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Summary

One key research for developing an efficient drivetrain design is finding optimal Energy Management
Strategies (EMS) where the control parameters are optimized for achieving a high performance, improving
fuel economy, maintaining battery state of charge (SoC) and satisfying charging limitations at the meantime.
The present work addresses an Electrical Variable Transmission (EVT) based HEV and combines a Rule-
based (RB) strategy into an optimization-based (OB) low pass filter EMS technique for such a hybrid system.
Investigation of the results indicates the proposed EMS enables efficient distribution of power between

sources while minimizing fuel consumption and satisfying the EMS control objectives.

Keywords: HEV (hybrid electric vehicle); Modeling, Optimization; Energy consumption; Battery SoC (State
of Charge)

1 Introduction

With the advent of novel electric machines, their industrial applications have provided promising potentials
to powertrain configurations. The Electrical Variable Transmission (EVT), an electromechanical device, can
be considered as an alternative solution to conventional transmission systems. This unique system could be
used in both vehicles and machines powertrains. The EVT consists of two concentric inner and outer rotors
nested in a stator frame to transfer and exchange mechanical and electrical energies [ 1, 2]. The EVT is suitable
for use in any application where continuously variable and electric drive are combined in combination with
electric power generation. This provides significant improvements in overall system efficiency and extended
functionality. Example applications includes but not limited to transmission systems in Hybrid Electric
Vehicles (HEV), constant speed power take-off with mechanical drive and electric capability, combined
mechanical and electric drive for auxiliaries, electric clutches, and torque converters. Fig.1 illustrates a
schematic of an EVT device.

EVS32 1



Figurel: EVT electromechanical converter [3]

In HEV design, there are several variables which affect the performance of a vehicle, such as parameters of
the powertrain components and control variables. Due to non-monotonic impacts of these variables on the
objectives which should be satisfied simultaneously, the optimization of such systems is a challenging task.
The previously performed studies indicate the significant role of energy management and control strategies
in HEVs [4-6] and EVs [7-9] for improving fuel consumption and/or preserving battery charge balance,
respectively. Throughout the literature, many studies have been carried out on modelling and optimization of
HEVs to increase their performance with a focus on Energy Management Strategies (EMS) by using different
optimization algorithms.

Evolutionary algorithms are a useful tool to address the complex optimization problems of EMS control for
HEVs to address the non-linearities and multimodalities of non-convex objective functions. Genetic
Algorithm (GA) has proven as a robust and feasible optimisation approach with a wide range of search space,
useful for solving such problems [10]. Throughout the literature, different studies have considered GA as an
optimization-based (OB) approach for power control and EMS design in HEVs. Huang et al. [11] performed
an optimization of control strategy parameters for a series HEV topology to minimize the fuel consumption.
The results indicated the validity of GA compared to DIRECT and Thermostatic methods. In another study,
Gao et al. [12] used GA in PSAT environment for powertrain optimization of a parallel HEV topology to
improve the overall fuel economy. Montazeri and Poursamad [13] examined a GA-based technique to
optimize control strategy of HEVs via aggregating the constraints into the objective function. In that study,
penalty functions were used to penalise the infeasible solutions by reducing their fitness values toward
minimizing the fuel consumption and the emissions.

There have also been studies on rule-based (RB) approaches for EMS design focusing on various EMS
control objectives. In [14], the authors proposed a rule-based control strategy for battery charge-sustaining,
improving fuel efficiency, and examining power flow results through components. In another study in [15],
Peng et al. focused on fuel consumption improvement via performing comparisons among different energy
management strategies. The authors in [ 16] compared computational cost of using rule-based control strategy
algorithms for a parallel HEV. Wu et al. [6] examined power split, SoC control and engine operating point
strategies to evaluate the fuel consumption, power flow and battery SoC. Achievements on the evolution of
SoC were also obtained in [4] via using a rule-based supervisory control approach. In [5], the authors
considered a strategy working based on a driving cycle recognition approach to improve fuel efficiency.

