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T h e  g l o b a l  C O 2  c h a l l e n g e  i s  n o t  j u s t  a b o u t  e l e c t r i c i t y  – s p o t l i g h t  o n  
t h e  t r a n s p o r t  s e c t o r  i n  G e r m a n y

2018 CO2 Emission Technological Pathways
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Breed et al. (2021): CO2 fleet regulation and the future 
market diffusion of zero-emission trucks in Europe. 
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Proposal for a Regulation of the European Parliament 
and of the Council on the deployment of alternative fuels 
infrastructure, and repealing Directive 2014/94/EU of 
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W e u s e d f i v e m a i n p r o c e s s s t e p s a n d  a  m o d u l a r  a p p r o a c h  f o r  
i m p o r t a n t  p a r a m e t e r s

Sce n a rio  
d e fin it io n M e ta -a n a lyse s Te ch n o -e co n o m ic

ca lcu la t io n s
E co n o m ic re su lts

Logical sequence

Modularity and Transferability

Based on Gnann et al. (2017), we accounted for market specific parameters – Most important: 

Annual vehicle mileage Energy prices Toll Taxes

Validation and 
sensitivity analysis
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W e c o m p a r e s i x t e c h n o l o g i e s i n  2 0 2 0 ,  2 0 3 0  a n d  2 0 5 0  v i a  T C O  w i t h
t h e i r n e t  p r e s e n t  v a l u e

TCO calculation Scenarios

𝑇𝐶𝑂 = 𝐼! − 𝑆! −
𝑅𝑉𝑇

*1 + )𝑖 " +/
#$%

"
𝑐&'()*,# + 𝑐,-.,#

*1 + )𝑖 #

c!"#$%,' = c()* + c+,#
c-,.,' = 𝑉𝐾𝑇 ∗ (𝑐/0/123 + 𝑐𝑶&𝑴 + 𝑐7899)

Abbreviations and parameter description, see appendix

Acqusition Operating costs

Vehicle purchase price, 
residual value

Energy and fuel costs, insurance
costs, maintainance and repair, 

toll, taxes

Full-cost accounting with present value
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40t tractor-trailer with 100-1,000 km range

6 technologies:

• Diesel (synthetic/ 
biogenic fuels)

• BET 

• FCET

• H2-ICE

• Natural Gas trucks

• PHET

3 timestamps:

• 2020

• 2030

• 2050

2 perspectives:

• company

• federal



© Fraunhofer 

Seite 7

A  m e t a - a n a l y s i s  f o r m a j o r c o m p o n e n t s c o s t s h e l p e d t o d e r i v e
m e a n i n g f u l c o s t p r o j e c t i o n s

Battery Costs [€2020/kW] Fuel Cell System Costs [€2020/kW]

2020 2030 2050

PEM Fuel Cell €/kW 181 99 53
2020 2030 2050

Battery €/kWh 235 139 80
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C o m p o n e n t - b a s e d p r i c e m o d e l i n g  w i t h c o m m o n v e h i c l e b o d y

Bottom-up price modelling Assumptions & Variations

Pu
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Common Vehicle
body Powertrain Total price

2020 2030 2050
DT € 115,400 123,900 134,000

GT € 137,200 140,600 143,900

PHET € 178,500 164,700 144,800

H2T (1000 km) € 252,900 208,200 164,000

FCET (1000 km) € 310,000 231,300 164,100

BET (1000 km) € 619,300 390,100 253,300

Engine

EAT
Tank

Efficiency 
Enhancement

* without trailer; company perspective => in 2020 80% reduction on purchase price of BET, 
FCET and PHET (subsidy)

n Main Assumptions

n vehicle purchase price without reduction as basis to 
calculate vehicle insurance

n toll exemption for ZEV in 2020

n energy price development follows [37]

n 6 years of service, 120,000 km/a, interest rate of 9.5 
% for all drivetrains

n Main variations for federal perspective 

n not included: vehicle purchase price reductions, toll 
exemption, cap of hydrogen & electricity prices

n annual interest rate: 4% 
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T o t a l  C o s t o f  O w n e r s h i p  C o m p a r i s o n – o p e r a t i n g  c o s t s  d o m i n a t e  a n d  
w i l l  m a k e  Z E V  a t t r a c t i v e

In the medium term, BET is the cheapest alternative (depending on battery size); 
In the long term all ZEV are cost-competitive compared to the DT
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S e n s i t i v i t i e s – W e i d e n t i f y a n n u a l m i l e a g e a s m o s t i m p o r t a n t f a c t o r ;  
1 0 0  k m  B E T  m o s t  c o s t - e f f e c t i v e  a t  a n y  a n n u a l  m i l e a g e

