

# Fuel-Fired Heaters in ZE Transit Buses

Katrina Sutton  
CALSTART  
June 2022

# Over 300 Members

# WHAT IS A FUEL-FIRED HEATER?

- CARB definition: “a fuel burning device that creates heat for the purpose of warming the passenger compartment of a vehicle but does not contribute to the propulsion of the vehicle.”
- BEBs – off-board heating demand
- FFH (red) & Fuel tank 11gal/42L (yellow)
- Transit buses with FFH are not considered zero-emission in California
  - Cannot receive incentive funding
  - New York incentive program allows buses with FFH

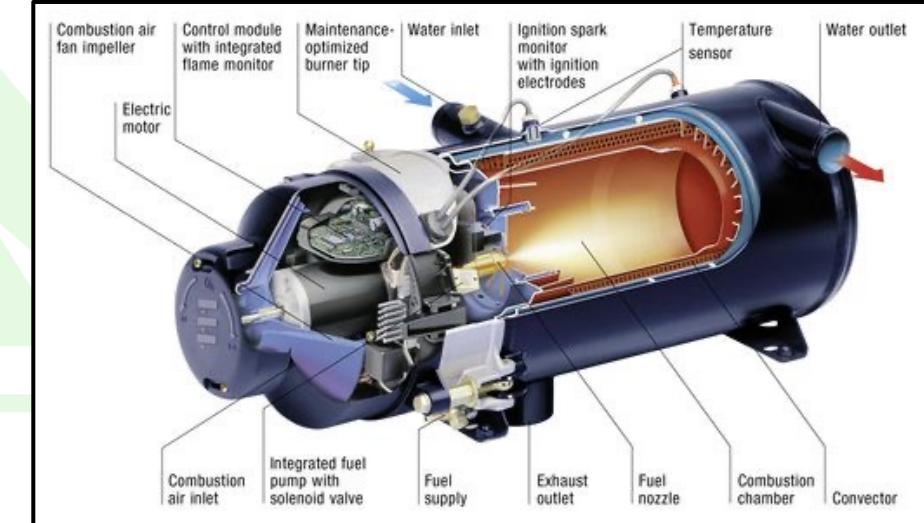



Image Credit: Eberspaecher



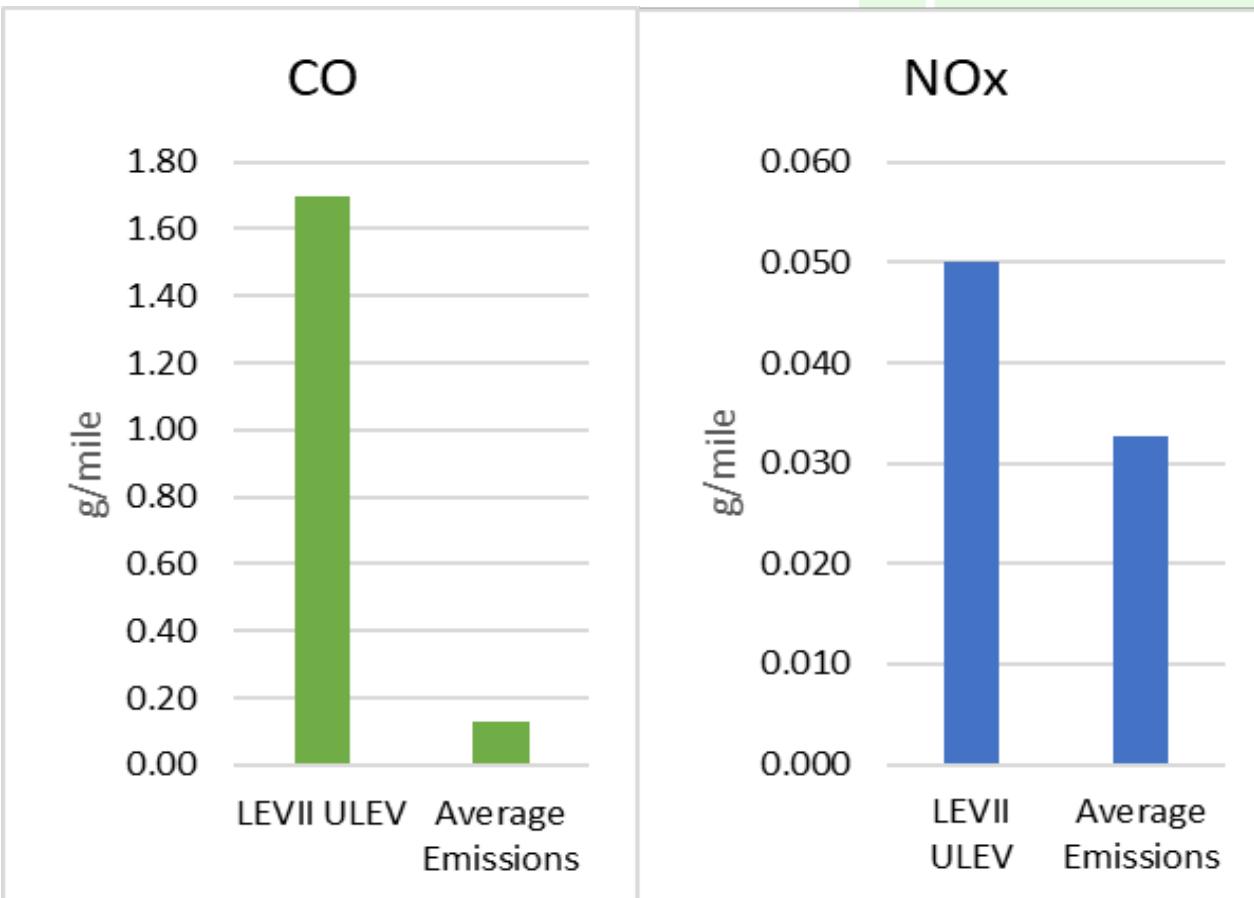
# FFH MANUFACTURERS

| FFH Heater Manufacturer                | Valeo                                                                                                                                                                                                       | Proheat                                                                                                            | Eberspaecher                                                                                                               |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>Bus OEM(s)</b>                      | BYD, New Flyer, Nova Bus                                                                                                                                                                                    | New Flyer                                                                                                          | Proterra                                                                                                                   |
| <b>Model(s)</b>                        | Spheros Thermo (230/300/350)                                                                                                                                                                                | Proheat: X30                                                                                                       | Hydronic L30                                                                                                               |
| <b>Example of Transit Agency Usage</b> | <ul style="list-style-type: none"> <li>Link Transit – Washington State</li> <li>Metro Transit – Minneapolis/St. Paul</li> <li>Utah Transit Authority (UTA) - Salt Lake City, UT (Electric buses)</li> </ul> | <ul style="list-style-type: none"> <li>Utah Transit Authority (UTA) - Salt Lake City, UT (Diesel buses)</li> </ul> | <ul style="list-style-type: none"> <li>Chicago Transit Authority (CTA) – Chicago</li> <li>Washoe RTC – Reno, NV</li> </ul> |