Considering the previous studies, a promising control approach would be using techniques which can
combine the merits of RB and OB power sharing methods to attain applicable control solutions, consider
various control objectives, and minimize fuel consumption. For instance, If-Then-Else rules can be linked
into OB power sharing methods such as a Low Pass Filter (LPF) technique. The optimal EMS design includes
optimizing one or more objective functions via searching through the control design parameters meeting the
constraints. In this paper, such an energy management strategy for powertrain of an EVT-based HEV is
developed and the promising benefits are compared to non-optimized cases for NEDC driving cycle.

2 Drivetrain Architecture

In an EVT-equipped HEV, the ICE shaft is connected to the inner rotor while the outer rotor is linked to the
wheels. The EVT system can provide possibility of decoupling the wheel and the engine speed [17] and help
enhancing vehicle performance via having the engine operating in its optimized point [18]. In addition, it can
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reduce maintenance and prevents losses of gears’ mechanical involvement as the power can be split in an
electromagnetic way. The net power coming from the ICE can partially be transferred to the wheels and the
remaining part is converted to electrical power to be stored in a battery pack or to supply the stator [19] for
future propulsion use. The EVT system uses two back-to-back inverters connecting the battery to the inner
rotor and the stator. Fig. 2 illustrates a schematic of a typical EVT-equipped HEV.

Inverter

Battery
-~

Stator

Outer rotor

——

Tank ICE Inner rotor

shaft 1 |
|

Figure2: EVT-equipped HEV topology

3 Modelling

To optimize the energy management strategy, it is required to incorporate the modelled vehicle into the
optimization algorithm. In this study, the modelling and simulations are performed in the
MATLAB/Simulink® environment. The backward-facing approach merges the advantages of simplicity and
low computational cost [20] when it comes to model integration into optimization applications [21]. Hence,
the backward calculation method [22] is used in this study to model the vehicle.

The vehicle longitudinal dynamic model uses speed and acceleration timeseries of a driving cycle to calculate
the required tractive forces considering the drag resistance force, the rolling resistance force, the gradient
resistance force, and the inertia force:

1 2 . dv
F, ZEPV C,A+C mg cosa+mgsma+mCJd— (D)
t

Knowing the wheels radius R, one can readily calculate the required torque and speed output of vehicle
dynamic model on the wheels:

T = I:T Rw (2)

a =

w

\%
—_— 3

~ )
Table 1 provides the descriptions and information of the parameters used for the passenger vehicle’s

dynamic calculations of the present study.

The core functionality of the ICE model used in this study is based on an input-output approach using
torque-speeds pairs corresponding to the efficiency and the fuel rate map stored into look-up tables.
Having the output fuel consumption rate data and the fuel density, the consumed fuel in litre can be

modelled as follows where m represents the fuel consumption rate and p; is the fuel density:
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Tablel: Constant parameters for vehicle dynamic calculations

Description Parameter (unit) Quantity
Mass m (kg) 1350
Drag coeftficient Cp 0.24
Rolling resistance coefficient C: 0.009
Rotational inertia coefficient Cy 1.075
Frontal area A (m?) 1.74
Wheel radius Ry (m) 0.287
Air Density p (kg/m?) 1.2
Auxiliary load P (W) 500
O et
Figure3: The efficiency map of the ICE
Fuel = j‘&dt 4)
o Py

Fig. 3 represents the efficiency map of the 60-kW engine considered for the present study.

To model the battery pack, the parameters for the open circuit voltage (V,.), the internal resistance (R;x), the
polarization capacitance (Cp), and the polarization resistance (R,) are used based on the Thevenin model. The
elements of Thevenin equivalent circuit as a function of the SoC are identified by using experimental data
[23] which are considered in Simulink look-up tables. The terminal voltage of the pack Vya and SoC to be
modelled can be expressed as:

I _ Iload
batt

Batt

av,, _ Ve +|B_att
dt C,R, C,

VBatt = NBatts (Voc - IBatt Rim _ch)

®)

(6)

(7
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SoC = SoC, +L IB—""“dt (8)
36007 C,

A LiFePO4 (LFP) battery type is simulated for the simulation in this study. Table 2 provides the specification
of LPF battery used in the present study.

