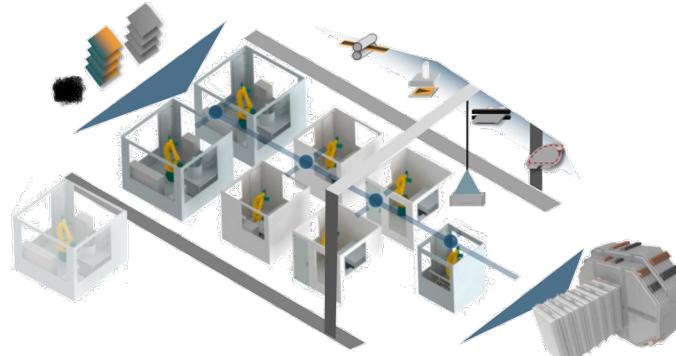

# A Methodology for Application-Specific Concept Definition of Battery Systems Using Pouch Cells Produced in Flexible Format

EVS Oslo – 35. Electric Vehicle Symposium

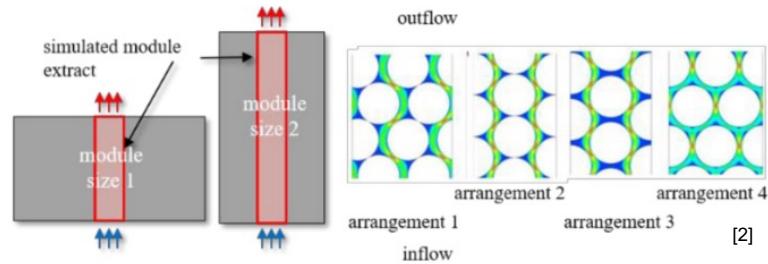

Philip Müller-Welt, Konstantin Nowoseltschenko, Katharina Bause, Albert Albers



- Battery systems currently consist of multiple **cells produced in standardized formats and high quantities**.
- Cell arrangement **possibilities are limited** by cell format resulting in unused installation space.
- Variable cell format offers **potential benefits for usage of available installation** space.



# Research Objective

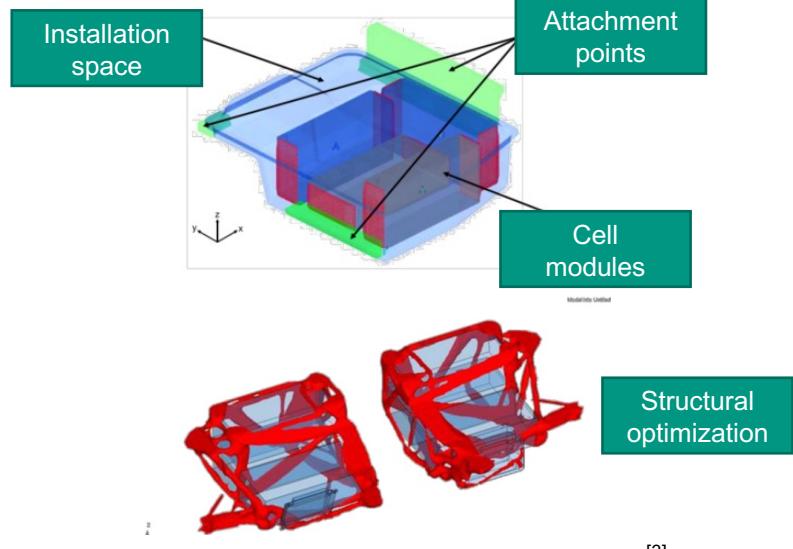



- Parallel development of product and production system<sup>1</sup>
  - Battery system **development based on flexibility in pouch cell production.**
  - **Optimization** of battery system properties by usage of potential of **new degrees of freedom** .

Methodology for development of battery systems using format flexible cells needed.