| <b>Fuel Consumption</b>                | <ul style="list-style-type: none"> <li>Thermo 230: .79 g/h</li> <li>Thermo 300: 1.05 g/h</li> <li>Thermo 350: 1.18 g/h</li> </ul>                                                                           | 0.1 – 0.31 gal/hr                                                                                                  | 0.96 gal/hr                                                                                                                |
| <b>Heat Output</b>                     | <ul style="list-style-type: none"> <li>Thermo 230: 23 kW</li> <li>Thermo 300: 30 kW</li> <li>Thermo 350: 35 kW</li> </ul>                                                                                   | 2.9 – 9.1 kW                                                                                                       | 30 kW                                                                                                                      |



# CA AIR RESOURCES BOARD EMISSION STANDARDS

- Current Emission requirements on FFHs for heavy-duty diesel engine vehicles school buses and Class 8 sleeper trucks follow LDV vehicle standards:


- **ULEV**

- **NMOG (g/mi) – 0.040**
- **CO (g/mi) – 1.7**
- **NOx (g/mi) – 0.05**
- **Formaldehyde (mg/mi) – 8**

| LEV II Exhaust Mass Emission Standards for New 2004 through 2019 Model LEVs, ULEVs, and SULEVs in the Passenger Car, Light-Duty Truck and Medium-Duty Vehicle Classes |                               |                           |             |                        |                           |                      |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-------------|------------------------|---------------------------|----------------------|---------------------|
| Vehicle Type                                                                                                                                                          | Durability Vehicle Basis (mi) | Vehicle Emission Category | NMOG (g/mi) | Carbon Monoxide (g/mi) | Oxides of Nitrogen (g/mi) | Formaldehyde (mg/mi) | Particulates (g/mi) |
| All PCs; LDTs 8500 lbs. GVWR or less                                                                                                                                  | 50,000                        | LEV                       | 0.075       | 3.4                    | 0.05                      | 15                   | n/a                 |
|                                                                                                                                                                       |                               | LEV, Option 1             | 0.075       | 3.4                    | 0.07                      | 15                   | n/a                 |
| Vehicles in this category are tested at their loaded                                                                                                                  |                               | ULEV                      | 0.040       | 1.7                    | 0.05                      | 8                    | n/a                 |