The output power of the power converters is modelled considering the power flow calculation direction and
the components efficiency used in the corresponding look-up tables. The efficiency operators f=-1, and =1
are used for the motoring mode (while P>0), and the braking mode (while P<0), respectively.

Pout = Putt” (9)

Table2: LiFePOy, battery specifications

Rated capacity 14 Ah
Nominal voltage 3.6V
Max discharging current 100 A
NBatts 120
SoCo 80%
Min Voltage 2.5
Max Voltage 4.15
C rate limit while charging -3

The considered EVT component is a rotating field electrical machine with two concentric rotors of which the
inner rotor contains a distributed three-phase winding and the outer rotor is equipped with permanent
magnets. The inputs of the EVT model are the torque and speed operating points of inner and outer rotor
shafts. Based on these operating conditions a set of 5 independent currents is chosen: stator current in d and
g-axis, outer rotor current in d axis and inner rotor current in d and q-axis (see Fig. 4) which can minimize
the iron and copper losses [24]. The corresponding fluxes (V) are calculated based on look-up tables defined
based on FE calculations and validated on a prototype [25]. Once the flux and current are known, the last
step is to calculate the torque on each component:

3
1 :ENp(v/lqlld _l//ldllq) (10)
T,=-T —T, (11)
3
T3 :ENp(l//Sqlad _V/3dl3q) (12)

where subscript 1, 2 and 3 represent stator, outer rotor and inner rotor, respectively. The number of pole pairs
is denoted by N,.
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Permanent magnets de-field winding

Figure4: Cross-sectional view of the PM EVT

In this study, the Simulink ® environment is used to integrate the individual subsystems and form the whole
vehicle model as illustrated in Fig. 5.

Oriving Cycle

Fuel Tank

Figure5: Diagram of the backward calculations modelled in Simulink®

4 EMS

The main aim of the EMS is to define rules for power sharing control and achieving the desired EMS
objectives. The core problem of the RB strategies is that they are subjected to predefined intuitions. This may
satisfy a desired objective such as battery SoC sustaining, however may lead to non-optimal outcomes
regarding the fuel consumption. Therefore, as illustrated in Fig. 6 the rules are predefined on the top of EMS
and linked into an OB low pass filter control power sharing technique to provide a robust EMS block. This
section goes through the rules and power sharing approaches used in the EMS block. Through selecting
appropriate operating points and modes, the control objectives are: satisfy the required driving power, operate
the ICE considering its efficiency map, use ICE and regenerative braking energy for charging the battery
when possible provided not violating the charging limitations and allowable maximum and minimum SoC
values, maintain the battery SoC in its allowable range while having the initial and final SoC values close
enough to each other, and minimize the fuel consumption. The considered EMS objectives are summarized
in Fig. 7.

ICE power (t)

Power
EMS sharing Battery power (t)

(RB+0OB) decisions

SoC (t)

Figure6: Power sharing based on RB and OB LPF strategy

Satisfy the required driving power

) Maintain battery SoC
Consider ICE 6 considering
efficiency map ®e °® battery limitations

o
°® °

i = Minimize fuel
Select operating e O consumption
modes - -

Figure7: The EMS objectives
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1.1 Rule-based strategy and operating modes

The main objective of defining a rule-based strategy is to establish a set of “If-Else-Then” rules which
consider driving pattern features for the power sharing. These control rules can be designed based on intuition
in view of desired objectives. The rules are included as a subsystem of the EMS block to work cooperatively
with the LPF power split technique. The EMS will allow the ICE to operate flexibly in efficient operating
points to meet the demands and satisfy the charging requirements. The operating points can be defined using
speed-torque pairs stored into a look-up table based on the ICE efficiency map. The rules are used to update
the operating modes through the simulation considering the current requested load, speed, accessible power
from energy sources, SoC and power split control variables. The modes of the study can be categorized and
considered as follows. More detailed explanations of these modes and corresponding used rules can be found
in [26-28].