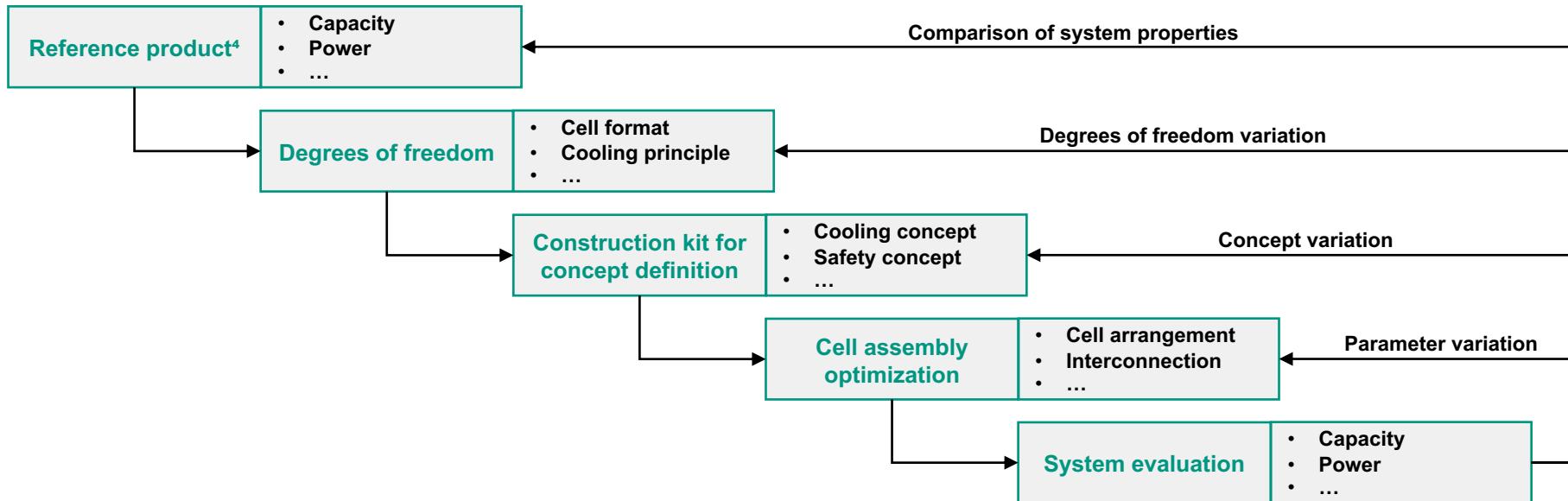
<sup>1</sup>J. Ruhland et al., "Development of a Parallel Product-Production Co-design for an Agile Battery Cell Production System," in Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems, A.-L. Andersen et al., Eds., Cham: Springer International Publishing, 2022, pp. 96–104

- Choice of cell format and subsequent development of modules and entire battery pack.
- Definition of cell amount and interconnection based on system requirements.
- Existing approaches for arrangement optimization regarding vehicle properties, cooling performance, structural properties.




<sup>2</sup>Eisele et al., "Evaluation of a validation process for a battery cooling system" presented at International Electric Vehicle Symposium, 2018

- **Choice of cell format and subsequent development** of modules and entire battery pack.
- Definition of cell amount and interconnection based on system requirements.
- Existing **approaches for arrangement optimization** regarding vehicle properties, cooling performance, structural properties.




Currently no approaches investigating and using the potential of format-flexibly produced pouch cells under consideration of multi-domain dependencies.



[3]

# Research Approach



<sup>4</sup>A. Albers, S. Rapp, N. Heitger, F. Wattenberg, and N. Bursac, "Reference Products in PGE – Product Generation Engineering: Analyzing Challenges Based on the System Hierarchy," *Procedia CIRP*, vol. 70, pp. 469–474, 2018.

# Research Approach

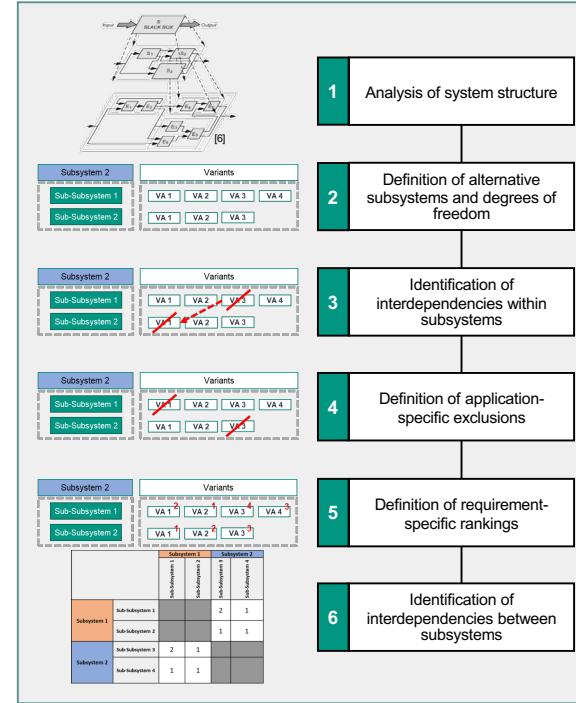
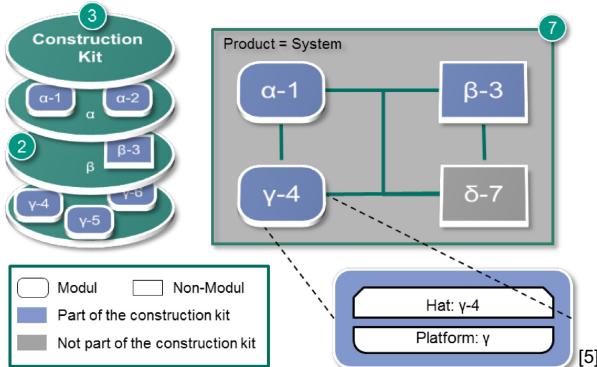
## Challenges caused by format flexibility

- Increased **solution space** in development process due to **new degrees of freedom**.
- **Interactions** between mechanical, electrical and thermal domain during **optimization process**.
- Multiple **interdependencies between subsystems** of battery system.



