
METHODS
1. We perform computationally-expensive and

accurate simulations of a set of electric
motors (EMs) by scaling them in axial (kAx)
and radial (kRad) direction (Fig. 3).

2. Based on those samples, we derive convex
surrogate models that predict the EM limits
and the losses (Fig. 4) for the design space.

3. We include this surrogate model in a vehicle
powertrain model to jointly solve the
energy-optimal design and operation
problem in a rapid and accurate fashion.

RESULTS
Owing to the preserved convex problem
structure, our design and control solution is
guaranteed to be globally optimal w.r.t. our
models (Fig. 5), whilst being accurate.

OUTLOOK
Improve the quality of our surrogate model by
iteratively taking more high-fidelity samples:
trade-off between exploration and exploitation.
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INTRODUCTION
In order to solve the joint design and control
problem of electric powertrains, we need
scalable models of the components.

However:
Simplified low-fidelity scalable models are
not precise enough (Fig. 2).
Accurate model evaluations (FE, Fig. 3) are
high-fidelity but computationally expensive
and therefore not amenable to optimization.

Can we combine the strengths of these two
levels of model fidelity into one model?

Fig. 5: Optimal predicted and validated EM map
(with scaling factors kAx = 0.91 and kRad = 1.15).

Fig. 3: The radial and axial scaling factors (kRad
and kAx, respectively), illustrated on an optimized
referent electric motor design, along with a FE
magnetic flux density solution.

Fig. 1: Decomposition of the powertrain system.

Fig. 2: Linear scaling of an electric motor.

Fig. 4: The EM surrogate model limit predictions
(left) and loss errors (right).
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