e Pure electric mode

Hybrid-traction mode

Engine traction and battery charging mode

Hybrid battery charging by both ICE and regenerative breaking
Regenerative braking mode

1.2 Low pass filter power

The performance and the fuel economy are crucially depending not only on the SoC rules, but also on the
used power splitting method. The utilization of a power splitting method in EMS subsystem lies in the
concept of proper power sharing toward improving the efficiency and control robustness. In this regard, a
low pass filter (LPF) strategy can be used to optimize the power sharing control variable t and satisfy the
objectives. The utilization of a LPF decides on sharing power between the supplying sources to satisfy the
requested power. It uses a transfer function and filters out the high frequency elements of the input and passes
the low frequency ones leading to a slowly varying output. To share the demand power between the ICE and
the battery, the filtered component of the power passes to be supplied by the ICE while its difference with
the total demand will be supplied by the battery subsystem considering the downstream losses. One should
consider that the output ICE power needs to be varying slowly enough to avoid experiencing abrupt changes
in an operating engine. Here the standard transfer function of the LPF used in the energy management
subsystem is:

— (13)
7.5+1

LPF

where the LPF denominator t plays a crucial role as the control variable which can be found based on an
optimization routine to have the control objectives satisfied.

5 Optimization algorithm and incorporation to the model

Genetic Algorithms (GA) work based on the evolutionary process concept of natural selection of Darwin’s
theory. This theory proposes that only the fittest populations can produce offspring through the natural
selection and survive while the unsuitable population will be eliminated. The same concept can be conducted
into mathematical optimization where during the processes like crossover, mutation and natural selection, the
good design points can be selected while neglecting the bad ones toward finding the objective function
solution (survival of the fittest) [29]. The design constraint can be defined separately or be integrated into the
objective functions as penalties [13]. The design parameter here is the control decision variable of LPF
strategy and the vehicle modelled in Simulink® is incorporated into a MATLAB-based GA. The GA
iteratively works with the simulation model for the optimization process. The GA considers the decision
variable as the input chromosome besides the minimum and maximum values of the constraints to minimize
the fuel consumption. The interrelations of the modelling and optimization process is illustrated in Fig. 8.
The optimization algorithm searches to minimize the fuel consumption while satisfying the EMS constraints:
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min(Fuel) = min J :minjm—fdt (14)

o P
| SoC, —SoC, |« &, (15)
SoC,;, —& < SoC(t) < SoC,,, +& (16)
C_Rate(t)> g (17)

Regarding the first SoC constraint, (15) indicates the charge sustaining requirement of the HEVs, and (16)
shows the allowable limits of the SoC over the total driving cycle considered for the optimization. As can be
observed, the constraint in the inequality (15) is reformulated from the typical charge sustaining equality
constrain SoC, = SoC; so that the difference between the final SoC and the initial SoC, namely ASOC,

stays within a small feasible bound &, in the optimization process. The &, can be selected and altered by
the user for hardening/softening the constraint. The C _Rate(t) battery limitation must be defined based on

battery specifications to avoid sudden charges, to avoid fast aging of the battery pack, and to improve
battery’s lifetime and performance where the negative sign stands for discharging here. It is notable that
constraints must be incorporated into the objective function as penalties to penalize the cost via adding a big
enough penalty value when a constraint is violated. This technique is useful to consider the inequality
constraints which cannot be directly involved in the optimization formulations to lead us to feasible solutions
without violating the constraints.