Approach for **management of complexity and solution diversity** required

# Research Approach

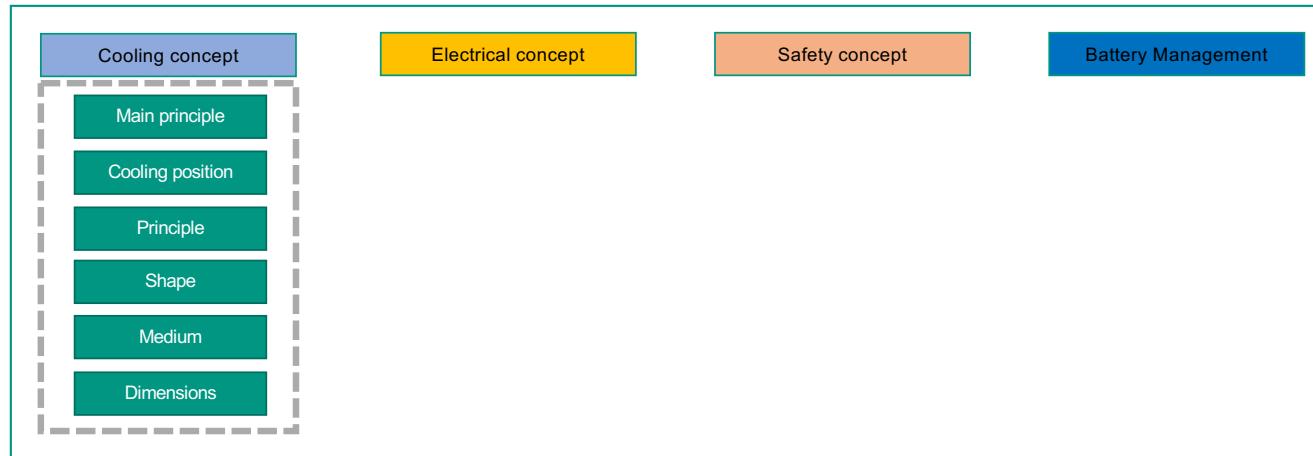


## Definition of concepts and degrees of freedom

- Aim is to achieve a **defined set of concepts** with their individual subsystems and **according degrees of freedom**.
- Each **concept** can be **used for further optimization steps** and evaluated based on the resulting battery system characteristics.

| Concept definition | Subsystem                                        | Degree of freedom | Values         |
|--------------------|--------------------------------------------------|-------------------|----------------|
| Concept 1          | Thermal barriers between modules                 | Length/width      | [min – max] mm |
|                    |                                                  | Thickness         | t1, t2, t3 mm  |
|                    | Liquid cooling plates within modules             | Length/width      | [min – max] mm |
|                    |                                                  | Thickness         | t1, t2, t3 mm  |
| Concept 2          | No Thermal barriers                              | -                 | -              |
|                    |                                                  | -                 | -              |
|                    | Liquid cooling plate at installation space floor | -                 | -              |
|                    |                                                  | Thickness         | t1, t2 mm      |

# Construction kit development for concept definition

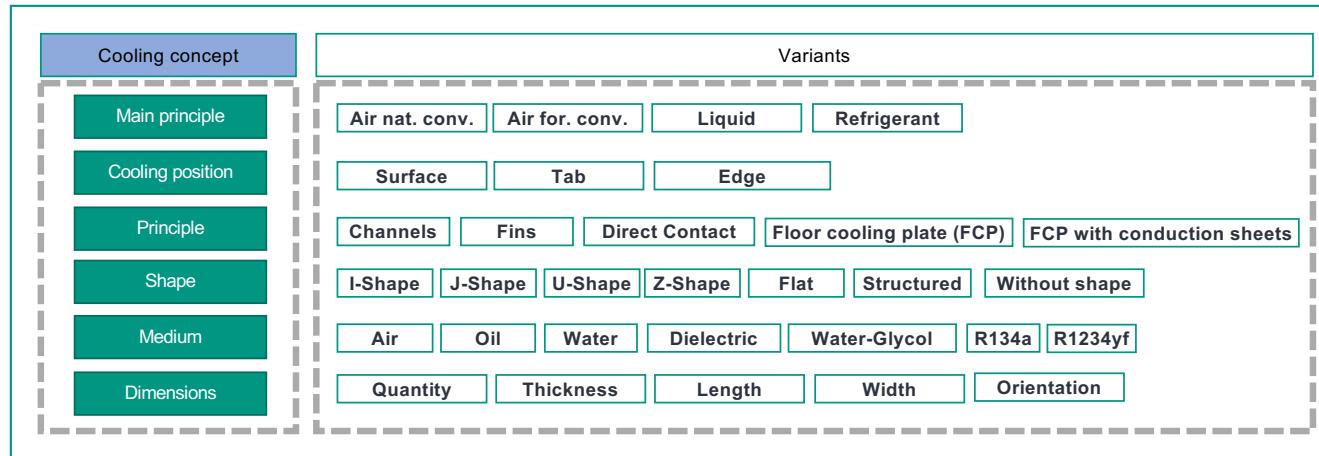
- A construction kit is the **set of all technical subsystems** that follow the associated construction kit rules, with the **aim of being able to configure technical systems** from these subsystems, each with a different set of functions.