TCO Comparison 2030 versus annual VKT Parameter variation +-20% for 2050

Annual mileage and fuel prices have a high impact on the profitability of hydrogen vehicles compared to the vehicle purchase 
price. The 100 km BET is most cost-effective at any annual mileage. 
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F C E T ,  P H E T  a n d  B E T  w i l l  b e c o m e e c o n o m i c a l l y c o m p e t i t i v e f r o m
c o m p a n y a n d  f e d e r a l p e r s p e c t i v e

n BET is the cheapest alternative from a company 
perspective for long-haul transport

n in 2030 nearly without subsidies

n in 2050 all ZEV are cost-competitive to DT

n dependent of battery size

n From a federal perspective

n most ZEV aren‘t cost-competitive in 2030

n FCET, PHET and BET are economically competitive 
in 2050

Discussion

n Uncertainties

n parameters (due to long period of time)

n costs for refueling and charging infrastructure

n development of support policies

n insurance price

n Restrictions

n analysis focuses on an average vehicle, but 
sensitivities provide initial insights beyond

n payload reductions due to lower heavier batteries 
not considered

n environmental effects not considered 

Conclusion
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P a r a m e t e r s

Here, I! stands for vehicle purchase price [€], 𝑆! for subsidies, 𝑅𝑉 for the residual value [€], 𝑇
for service life [a]. Furthermore, ongoing costs are examined. These can be divided into fixed 
𝑐&'()*,# and variable costs 𝑐,-.,#. In detail, both costs and their elements are listed in the
following equations.

Here, c/01 stands for insurance costs [€] and c234 for vehicle taxes [€]. Both are charged annually and irrespective of
vehicle use. Here, the annual mileage 𝑉𝐾𝑇 [km] is used. Kilometre-dependent costs for energy 𝑐)5).67, operation and
maintenance including tires and ad-blue 𝑐8&: and road toll 𝑐";<<. Cost calculations from both perspectives, i.e. company
versus federal, are differentiated by relevant taxes, subsidies 𝑆!, and interest rate 𝑖,

𝑇𝐶𝑂 = 𝐼! − 𝑆! −
𝑅𝑉𝑇

*1 + )𝑖 " +/
#$%

"
𝑐&'()*,# + 𝑐,-.,#

*1 + )𝑖 #

c!"#$%,' = c()* + c+,#
c-,.,' = 𝑉𝐾𝑇 ∗ (𝑐/0/123 + 𝑐𝑶&𝑴 + 𝑐7899)
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T e c h n i c a l  v e h i c l e p a r a m e t e r s i n  2 0 2 0  ( 2 0 3 0 / 2 0 5 0 )

Parameter Unit DT GT PHET H2T FCET BET Sources
Rated power [kW] 330 330 300	con.	130	

el.
330 330	

(180	FC)
330 [26,	27]

Range	conv. [km] 1,000 1,000 1,000 100-1,000
Range	el. 65 100-1,000 100-1,000
HV	battery [MWh] 0.080	(’20)

0.072	(’30)
0.065	(’50)

0.07 0.15-1.50	(’20)
0.14-1.37	(‘30’)
0.13-1.25	(’50)

Own	
assump-

tion

H2	tank [kg] 9-93	(’20)
8-77	(’30)
6-64	(’50)

8-80	(‘20)
7-86	(’30)
6-56	(’50)

Own	
assump-

tion

Consumption [kWh/	
100km]

318	(‘20)
265	(‘30)
221	(‘50)

349	(‘20)
298	(‘30)
248	(‘50)

318	(‘20)
265	(‘30)
221	(‘50)

311	(‘20)
259	(‘30)
214	(‘50)

269	(‘20)
226	(‘30)
187	(‘50)

Own	calcu-
lation,	

based	on	
[11,	17,	24,	

25]		
Consumption	
electric

[kWh/	
100km]

120	('20)
110	('30)
100	('50)

120	('20)
110	('30)
100	('50)

Own	calcu-
lation,	

based	on	
[11,	17,	24,	

25]		
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O t h e r  e c o n o m i c s p a r a m t e r

Parameter Unit DT GT PHET H2T FCET BET Sources
Vehicle insurance [%	VPP] 5.8 5.8 5.8 5.8 5.8 5.8 [30]

Toll	charge [EUR2020/km] 0.183	(’20)
0.183	(’30)
0.183	(’50)

0	(’20)
0.183	(’30)
0.183	(’50)

0	(’20)
0.169	(’30)
0.169	(’50)

0.171	(’20)
0.171	(’30)
0.171	(’50)

0	(’20)
0.169	(’30)
0.169	(’50)

0	(‘20’)
0.169	(’30)
0.169	(’50)

[31]

Toll	share [%] 92 92 92 92 92 92 [17]
Vehicle	tax [EUR2020/a] 929	(’20)

929	(’30)
929	(’50)

929	(’20)
929	(’30)
929	(’50)

929	(’20)
929	(’30)
929	(’50)

929	(’20)
929	(’30)
929	(’50)

373	(’20)
651	(’30)
929	(’50)

373	(’20)
651	(’30)
929	(’50)

[36]

O&M [EUR2020/km] 0.17	(’20)
0.17	(’30)
0.17	(’50)

0.19	(’20)
0.19	(’30)
0.19	(’50)

0.16	(’20)
0.16	(’30)
0.16	(’50)

0.19	(’20)
0.16	(’30)
0.16	(’50)

0.18	(’20)
0.14	(’30)
0.14	(’50)

0.14	(’20)
0.14	(’30)
0.14	(’50)

based	on	[30,	
32–34]

Service	life [a] 6 6 6 6 6 6 [32]
Annual	mileage [km] 120,000 120,000 120,000 120,000 120,000 120,000 [32]
Interest	rate [%] 9.5 9.5 9.5 9.5 9.5 9.5 [35]