# CARB EMISSION COMPARISON



| (g/mi)      | NOx   | CO   | Formaldehyde | NMOG   |
|-------------|-------|------|--------------|--------|
| LEV II ULEV | 0.050 | 1.70 | 0.0080       | 0.0400 |



# UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE (UN ECE) – R122

- Regulation No 122 (Uniform technical prescriptions concerning the approval of vehicles of categories M, N and O with regard to their heating systems)

## TEST PROCEDURE FOR EXHAUST EMISSION OF COMBUSTION HEATERS

1. Operate heater for one hour at maximum output in conditions of still air (wind speed  $\leq 2$  m/s) and an ambient temperature of  $20 \pm 10$  °C. If, however, having selected the maximum output the heater switches off automatically in less than an hour, the measurements may be made before switch-off.
2. The dry and undiluted exhaust emissions, measured using an appropriate meter, shall not exceed the values indicated in the following table:

| Parameter                    | Heaters using gaseous fuels | Heaters using liquid fuel |
|------------------------------|-----------------------------|---------------------------|
| CO                           | 0,1 % vol.                  | 0,1 % vol.                |
| NO <sub>x</sub>              | 200 ppm                     | 200 ppm                   |
| HC                           | 100 ppm                     | 100 ppm                   |
| Bacharach reference unit (1) | 1                           | 4                         |

(1) Reference unit 'Bacharach' ASTM D 2156 is used.

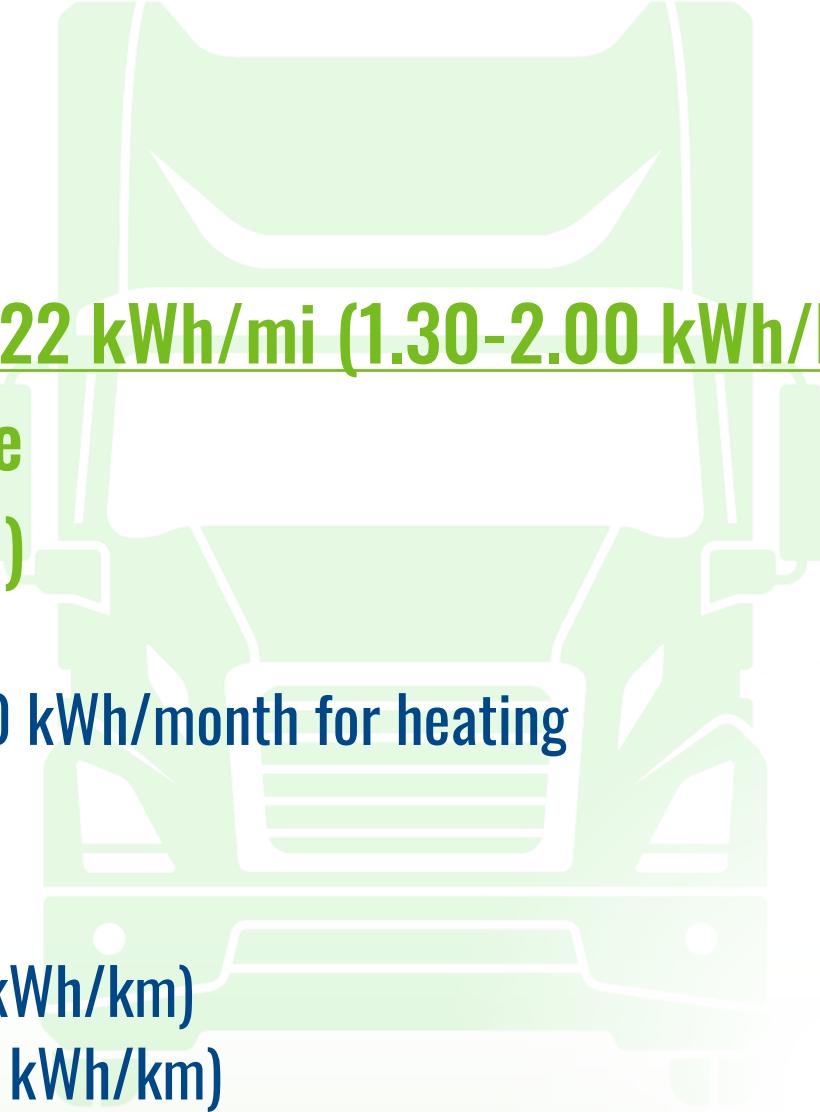
3. The test shall be repeated in conditions equivalent to a vehicle speed of 100 km/h (or maximum design speed of the vehicle in cases where the maximum speed is less than 100 km/h). Under these conditions the CO value must not exceed 0,2 % vol. If the test has been carried out on the heater as a component, then it need not be repeated in the case of the vehicle type in which the heater is installed.