<sup>6</sup>N. Bursac, Model Based Systems Engineering zur Unterstützung der Baukastenentwicklung im Kontext der Frühen Phase der Produktgenerationsentwicklung. Dissertation. Karlsruhe: IPEK – Institut für Produktentwicklung am Karlsruher Institut für Technologie (KIT), 2016.

# Construction kit development for concept definition

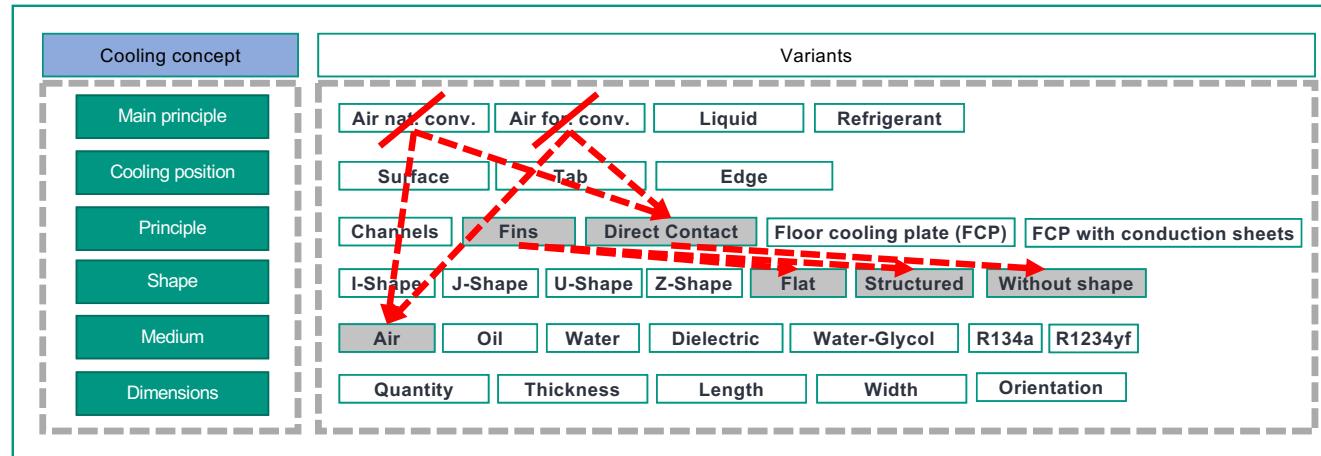
## Definition of alternative subsystems and degrees of freedom


- The **construction kit structure** and its subsystems are based on a battery system structure.
- For each of the main subsystems **potential variants** are identified based on **reference products and the defined degrees of freedom**.



# Construction kit development for concept definition

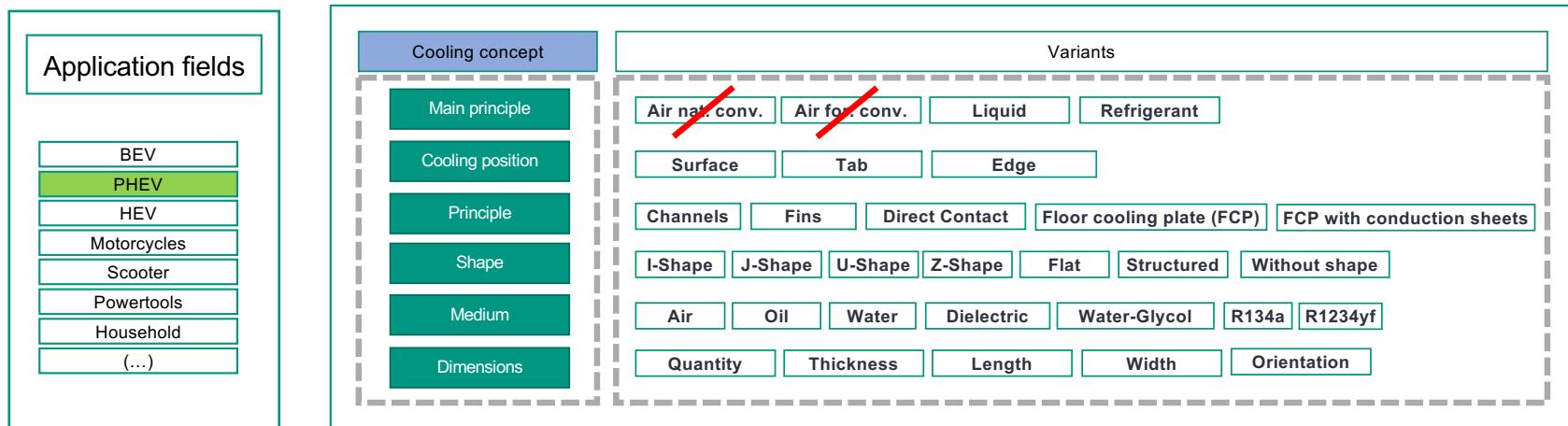
## Definition of alternative subsystems and degrees of freedom


