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Abstract

The transportation sector is a major source of greenhouse gas (GHG) emissions. Shared
autonomous electric vehicles (SAEVs) have the potential to mitigate emissions, but the effect can
be highly dependent on the growth and operation of the SAEV fleet as well as its interaction with
the evolving power system. In this study, we simulate travel and charging behaviors of SAEVs
based on empirical data of ride-hail service operations, and integrate SAEV charging with the Grid
Optimized Operation Dispatch (GOOD) model, taking into account the expansion of renewable
generation and charger capacity over time. Emissions from SAEVs are compared across different
market adoption levels, occupancy rates, and charging strategies. We find that SAEVs are generally
more than 6 times less carbon intensive than modern day ICVs on a per mile basis. The extent of
aligning charging schedule with renewable generation is an essential determinant of the economic
and emission savings from an SAEV fleet. At higher levels of renewable penetration, synergizing
SAEV charging with grid operation can be the most impactful means to reduce emissions from an
SAEV fleet, generating up to 95% less emissions than other charging strategies. We also examine
the introduction of a carbon tax and find that it can further amplify the advantage of smart
charging by approximately 1.5 times in the cost-effectiveness of emission mitigation.
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