Define HEV model
parameters + GA

parameters + constraints

‘\_m-é\i- Do
—Te— @ ©

simulink

MATLAB

Stopping criteria reached

Figure8: Coordination of the optimization algorithm and the model

6 Discussion and results

Optimization and simulations are performed on NEDC driving cycle and the results are provided in this
section. As discussed in the previous sections, the optimized EMS must satisfy the objectives while
minimizing the fuel consumption. Regarding the battery limitation constraint, the C_Rate(t) must not

violate its limitation value . Hence, f# value of -3 based on LiFePO4 battery chemistry specifications and

a small enough value of &,= 0.3% for achieving close values of the initial and final SoC are introduced to

the algorithm. For the SoC range, values of 70% for the minimum and 80% for the maximum are considered
in the optimization while having 80% as the initial SoC. After performing the optimization, the model is
exposed to the optimized EMS to obtain the power distribution, SoC and C _ Rate(t) results for the examined
driving cycle. As illustrated in Fig. 9, the employed strategy considers the requested load to supply the
demand via variable engine and battery power shares while maintaining the battery SoC for achieving close
values of initial and final battery SoC. In addition, the allowable C _ Rate(t) < —3 limitation is satisfied while
having the SoC fluctuating in the desired window range (70%-80%). This ensures avoiding
overcharge/discharge the battery beyond the safe design range toward having an extensive life time.

For the optimized EMS case study, Fig. 10 plots the results obtained for the fuel consumption (in litre) versus
the changes of the ICE power over one driving cycle. As can be observed, there would be no changes in the
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fuel consumption profile while the ICE turns off to save the fuel consumption. On the other hand, the fuel
consumption increases over the cycle while the ICE operates in its operating points.

As already discussed, the denominator of LPF, T, plays a key role as the decision variable in the considered
EMS. Two trial and error non-optimized case studies are simulated using the same vehicle model to compare
the results to the optimized EMS. The results indicate that the optimization algorithm has successfully
weeded out the non-optimized cases via finding the appropriate denominator value sissifying the objectives.
Fig. 11 illustrates the SoC profiles of the considered non-optimized versus the obtained optimized EMS case
studies. It can be observed how selecting a wrong T value (i.e. very high) affects the SoC profile whereas the
optimized case maintains the SoC in the allowable maximum and minimum range. Table 3 provides a detailed
comparison of the studied cases in terms of the EMS design goals where the optimized case outperforms
compared to the non-optimized one by satisfying all the desired objectives of the design stage. In addition,
table 4 compares the obtained average fuel consumptions (litre/100km) where the optimized EMS case
outperforms by 15% while not violating the SoC constraints compared to the non-optimized EMS case.
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Figure9: Power distribution, SoC maintenance, and C-rate results for the optimized EMS case study for one cycle
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Figure8: Fuel consumption (litre) vs. ICE power for the optimized EMS case study
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Figure9: SoC profiles for the optimized EMS vs. non-optimized case studies
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Table3: Comparison of the EMS control objective satisfaction

Considered features Non-;};f[i;nized Op ;:iﬁi;ed
| ASoC |< 0.3% x v
70% <SoC< 80% X v
Driving power needs v v
C _Rate(t) <-3 x v
All EMS objectives x v
satisfied?

Table4: Comparison of the average fuel consumption (litre/100 km)

Obijectives Before optimization ~After Optimization
Fuel Consumption (litre/100 km) 6.10 5.15
Fuel consumption improvement (%) 15

7 Conclusions and future work directions

The present study proposed an EMS incorporating OB and RB approaches for a passenger HEV equipped
with an EVT system. First the vehicle was modelled in components level and the proposed EMS was
integrated into a GA-based algorithm for EMS optimization purpose. The power distribution and SoC results
were obtained through the optimization and simulation procedures while considering battery limitations and
EMS objectives. The results concluded that the proposed EMS could improve fuel consumption by 15%
while maintaining the SoC in a desired range and not violating the battery charging limitations compared to
the non-optimized case study. The integration of the EMS optimization into components optimal sizing merits
investigations as a future work direction of the present research. It can investigate possible improvements in
fuel consumption besides drivetrain cost reductions for the EVT-based HEV topology. In addition, the
developed EMS paves the path for its real-time implementation in hardware-in-loop tests for validation
purpose and consequently utilization in real-world applications.
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