CALSTART

# EMISSIONS TESTING COMPARISON

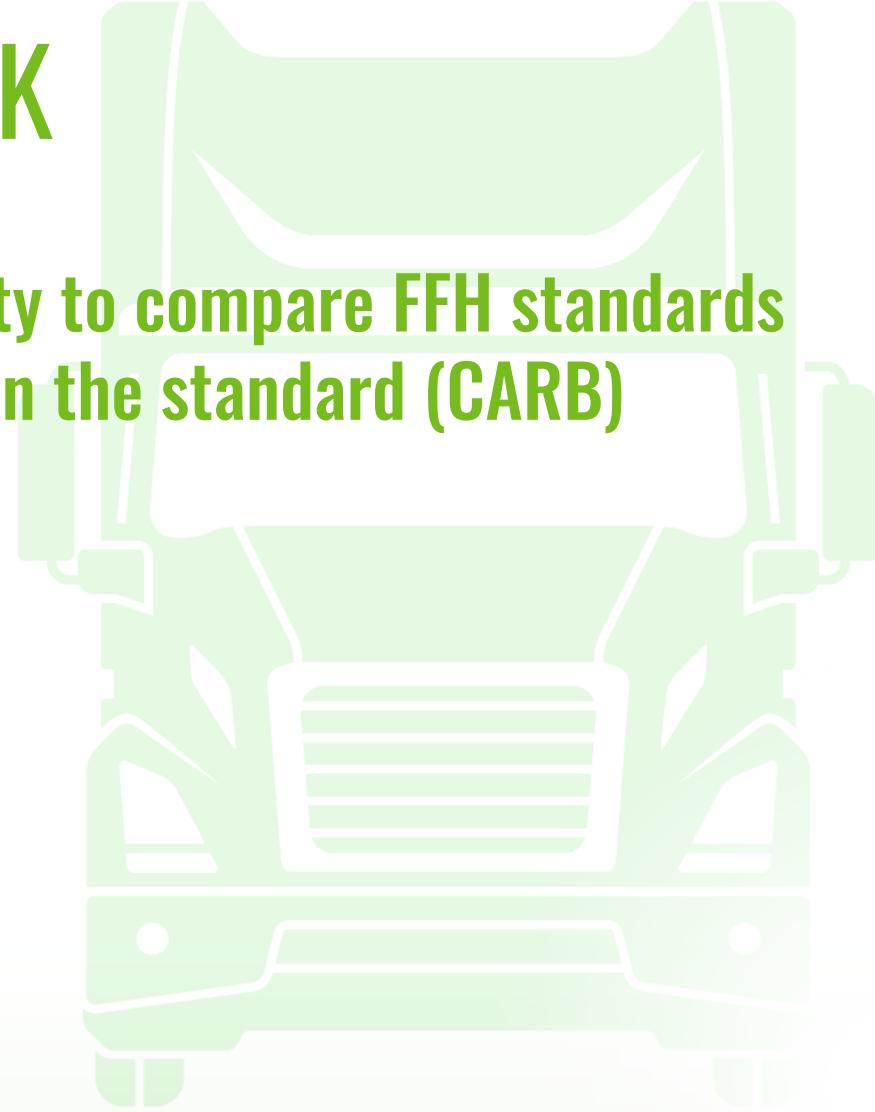
## CARB

- Maximum heating capacity with a cold start for 20 minutes
- Ambient temp: 68F - 86F (20C – 30C)
- Divide the grams of emissions by 20 → multiplied by 3.0 minutes per mile for a grams per mile value
- Units: grams/mile