- Based on subcategories in each subsystem **variants are defined** which are supposed to be part of the **construction kit subsystems**.
- All variants are **alternative principle solutions**, that can be selected **based on an specific application case**.



# Construction kit development for concept definition

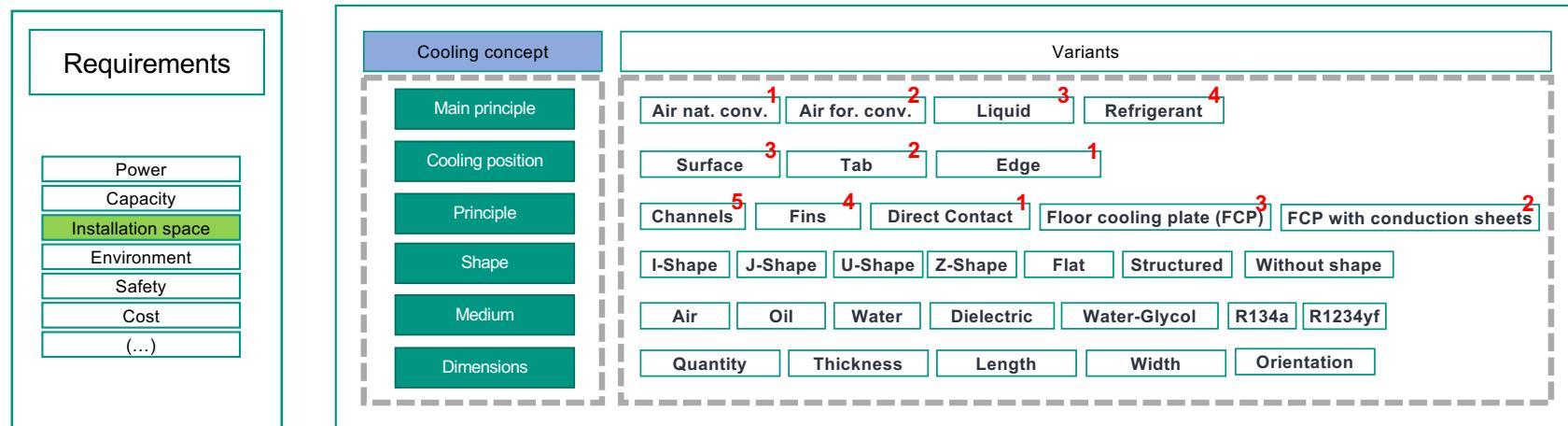
## Identification of interdependencies within subsystems


- There are potential **interdependencies** within the subsystems that **might exclude some combinations** of principle solutions.
- Within the construction kit rules all **combinations of principle solutions that exclude each other** are defined.



# Construction kit development for concept definition

## Application based exclusion of variants


- For an **initial restriction of possible principle solutions** within the construction kit individual subsystems are excluded **based on a defined application scenario**.
- Subsystems that are **not technically feasible** within an application case **are excluded** based on a set of rules of the construction kit.



# Construction kit development for concept definition

## Requirement based selection of variants

- For **further selection of suitable principle solutions** within the construction kit individual subsystems are compared **based on a defined preferred requirement**.
- An evaluation and ranking of all variants is conducted based on preferred requirements to define an **order in the selection of subsystems** of the construction kit.



