐(𝑇𝑛𝑜𝑟𝑚, 𝑛𝑛𝑜𝑟𝑚 ) ≈  ∑ 𝑗𝑚𝑛 𝑇𝑛𝑜𝑟𝑚
𝑚 𝑛𝑛𝑜𝑟𝑚

𝑛

𝑚,𝑛

 

The coefficients jmn are determined by a minimization problem of least-squares type according to Sec 2.3. 

2.5 Chassis Model 

Depending on the application case, two different methods to determine the driving resistance are introduced. 

On the one hand, the driving resistance Froller comprises the rolling resistance and the drag of the vehicle and 

is fitted to a polynome of second degree as a function of the velocity.  

𝐹𝑟𝑜𝑙𝑙𝑒𝑟 =  𝐹0 +  𝐹1𝑣 +  𝐹2𝑣2 

The coefficients F0, F1 and F2 are determined by solving a minimization problem and may be used directly 

as target values to adjust the roller dynamometer.  

Virtual investigations require a mass-independent determination of the driving resistances. For this purpose 

a model based on physical equations was used:  

𝐹𝑟 = 𝐹𝑎𝑖𝑟 + 𝐹𝑟𝑟 =
𝜌

2
𝑐𝑊 ∙ 𝐴 ∙ 𝑣2 + 𝑚 ∙ 𝑔 ∙ 𝑐𝑟(𝑣) 
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The rolling resistance coefficient 𝑐𝑟 is approximated by a parabolic function considering its dependence on 

vehicle speed [18].   

𝑐𝑟(𝑣) =   𝑐𝑟0 + 𝑐𝑟1 ∙ 𝑣 +  𝑐𝑟2 ∙ 𝑣2 

Using the acceleration force, this leads to: 

𝐹𝑎 =  𝑚 ∙ 𝑎 = 𝐹𝑟  =  𝐹𝑎𝑖𝑟 + 𝐹𝑟𝑟 =
𝜌

2
𝑐𝑊 ∙ 𝐴 ∙ 𝑣2 + 𝑚 ∙ 𝑔 ∙ 𝑐𝑟(𝑣) 

The road and wheel specific parameters 𝑐𝑟0 , 𝑐𝑟1 and 𝑐𝑟2 are also determined by using measurement data 

from a coast down test. 

2.6 Driving Cycle 

The new emission standard Euro 6d-Temp defines road tests as a mandatory part of the homologation 

procedure, in addition to tests on the roller dynamometer. This regulation specifies the requirements for the 

real driving emissions (RDE) test procedure [12]. Within this study an RDE-conform route profile with a 

total distance of 102 km was defined (30.5 km urban, 28.7 km rural , 42.7 km motorway). It serves as a basis 

for the upcoming validation. 

2.7 Parameter optimization 

The parameters of the described powertrain component models are found by using measurement data. For 

this purpose, an objective function is implemented which consists of the weighted sum of the residual 

between measurement and model prediction (least squares method).  

Thus, the optimization of the parameters is carried out by minimizing the defined objective function. To 

perform this task, a framework is needed which couples an optimizer with the integration of the simulation 

model. We chose Python and its modules PyFMI [13] and SciPy [14] due to their convenience and open-

source character.  

The Modelica model is exported as a Functional Mockup Unit [15] which represents the model in a generic 

Dynamic Link Library (DLL) with standardized interface functions. This DLL is interfaced by PyFMI, 

allowing the sequential simulation of the model with different parameter sets. The results are evaluated in the 

optimizing algorithm, leading to a new parameter set for the simulation. We opted for a Nelder-Mead 

algorithm [17] as it does not rely on derivative information. It is part of the module SciPy, in which numerous 

algorithms are available.  

3 Measurement Data 

The models described in Sec. 2 are parameterized by measurement data acquired using the diagnostic 

software VCDS [16], allowing the output of the vehicle’s sensors to be recorded. The data acquisition is 

restricted to log only one electric control unit (ECU) at a time. The software is also limited to log a maximum 

of 12 parameters. The recorded driving data is filtered and classified in preparation for the map fit. 

Measurement data with a high rate of change is neglected.  

3.1 Driving Data 

Initially, specific driving manoeuvres were defined to parameterize each sub-model separately. These 

manoeuvres were carried out in a total of 3.000 km driving data. The acquired data were used to determine 

the kmn coefficients of the EM model (Sec. 2.3), the jmn coefficients of the ICE model (Sec. 2.4), the fitting 

coefficients of the battery model for the Ri and OCV functions (Sec. 2.2) and the dynamic wheel radius (Sec. 

2.5). 

The power loss of the battery is calculated based on data fulfilling stationary conditions. Data without current 

flow is used to determine the parameters of the OCV curve (Sec. 2.1). On this basis, the power loss is 

determined (see figure 1), the result is an R2 of 0.989. The total R2 of the battery loss fit from -10 °C to 

+30 °C in 2 degree increments is 0.978. 
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Figure 1: Parameterization of the battery model at 10°C with an R2 of 0.9956. 

 

The map of the electrical machine is divided into four areas. The constant torque and constant power regions 

are fitted separately in motor and generator operation. As a transition to the next region, the previously 

calculated region borders are used as boundary conditions. R2 is 0.948 for the intire operation range. 

 

Figure 2: Parameterization of the electric motor model with an R2 of 0.948. 

 

The fit of the internal combustion engine shows an R2 of 0.9693. Non-stationary data is neglected in 

determining the coefficients. The deviation of the measured data relies on rapid load changes and 

measurement errors of the internal vehicle sensors as well as an inaccuracy of the calculated engine torque. 
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Figure 3: Parameterization of the internal combustion engine model with an R2 of 0.9693. 