## UN ECE R122

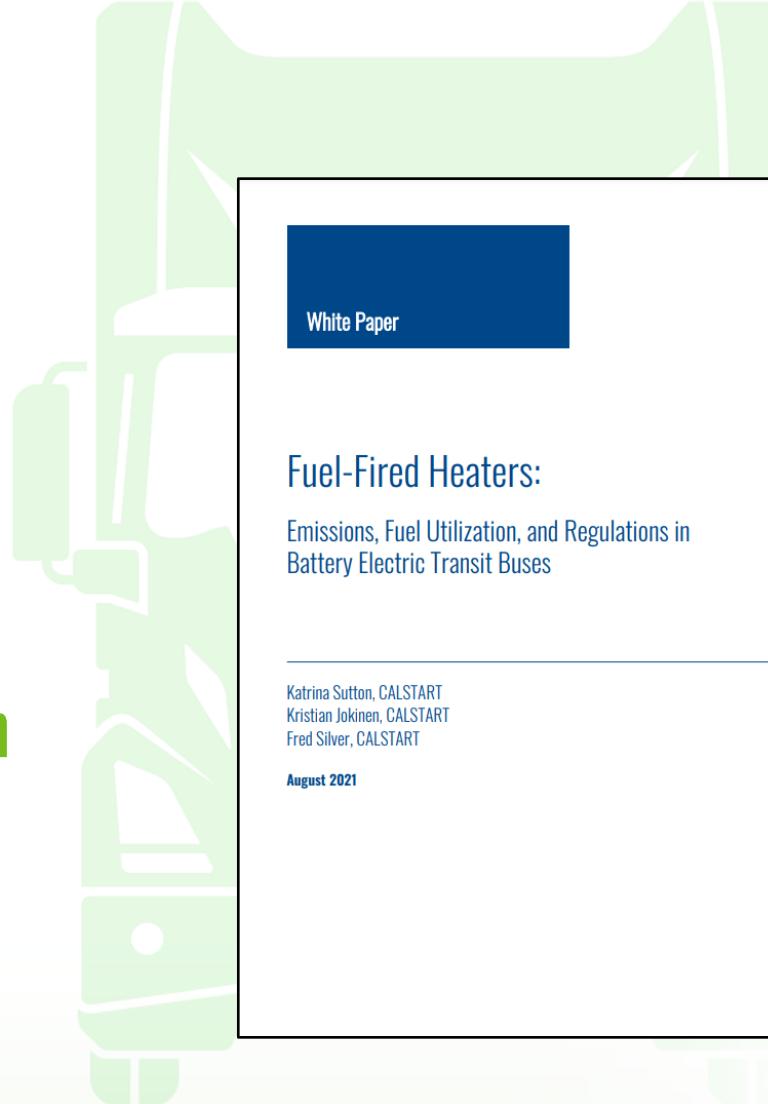
- Maximum heating output in conditions for 1 hour with still air (wind speed  $\leq$  2 m/s)
- Ambient temperature of  $20 \pm 10$ C. (58F – 78F)
- Measure the dry and undiluted exhaust emissions
- Units: ppm & bacharach (optic)




# TRANSIT AGENCY EXAMPLES

- Heating BEBs in below freezing: +2.09-3.22 kWh/mi (1.30-2.00 kWh/km)
- FFH: primary or secondary heating source
- Midwest transit agency (60ft-articulated)
  - 30 gal (114 L) diesel/bus/month for heating
  - On avg, the buses would need additional ~1800 kWh/month for heating
  - E-heater: +0.71 kWh/mi (0.44 kWh/km)
- Mountainous Transit Agency (40ft)
  - W/ FFH: heating energy: +0.08 kWh/mi (0.05 kWh/km)
  - W/O FFH: heating energy: +0.55 kWh/mi (0.34 kWh/km)




# CONCLUSION/FUTURE WORK

- CARB, EU unit mismatch created difficulty to compare FFH standards
- FFH emissions are significantly lower than the standard (CARB)
- Battery predictions
  - Cost
  - Gravimetric (wh/kg)
  - Volumetric (wh/l)
- ZE bus thermal management
  - Increased insulation
  - Driver climate zones
- Demonstration
  - Ethanol catalytic heater



# THANK YOU!

- **Author Contact Info**
  - **Katrina Sutton** – [ksutton@calstart.org](mailto:ksutton@calstart.org)
  - **Kristian Jokinen** – [kjokinen@calstart.org](mailto:kjokinen@calstart.org)
  - **Fred Silver** – [fsilver@calstart.org](mailto:fsilver@calstart.org)
- **Funding – Federal Transit Administration (US FTA)**



White Paper

## Fuel-Fired Heaters:

Emissions, Fuel Utilization, and Regulations in  
Battery Electric Transit Buses

---

Katrina Sutton, CALSTART  
Kristian Jokinen, CALSTART  
Fred Silver, CALSTART

August 2021