# Construction kit development for concept definition

## Identification of interdependencies between subsystems

- Dependencies between all variants of the subsystems are evaluated on the basis of their mutual compatibility.
- Rating as:
  - Freely compatible (2)
  - Conditionally compatible (1)
  - Not compatible (0)
- Serves for an exclusion of combinations of subsystems and quick identification of conditions to be observed.

|                 |                            | Safety concept    |   |                  |   | Cooling concept  |   |           |   |
|-----------------|----------------------------|-------------------|---|------------------|---|------------------|---|-----------|---|
|                 |                            | Housing isolation |   | Thermal barriers |   | Cooling position |   | Principle |   |
| Safety concept  | No isolation               | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Mica sheet                 | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Mica composite             | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Smart Materials            | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | No isolation               | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Mica sheet                 | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Mica composite             | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Smart Materials            | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 |                            | 1                 | 2 | 1                | 1 | 2                | 2 | 1         | 1 |
| Cooling concept | Surface                    | 2                 | 2 | 2                | 2 | 1                | 1 | 1         | 1 |
|                 | Tab                        | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | Edge                       | 2                 | 2 | 2                | 2 | 1                | 1 | 1         | 1 |
|                 | Channels                   | 2                 | 2 | 2                | 2 | 1                | 1 | 1         | 1 |
|                 | Fins                       | 2                 | 1 | 1                | 1 | 2                | 2 | 2         | 2 |
|                 | Direct contact             | 2                 | 2 | 2                | 2 | 2                | 2 | 2         | 2 |
|                 | FCP with conduction sheets | 2                 | 2 | 2                | 2 | 1                | 1 | 1         | 1 |
|                 | Floor cooling plate (FCP)  | 2                 | 2 | 2                | 2 | 1                | 1 | 1         | 1 |
|                 |                            | 1                 | 2 | 1                | 1 | 2                | 2 | 1         | 1 |

# Construction kit development for concept definition

## Application of construction kit

- By selecting a **target application**, previously **defined exclusions of individual subsystems** can be determined automatically.
- Combinations of these subsystems are thus **excluded as an possible output** of the construction kit.

|                 |                   | Safety concept   |                            | Housing isolation |            |                |                 | Thermal barriers |            |                |                 | Thermal concept |   |  |
|-----------------|-------------------|------------------|----------------------------|-------------------|------------|----------------|-----------------|------------------|------------|----------------|-----------------|-----------------|---|--|
|                 |                   |                  |                            | No isolation      | Mica sheet | Mica composite | Smart Materials | No isolation     | Mica sheet | Mica composite | Smart Materials |                 |   |  |
| Safety concept  | Housing isolation | No isolation     | 2                          | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   | Mica sheet       | 2                          | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   | Mica composite   | 2                          | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   | Smart Materials  | 2                          | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 | Thermal barriers  | No barrier       | 2                          | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   | Mica sheet       | 1                          | 2                 | 1          | 2              | 1               | 2                | 1          | 2              | 1               | 2               | 1 |  |
|                 |                   | Mica composite   | 1                          | 2                 | 1          | 2              | 1               | 2                | 1          | 2              | 1               | 2               | 1 |  |
|                 |                   | Smart Materials  | 1                          | 2                 | 1          | 2              | 1               | 2                | 1          | 2              | 1               | 2               | 1 |  |
| Cooling concept |                   | Cooling position | Surface                    | 2                 | 2          | 2              | 2               | 2                | 1          | 1              | 1               | 2               | 2 |  |
|                 |                   |                  | Tab                        | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   |                  | Edge                       | 2                 | 2          | 2              | 2               | 2                | 1          | 1              | 1               | 2               | 2 |  |
|                 |                   |                  | Channels                   | 2                 | 2          | 2              | 2               | 2                | 1          | 1              | 1               | 2               | 2 |  |
|                 |                   | Principle        | Fins                       | 2                 | 1          | 1              | 1               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   |                  | Direct contact             | 2                 | 2          | 2              | 2               | 2                | 2          | 2              | 2               | 2               | 2 |  |
|                 |                   |                  | FCP with conduction sheets | 2                 | 2          | 2              | 2               | 2                | 1          | 1              | 1               | 2               | 2 |  |
|                 |                   |                  | Floor cooling plate (FCP)  | 2                 | 2          | 2              | 2               | 2                | 1          | 1              | 1               | 2               | 2 |  |