 

The gear shifting points of the automatic transmission depend on the operating mode, accelerator pedal 

position and input speed. We identified the engaged gear and the input speed as the dominant factors in the 

driving data and extracted upper and lower shifting points for each gear (see table 3).  

 

Table 3: Shifting points of the gearbox. 

Speed Shifting up Shifting down 

1 2,000 rpm - 

2 2,400 rpm 1,100 rpm 

3 2,400 rpm 1,400 rpm 

4 2,300 rpm 2,000 rpm 

5 4,200 rpm 1,600 rpm 

6 - 1,500 rpm 

 

The coefficients F0, F1 and F2 of the driving resistance (Sec. 2.5) were determined by coast down tests (see 

table 4).  

 

Table 4: Driving resistance coefficients. 

Coefficient Value 

F0 200 N 

F1 0.2 N/(km/h) 

F2 0.037 N/(km/h)2 

  

In these tests the vehicle is accelerated to a defined velocity on a flat road before being coasted down to a 

full vehicle stop. These tests are performed multiple times and in both driving directions to account for 

different external influences such as wind speed, wind direction, rolling resistance and slope. Using these 

results and the vehicle parameters given in table 1, the road and wheel specific parameters may be calculated 

(see table 5). 



EVS32 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium    7 

Table 5: The rolling resistance coefficients. 

Coefficient Value 

cr0 1.00E-02  

cr1 1.00E-05 1/(km/h) 

cr2 1.64E-07 1/(km/h)2 

 

3.2 Climate Chamber 

We also cooled down the vehicle and its battery in a climate chamber to explore the current limitations of the 

battery. The battery charge and discharge current is limited depending on cell temperature and state of charge, 

to prevent damage to the battery (cf. lithium plating). The maximum discharging current is directly linked to 

the maximum power of the motor and thus has a significant influence on the acceleration and maximum 

velocity of the vehicle. The maximum charging current is directly linked to the maximum regenerative power 

when braking, and affects the electric range. 

The temperature and the SOC were varied, resulting in a three-dimensional map. Figure 4 shows the 

maximum charging and discharging currents of the battery which are limited by the vehicle’s control unit. 

 

Figure 4: Maximum battery charging and discharging currents depending on state of charge and temperature. 

 

The limitation of the charging current begins above a state of charge of 55 % and below a cell temperature 

of 0 °C. The charging current is further decreased with increasing state of charge and decreasing temperature, 

whereby a state of charge of 90 % and a temperature of -15 °C mark the disabling of the regenerative braking 

feature. 
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4 Validation 

The parameterized sub-models were merged together in an overall vehicle model, which is validated by 

measurement data logged on a certified roller dynamometer. The velocity profile was recorded on the 

previously defined RDE driving route. Thermal conditioning of the vehicle is deactivated and the ambient 

temperature is conditioned to 23 °C. 

 

Table 5: Validation of the model against measurement data 

Parameter Unit Simulation Measurement Deviation 

Total distance  km 101.84 102.04 -0.17 % 

Fuel consumption l 3.87 3.78 +2.4 % 

Energy consumption kWh 6.01 5.91 +3.06 % 

CO2 mass kg 9.01  8.74 +1.66 % 

Electric range km 33.2 33.31 -0.32 % 

 

Table 5 shows the resulting deviation between the simulation model and measurement data in regard to 

relevant parameters. We observe a very small discrepancy in the total travelled distance and the electric range. 

This demonstrates that the electric powertrain is modeled very precisely. The slightly higher deviation in 

terms of fuel consumption and CO2 emissions is largely attributable to the unknown load point shifting 

strategy in the hold mode of the vehicle. Nevertheless, these deviations are considered to be in an acceptable 

range. 

5 Virtual Investigation 

The effect of different battery cell temperatures is investigated in the following section. Figure 5 shows the 

same part of the RDE-cycle for battery temperatures of -10 °C and +10 °C. On the one hand, the same electric 

power demand leads to a higher required battery current, since the internal resistance increases at low battery 

temperatures. On the other hand, the maximum battery charge current (black dotted line) decreases at low 

temperatures, leading to a reduction of the energy recovered. 

 

Figure 5: Comparison of a the battery current in the RDE cycle at -10 °C and 10 °C battery temperature. At low 

temperatures, more current is needed to achieve the same power, and maximum recuperative power is limited (dotted 

line). 

Next, the cell temperature is varied from +10 °C to -10 °C and is assumed to be constant. Figure 6 shows the 

results. 
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 Due to the rising internal resistance with decreasing cell temperature, the electric range is reduced, which 

leads to a higher fuel consumption and CO2 emissions in the defined driving cycle. Furthermore, regenerative 

braking is limited at low cell temperatures, as seen in Sec. 3.1.  

 

Figure 6: Results of virtual investigation depending on ambient temperature. 

 

6 Conclusion 

This paper describes a methodology to model the longitudinal dynamics of a plug-in hybrid electric vehicle 

based on logging sensor data from the vehicle. This data is used to obtain the parameters for modelling the 

hybrid drive train. The method is applied with a vehicle diagnostic tool using an Audi A3 e-tron. In addition 

to real driving data, measurements in a climatic chamber were used to further optimize the model. 

Relevant factors influencing the recuperable performance, such as the increasing power loss of the battery 

and the maximum charging current at low temperatures, were presented. The overall vehicle model consisting 

of the interfacing sub-models was finally validated, and shows a deviation of less than 5 % compared to 

measurement data of a roller dynamometer. The influence of battery temperature on fuel consumption, CO2 

emissions and electrical range was shown in a virtual study. 

The developed model serves as a reference for the status quo and can be used to evaluate vehicle 

modifications in terms of fuel consumption, electric range and CO2 emissions. 
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