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Figure 1. Global vehicle stock, distance traveled, and life-cycle road transport greenhouse gas Int. Counc. Clean Transp (2017).

emissions by vehicle type in 2015.
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Motivation
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Source: Roe, Charlotte, et al. "Immersion cooling for lithium-ion )
batteries—A review." Journal of Power Sources 525 (2022): 231094. Heating strategy
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Scope
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Which installed cooling power and cooling threshold result in the lowest system cost?
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Load profile: truck simulation
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Load profile: truck mobility pattern
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Temperature profile of Munich
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Battery simulation
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< ; Simulation steps are repeated until EOL condition of the battery is reached
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Thermal model
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Cost model

m Annual battery depreciation
Annual cooling system depreciation
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Results simulation 1-week
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Results simulation 1-year
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Results: Max. & avg. cell temperature
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Results: Homogeneity and battery life
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Results: Battery & BTMS depreciation
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Results: Energy costs & TCO
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Conclusions

1. The optimal installed cooling power is 85% lower than peak ohmic losses
2. The optimal cooling threshold matches the lower limit of the aging model’s validity

3. The cooling threshold (strategy) has a larger impact than the installed cooling power
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Future work

Aging model:

- Semi-empirical aging models at temperatures below 25 °C

- Semi-empirical aging models of cells charged with more than 1C
- Path dependency of aging behavior

Thermal model:
- Simulation of multiple cells per pack

- Cooling system energy consumption dependent on humidity & temperature difference to
ambient
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