# Construction kit development for concept definition

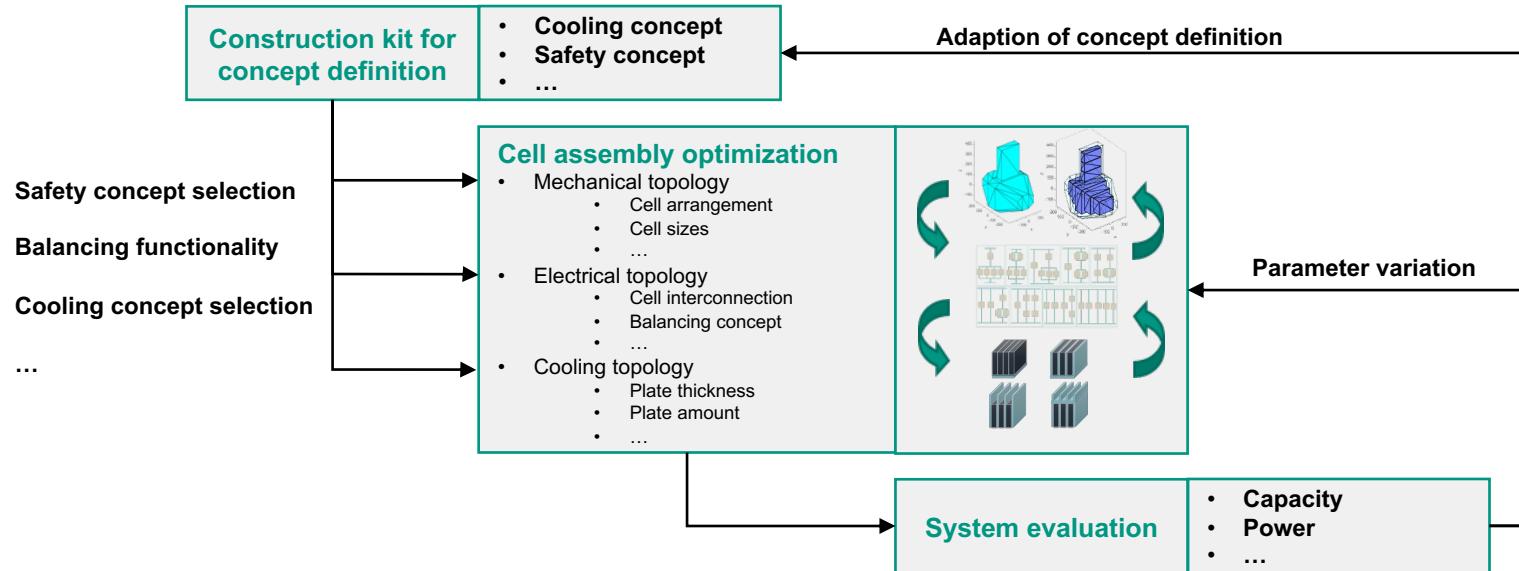
## Application of construction kit

- By selecting a preferred **requirement**, previously **defined suitable subsystems** can be determined automatically.
- **Combinations** of these subsystems are given as an output of the construction kit and serve as **basis for further design steps**.
- **Depending on selections** during usage of the construction kit **multiple possible combinations** of subsystems can be considered.

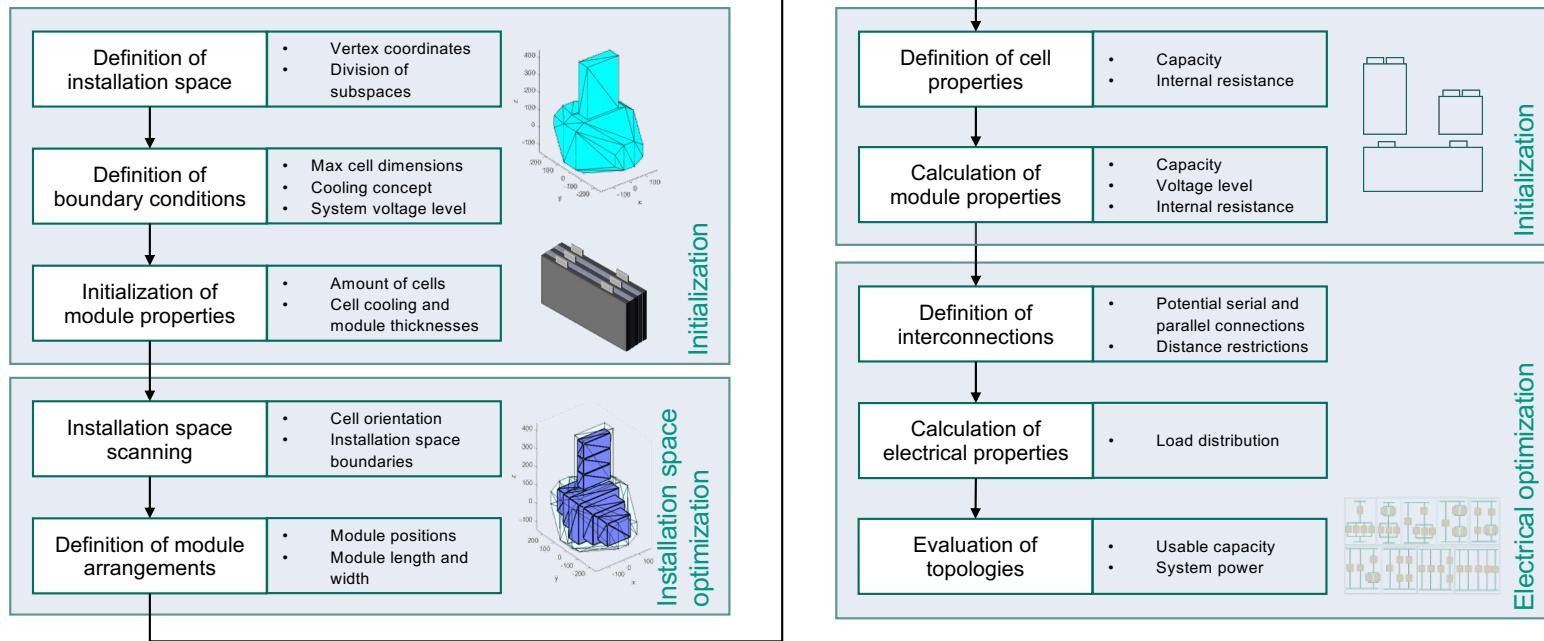
|                 |                   | Safety concept    |                  |  | Cooling concept            |           |   |
|-----------------|-------------------|-------------------|------------------|--|----------------------------|-----------|---|
|                 |                   | Housing isolation | Thermal barriers |  | Cooling position           | Principle |   |
| Safety concept  | Housing isolation | No isolation      |                  |  | Surface                    |           |   |
|                 | Housing isolation | Mica sheet        |                  |  | Tab                        |           |   |
|                 | Housing isolation | Mica composite    |                  |  | Edge                       |           |   |
|                 | Housing isolation | Smart Materials   |                  |  | Channels                   |           |   |
|                 | Thermal barriers  | No barrier        |                  |  | Fins                       |           |   |
|                 | Thermal barriers  | Mica sheet        |                  |  | Direct contact             |           |   |
| Cooling concept | Housing isolation | Mica composite    |                  |  | FCP with conduction sheets |           |   |
|                 | Housing isolation | Smart Materials   |                  |  | Floor cooling plate (FCP)  |           |   |
|                 | Cooling position  | No isolation      |                  |  | 2                          | 2         | 2 |
|                 | Cooling position  | Mica sheet        |                  |  | 2                          | 2         | 2 |
|                 | Cooling position  | Mica composite    |                  |  | 2                          | 2         | 2 |
|                 | Cooling position  | Smart Materials   |                  |  | 2                          | 2         | 2 |
|                 | Principle         | No barrier        |                  |  | 2                          | 2         | 2 |
|                 | Principle         | Mica sheet        |                  |  | 2                          | 2         | 2 |

# Construction kit development for concept definition

## Output of construction kit


- Based on **input of the developer** a defined amount of possible **battery system concepts** is generated.
- Each concept consists of **individual subsystems and possible degrees of freedom** for further optimization steps.

| Concept definition | Subsystem                                        | Degree of freedom | Values         |
|--------------------|--------------------------------------------------|-------------------|----------------|
| Concept 1          | Thermal barriers between modules                 | Length/width      | [min – max] mm |
|                    |                                                  | Thickness         | 0.5, 1, 1.5 mm |
|                    | Liquid cooling plates within modules             | Length/width      | [50 – 350] mm  |
|                    |                                                  | Thickness         | 2, 2.5, 3 mm   |
| Concept 2          | No Thermal barriers                              | -                 | -              |
|                    |                                                  | -                 | -              |
|                    | Liquid cooling plate at installation space floor | -                 | -              |
|                    |                                                  | Thickness         | 10, 15 mm      |


■  
■  
■

# Research Approach

## Further optimization steps based on concept definition



# Methodology for Battery System Optimization



<sup>6</sup>P. Müller-Welt, K. Nowoselschenko, C. Garot, K. Bause, and A. Albers, "Automated Optimization of a Cell Assembly Using Format-Flexibly Produced Pouch Cells," in 22. Internationales Stuttgarter Symposium, M. Bargende, H.-C. Reuss, and A. Wagner, Eds., Wiesbaden: Springer Fachmedien Wiesbaden, 2022, pp. 569–581.

# Conclusion and Outlook

## Conclusion

- The presented **methodology** offers a possibility **for the definition of battery system concepts for different application cases** using format flexible pouch cells in an early stage of product generation development.
- In combination with **further optimization steps** developers can use this method to **automatically generate and evaluate battery system configurations** with format flexible cells.

# Conclusion and Outlook

## Outlook

- **Combined consideration** of electrical, thermal, mechanical and safety aspects **in cell assembly optimization** for an overall **evaluation of benefits** of format flexible pouch cells.
- Extension of procedure to **other cell formats** such as triangular or trapezoidal cells, which would additionally enable even **better use of the installation space**.

# Thank you for your attention!

The authors would like to thank the Ministry of Science, Research and the Arts of the State of Baden-Württemberg (MWK) for financial support of the project "AgiloBat" within the Innovation Campus Mobility of the Future (ICM).



Baden-Württemberg

MINISTERIUM FÜR WISSENSCHAFT, FORSCHUNG UND KUNST

**Philip Müller-Welt, M.Sc.**  
Tel.: [+49 721 608 47254](tel:+4972160847254)  
Fax: +49 721 608 45752  
[philip.mueller-welt@kit.edu](mailto:philip.mueller-welt@kit.edu)